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In several materials, unconventional superconductivity appears nearby a quantum phase 
transition where long-range magnetic order vanishes as a function of a control parameter 
like charge doping, pressure or magnetic field. The nature of the quantum phase transition 
is of key relevance, because continuous transitions are expected to favour superconductivity, 
due to strong fluctuations. Discontinuous transitions, on the other hand, are not expected to 
have a similar role. Here we determine the nature of the magnetic quantum phase transition, 
which occurs as a function of doping, in the iron-based superconductor LaFeAsO1–xFx. We 
use constrained density functional calculations that provide ab initio coefficients for a Landau  
order parameter analysis. The outcome is intriguing, as this material turns out to be 
remarkably close to a quantum tricritical point, where the transition changes from continuous 
to discontinuous, and several susceptibilities diverge simultaneously. We discuss the 
 consequences for superconductivity and the phase diagram. 
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One of the most fascinating open problems in condensed  
matter physics is the appearance of unconventional super-
conductivity close to a quantum critical point (QCP), a 

zero-temperature phase transition driven by a control parameter  
like pressure, charge-doping or magnetic field. The interplay bet
ween a T = 0 quantum phase transition and superconductivity is 
well documented in heavy fermions1–3 and is suspected to have an 
important role in cuprates4–8 and iron-based superconductors 9–12.

The conventional wisdom is that as the system is tuned close  
to the QCP the main effect of critical fluctuations is to act as the 
pairing glue, responsible for the superconducting phenomenon.6,7,13 
She and Zaanen14 have recently suggested to shift the attention from 
the pairing glue to the pairing susceptibility. This is an insightful 
point of view because, at quantum criticality, the system has a large 
ground state degeneracy, and superconductivity is a natural candi-
date to remove this degeneracy3,15,16. Thus, the enhanced supercon-
ductivity close to a QCP can be seen as the effect of an enhanced 
pairing susceptibility as the QCP is approached, rather than the 
effect of an enhanced interaction.

Layered superconductors based on Fe–As planes with a transi-
tion temperature up to 26 K in LaFeAsO1 − xFx and exceeding 50 K 
in related compounds have appeared as a new test ground for QCP 
ideas. Neutron scattering experiments17 have shown that long-
range magnetic stripe order as depicted schematically in Figure 1a  
develops in the FeAs planes of the parent compound, as predicted 
by density functional theory18. On doping the magnetic order is 
suppressed and disappears at zero temperature at a QCP. The phase 
diagram is strikingly similar to that of heavy fermions where the 
QCP is inside or on the edge of the superconducting dome, which 
strongly suggests that QCP physics has a major role.9–12

Empirically, the magnetic ‘thermal’ transitions indeed show 
two types of behaviour19,20. In some compounds, typical of the so-
called 122 family, like, for example, SrFe2As2, the transition is of first 
order, whereas in compounds of the 1111 family (like LaFeAsO), it 
appears as second order. This gives a first indication that the iron 
pnictides are close to a tricritical point, that is, a point in the tem-
perature–x plane, where x is a non-thermal parameter, and where  
the nature of the transition changes from first to second order. It 
is conceivable, in principle, that, by changing two non-thermal  
parameters, the tricritical point can be driven to low or even zero 
temperature, giving rise to a quantum tricritical point (QTCP) 
where a wealth of unconventional quantum critical phenomena is 
expected to occur.21–23 Although it seems unlikely that a material in 
which one non-thermal parameter is controlled can be tuned to a 
QTCP, as a matter of fact, in recent years, materials have emerged 
which appear to be surprisingly close to a QTCP, and accordingly 
show unexpected phenomena. For example, spiral ferromagnet-
ism in ultraclean MnSi appears at a second-order phase transition 
at ambient pressure with a Curie temperature Tc that decreases  
monotonically with pressure and turns into a first-order phase  

transition very close to the critical pressure pc, where Tc is driven to 
zero. The proximity to a QTCP can be responsible for the anoma-
lously broad and yet not-well-understood region of partial order 
and non-Fermi-liquid behaviour found for pressure above pc

24,25. 
It is believed that, in this material, the lack of inversion symmetry  
suppresses superconductivity and other exotic orders have been 
proposed to emerge26–28. QTCP behaviour has also been proposed 
to occur in Sr3Ru2O7 (ref. 29) and in some heavy-fermion anti- 
ferromagnets. In the latter case one can tune to the QTCP using 
both a uniform magnetic field and pressure. As stressed in ref. 21, a 
remarkable property of QTCP’s is that not only the order parameter 
fluctuations diverge but the susceptibility of the conjugate variables 
of the control fields (like the uniform magnetic susceptibility in the 
latter example) diverge as well.

