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Abstract The function of the brain is unlikely to be understood without an accurate description

of its output, yet the nature of movement elements and their organization remains an open

problem. Here, movement elements are identified from dynamics of walking in flies, using unbiased

criteria. On one time scale, dynamics of walking are consistent over hundreds of milliseconds,

allowing elementary features to be defined. Over longer periods, walking is well described by a

stochastic process composed of these elementary features, and a generative model of this process

reproduces individual behavior sequences accurately over seconds or longer. Within elementary

features, velocities diverge, suggesting that dynamical stability of movement elements is a weak

behavioral constraint. Rather, long-term instability can be limited by the finite memory between

these elementary features. This structure suggests how complex dynamics may arise in biological

systems from elements whose combination need not be tuned for dynamic stability.

DOI: 10.7554/eLife.26410.001

Introduction
Behaving animals can act as quickly as their nervous systems allow, as slowly as their environments

fluctuate, or over intervals determined by some task. For instance, behaviors may change quickly to

avoid predators, slowly to adjust to seasons, or at the intervals of locomotor steps, song phrases, or

nest-building stages. How different behaviors between these limits fit together remains poorly

understood.

Classical ethological studies examined different stereotyped, goal-driven behaviors including

feeding, courtship rituals, aggressive encounters, and escape sequences (Tinbergen, 1963). To

human observers, many of these behaviors consisted of recognizable movements that often

occurred in characteristic sequences. These movements were inferred to be the fundamental units of

behavior, and their modularity suggested a similarly modular organization in neural control (Tinber-

gen, 1950; Simmons and Young, 2010). Yet on the whole, animals can adjust their movements in

both discrete and graded ways. For instance, houseflies track other flies in flight using a combination

of stereotyped saccadic course corrections and smooth pursuit (Wagner, 1986), and primates track

small targets using both saccadic and smooth orienting movements (Fuchs, 1967). While discrete

movements can be imprecise, gradual velocity adjustments can be used to tune movements quickly

with fine resolution. However, graded movement control, as a dynamical system, requires stability to
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be useful. As stable implementation of arbitrary dynamical systems is challenging (Smale, 1966),

graded control may impose limits on movement complexity or risk susceptibility to unpredictable

behavior over time. Thus, while an intuitive description of movement has converged on modularity in

both high and low level motor control (reviewed in Giszter and Hart, 2013; Flash and Hochner,

2005), variability and flexibility of ethological units have long been appreciated (Barlow, 1968), and

task-specific coordination of motor units down to individual muscles has been suggested

(Kutch et al., 2008; Valero-Cuevas et al., 2009). It remains unclear whether degrees of freedom in

movements are themselves limited by a finite set of functional modules, or may be adjusted continu-

ously and in a task-specific manner (Tresch and Jarc, 2009). In invertebrates, it has been argued

that behavior modules represent about half of all behaviors (Berman et al., 2014), but it has also

been argued that apparent modules represent mere extremes within a continuum of behaviors

(Gallagher et al., 2013; Szigeti et al., 2015; Hums et al., 2016). Thus, the extent to which behavior

is modular remains unresolved.

Recent advances in monitoring behavior, computing power, and statistical tools have encouraged

efforts to examine behavioral organization in an unbiased manner. However, there is scant consensus

on methods or criteria for unbiased segmentation. A variety of dimensionality reduction techniques

using both linear and non-linear approaches have been applied to dissecting limb and animal move-

ments in both vertebrates and invertebrates (Fod et al., 2002; Del Vecchio et al., 2003, Avella and

Bizzi, 2005; Stephens et al., 2008; 2010, Braun et al., 2010; Gallagher et al., 2013;

Mendes et al., 2013; Berman et al., 2014; Vogelstein et al., 2014; Schwarz et al., 2015;

Wiltschko et al., 2015). In addition, a number of approaches have used human observations to train

statistical models to identify behavioral patterns. For example, the movements of both flies and

worms have been described as sequences of behavioral events that were originally selected by

human observers (Croll, 1975; Pierce-Shimomura et al., 1999; Branson et al., 2009;

Dankert et al., 2009; Kabra et al., 2013; Kain et al., 2013). These methods have allowed human-

observed behaviors to be scored more efficiently, enabling high-throughput quantification of gender

and individual differences, or encounter types between individuals (Branson et al., 2009;

Dankert et al., 2009). However, given the overall diversity of approaches that have been applied,

and the corresponding differences in their conclusions, identifying principles of behavioral organiza-

tion across different behaviors and organisms remains challenging. Here we develop