The nature of the magnetic phase transition in iron pnictides  
can be determined from a Landau order parameter analysis, if 
the coefficients that appear in the expansion are known. Here, by 
identifying all possible and relevant magnetic phases30 close to 
a potential tricritical point, we determine all the coefficients of  
the Landau theory in LaFeAsO as a function of doping from first 
principles, computing total energies in a constrained density  
functional approach31 within the local-density approximation 
(LDA)32–34. Using this approach, we find that LaFeAsO is surpris-
ingly close to a QTCP that will strongly affect the superconducting 
and normal state properties. The resulting effective field theory11 
shows that, at this critical point, an Ising and a continuous order 
parameter vanish concomitantly. A structural transition must, 
therefore, be very close to the magnetic one, as indeed is found in 
the experimental phase diagram of LaFeAsO35.

Results
Landau Theory. We can construct the Landau theory of magnetic 
order in iron-based superconductors on the basis of the assumption 
that the dominant magnetic instability of FeAs planes is at momentum 
(π, 0) and (0, π) where we use a notation with a single Fe per unit 
cell and take the Fe–Fe distance a ≡ 1. A previous study30 has shown 
that a complete characterization of the physics around a potential 
QTCP in FeAs planes requires consideration not only of the well-
known magnetic stripe phase (MS) with ordering wave vector (π, 0) 
or (0, π) (Fig. 1a) but also of a phase in which magnetic moments 
at nearest neighbour sites are at right angles, termed orthomagnetic 
(OM) (Fig. 1b), and a phase in which the real space magnetization 
is zero in one sublattice and forms an antiferromagnetic structure in 
the other sublattice (Fig. 1c). This phase has spin and charge order 
(SCO) and is reminiscent of the charged stripe phase in cuprates. 
Consistently with the expected generality of a Landau analysis, these 
states indeed appear as low-lying energy phases in microscopic 
computations36, ab initio37,38 and density-matrix renormalization 
group studies39.

The Landau free energy, specialized for the three possible ordered 
phases, as a function of their total magnetization MT reads 
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We keep up to the sixth power of the magnetization to account  
for second- and first-order phase transitions. Knowledge of the 
seven coefficients appearing in equation (1) completely determines 
the Landau free energy functional around the tricritical point 
(except for gradient terms)30.

(1)(1)

cba MS SCOOM

Figure 1 | Magnetic orders. Competing magnetically ordered states 
in LaOFeAs. (a) is the well-known magnetic stripe phase. (b) is the 
orthomagnetic phase with the nearest neighbours magnetic moments at 
right angles and (c) is the spin-charge ordered phase.



ARTICLE   

�

nature communications | DOI: 10.1038/ncomms1407

nature communications | 2:398 | DOI: 10.1038/ncomms1407 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

Constrained density functional. Density functional theory calcu-
lations within LDA are a good starting point to determine a bare 
Landau energy functional as they provide reasonably good esti-
mates of ground state energy differences and of their derivatives 
as demonstrated, for example, by frozen phonon computations in 
strongly correlated systems40. Here we perform analogous ‘frozen 
magnetization’ computations to obtain the energy of the different 
phases and compute the Landau parameters (Methods).

In Figure 2 we show the total energy per Fe ion for the three 
competing phases as a function of the local Fe magnetic moment 
MT and different doping concentrations. The zero of the energy is 
taken at the MT = 0 state. The points are the LDA data and the lines 
the Landau fits. In general, we find that the latter provides an excel-
lent fit to the data, even when MT is not small. For the MS in the 
undoped case (x = 0), the energy curve shows a clear deep minimum 
for MT ~ 1.5 µB (Fig. 2a). By increasing the F-doping, the minimum 
moves to slightly lower magnetization values and eventually disap-
pears for x > 0.3 (Fig. 2b). The energy is extremely flat close to the 
critical point with the large moment state almost degenerates with 
the zero magnetic state and without the appearance of a notice-
able energy barrier. This behaviour already indicates proximity to 
a QTCP and an anomalously ‘soft’ magnetism at the transition. For 
the OM state (c.f. Fig. 2c and d), the behaviour has a more pro-
nounced first-order character. The metastable minimum persists up 
to large dopings with a sizeable barrier separating the large magneti-
zation state from the low-magnetization state. Finally, for the SCO 
state (Fig. 2e), the evolution is that of a typical second-order phase 
transition. We notice that the flatness of the energy landscape close 
to the critical point is a big obstacle for the numerical convergence 

of conventional unconstrained LDA computations, which is over-
come by our constrained calculations.

Ab-initio Landau parameters. From the statistical mechanics 
point of view, the LDA is a mean-field theory. Thus in the second-
order region of the phase diagram, at the LDA level, one should, 
and indeed does, find classical critical exponents. The order para
meter as a function of a non-thermal parameter vanishes as |x–xα|β 
with βLDA = 1/2 far from the tricritical point and βLDA = 1/4 at the 
tricritical point. The coefficient of the quadratic term corresponds, 
irrespective of the phase under consideration, to the inverse of the 
susceptibility of the non-magnetic phase at momentum (π, 0) or (0, 
π). Thus, a single parameter α appears in equation (1). As a consist-
ency check, we allowed for different values of α in the fits and found 
that indeed α converges to practically the same values as a func-
tion of doping except for x~0 and 0.5 where higher order terms in 
the expansion become important (Fig. 3a). The vanishing of α at a 
critical doping xα determines the limit of stability of the paramagnet 
coming from large x. For the experimental lattice constants, we find 
α ~ 0.26(x–xα) eV/µB

2 with xα = 0.27.
Figure 3b and c show the behaviour of the quartic and sixth-order 

Landau parameters as a function of the doping concentration x. The 
behaviour is rather smooth and can be simply captured assuming a 
quadratic polynomial expansion except for the OM where a cubic 
term becomes important far from the critical point. For the MS and 
the OM phases, we find that the quartic coefficient B of the Landau 
expansion becomes negative above xB = 0.24 < xα. Therefore, the 
transitions from the non-magnetic state to the MS and OM phase 
are of first order whereas for the SCO state, B3 > 0, and the transition 
is a conventional second-order one. One can judge the relevance of 
the QTCP in the thermal crossovers by computing the height of the 
energy barrier at the point in which the magnetic and non-magnetic 
solutions become degenerate. For the MS, the barrier from the fits is 
nominally ~2 K per Fe atom that is much below the limit of accuracy 
of the computation, thus for all practical propose, the MS-non-mag-
netic transition occurs at a QTCP in LDA. The low barrier reflects 
an almost vanishing metastability range around the transition  
and the physics will be dominated by QTCP behaviour. The OM 
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Figure 2 | Constrained LDA energies. Energy per Fe for the MS (a, b), the 
OM phase (c, d) and the SCO phase (e) as a function of the Fe magnetic 
moment for different doping concentration x. The points are the results  
of LDA calculations whereas the continuous lines are fits using  
equation (1). (f) Energy per Fe for the MS phase for different values  
of the z coordinate of the As in the unit cell.
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state has a larger range of metastability (c.f. Fig. 4) but still with a 
negligible barrier at the transition point (~10 K).

Figure 4a shows the energy of the different phases. The end of 
the line indicates the spinodal point, that is, the point at which 
the state disappears as a saddle-point solution of the Landau equa-
tions. The MS stripe is the most stable phase except close to the 
transition to the paramagnet where the OM phase becomes stable 
in a small doping interval. The OM preserves C4 symmetry and 
has the same structure factor as an incoherent superposition of (π, 
0) and (0, π) twins of the MS state, so it is difficult to distinguish 
with magnetic neutron scattering alone. It is interesting that for 
122 compounds, a state with magnetic order but without detect-
able orthorhombicity has been reported41 that can be taken as a 
signature of the OM state.

Figure 4b shows MT versus doping. Despite the abrupt suppres-
sion of the order parameter from MT~1 µB to MT ≡ 0 for the MS, 
the transition is weakly first order. The OM magnetization shows 
a sharper first-order behaviour, although, as discussed above, the 
barrier is very small. The SCO behaves as a typical second-order 
transition. The behaviour of the order parameter of the MS is con-
sistent with the sudden drop of the magnetization as a function of 
doping observed in this compound35. Such behaviour reinforces our 
conclusion that the system is close to a QTCP, although our critical 
doping is overestimated as discussed below. The fact that the OM 
state lies only less than 10 meV above the paramagnetic state for a 
large range of doping suggests that fluctuations to this state may be 
the most relevant ones in the superconducting region.

Phase diagram. The LDA critical doping ~0.26 is larger than the 
experimental one 0.05~0.06 in this compound. Because LDA 
neglects fluctuations, the derived Landau parameters should be 
considered as ‘bare’ parameters. One well-known effect of fluctua-
tions is to reduce the stability of the ordered phases42,43 shifting the 
critical doping in the correct direction. Also because of the small 
energies involved, the actual transition will be sensitive to details 
as the choice of the functional or changes due to the relaxation of 
the structure. In particular, it is known that the magnetism is very 
sensitive to z(As), the z coordinate of the As in the unit cell37,38,44,45. 
Relaxing z (As) results in a decrease of around 0.1c (c = 0.87Å). We 
performed also computations with selected values of z (c.f. Fig. 2e) 
and constructed the zero-temperature phase diagram shown in Fig-
ure 3d that shows the location of the QTCP in the z(As)-doping 
plane. We see that a decrease of z(As) indeed shifts the transition to 
the right range of doping moving from the weakly first-order region 
(right of the QTCP) to the second-order region. We also show the 
line B1 = 0. We see that, even if one takes a relaxed z and a smaller 
critical doping, still the transition is dominated by the proximity to 
this line. Indeed, we find that the B1 coefficient depends weakly on 
z(As)c, so for doping x = 0.05 and z/c = 0.6307 we find B1~10 meV/
µB

4. Taking a characteristic moment of M*~0.5 µB this implies a neg-
ligible energy scale B1(M*)4 ~ 7 K that again points to anomalously 

soft magnetism due to proximity to the QTCP. A decrease in z(As)/c 
yields a substantial reduction of the total Fe magnetic moments 
towards the range observed in experiments17 leading in the end to a 
consistent picture from the point of view of magnetization, critical 
doping and vicinity to the QTCP.

The effects of fluctuations on a QTCP have been recently analysed 
in renormalization group studies22,23 and within a phenomenologi-
cal spin fluctuation theory 21 obtaining similar results. Applying the 
results of Misawa et al., we obtain that the coefficient in the quartic 
term gets renormalized due to spin fluctuations as B1

R = B1 + 15KG1 
where K is the zero-temperature spin fluctuation term (correspond-
ing to the average of the magnetic fluctuations near the ordering 
wavevector) and is expected to be of the order of a fraction of 1 µB

2. 
Because G1 is generically small in the doping range of interest, this 
correction is expected to be not too large. In particular, near the 
critical doping x ~ 0.05 where G1 < 0, it decreases the magnitude of 
B1, thereby driving the system even closer to the QTCP.

It has been suggested11 that the quantum phase transition in iron 
pnictides can be described by the effective long-wavelength field 
theory of a spin model with nearest- and next-nearest-neighbour 
antiferromagnetic couplings J1, J2. By introducing two Néel order 
parameters in different sublattices 


f1 and 


f2, the second and fourth 

order terms of the effective Lagrangian can be recast as 
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For αX < 0, the field theory predicts an Ising order described in terms 
of an Hubbard-Stratonovich field linearly coupled to 

 
f f1 2⋅  which 

is responsible for the lattice distortion experimentally observed in 
pnictides. We can determine whether the Ising symmetry is broken 
as the parameters of the field theory are related to our Landau coef-
ficients by u = B3/2, γ1 = B2–B3 and αX = B2–B1. Increasing the doping, 
for the experimental atomic positions, αX changes from positive to 
negative at xB (Fig. 3b) immediately before the transition. Therefore, 
the Ising symmetry is restored before the magnetic order vanishes. 
This is consistent with the appearance of the OM state in a small 
doping interval as shown above. In addition, the smallness of αX 
implies a structural transition very close to the magnetic transition 
as a function of doping11 which is consistent with the experimental 
phase diagram of doped LaOFeAs35.

Discussion
We have shown that magnetism in the iron-pnictide superconduc-
tor LaFeAsO1 − xFx is surprisingly close to a QTCP, and we have deter-
mined ab initio the coefficients of a Landau expansion around it. The 
energy landscape is anomalously flat close to the zero-temperature 
magnetic–non-magnetic transition giving rise to very soft behav-
iour of the order parameter in the sense that it can experience large 
changes as a result of weak perturbations. We believe frustration  
has an important role in this result as it tends to turn Stoner-like 
transitions into weakly first-order ones30. The degeneracy of the 
ground state close to a QCP is believed to boost superconduc-
tivity3,16. This effect should be enhanced close to a QTCP, where 
the degeneracy is even larger, and may have an important role in  
determining the high critical temperature of iron pnictides. It is 
interesting that Si and Abrahams have linked magnetic frustra-
tion and superconductivity 46 using a quite different point of view,  
namely a t-J-J′ model for iron-based superconductors. Similar to 
us, they argue that magnetic frustration accumulates entropy at  
low temperatures that is released by the superconducting order.

Whereas we have focused on a 1111 compound, one expects  
similar behaviour to occur in 122 compounds. Experiments in 
undoped SrFe2As2 and BaFe2As2 have shown that externally applied 
pressure can quench magnetism leading to superconductivity with 
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Tc as high as 29 K47. Therefore, combination of pressure and doping 
or uniform magnetic fields would make experiments exactly at the 
QTCP possible, thereby elucidating the effect of this unusual critical 
behaviour on superconducting and normal state properties. In par-
ticular, the strong fluctuations of the order parameter close to the 
QTCP are expected to coexist with strong fluctuations of variables 
conjugate to the control field21, for example, strong fluctuations of 
the structure in a pressure-controlled experiment.

Methods
Ab-initio computations. LDA computations were performed using the Vienna  
ab-initio simulation package (VASP)48. The Kohn–Sham equations in the self-con-
sistent calculations have been solved using the projector-augmented wave method49 
with the valence pseudo-wavefunctions expanded in a plane wave basis set with a 
cut-off energy of 500 eV. All the integrations in the Brillouin zone were performed 
initially with a Gaussian smearing method and then checked with a tetrahedron 
scheme50, using a sampling grid of 10×10×6 k-points. For iron pnictides, the 
method of choice is LDA because it provides magnetic properties closer to experi-
ment than, for example, generalized gradient approximation45. We used experi-
mental lattice and internal parameters fixed at zero doping17 with symmetry group 
P4/nmm, constructing our unit cell with 4 Fe sites to be able to allocate the men-
tioned magnetic structures. The MS phase breaks C4 symmetry, and thus a lattice 
distortion is expected, as observed experimentally. However, we were interested 
in the behaviour close to the QCP between the magnetic and non-magnetic state, 
where the orthorhombicity becomes negligible51. Therefore, this effect has been 
neglected for simplicity. We also performed calculations changing the z coordinate 
of the As as explained in the main text. Electron doping has been introduced in our 
computations by the virtual crystal approximation52.

Constrained LDA. We fixed both the modulus and direction of the magnetization 
to the patterns dictated by the Landau theory by performing constrained-LDA  
calculations31 and computing the total energy as a function of MT. The local mag-
netic moments were found by integration of the magnetization density in atomic  
Wigner–Seitz spheres centred at the Fe sites. To implement the constraint we  
introduced a penalty energy quadratic in the difference between the LDA magneti-
zation and the target magnetization with a large prefactor. Minimization of the new 
functional yields the LDA energy for the target magnetization with a negligible 
contribution of the penalty energy. The energyversus MT curves were fitted with 
expressions equation (1) to determine the Landau coefficients. The minimum of 
the Landau energy determines the equilibrium magnetization. 
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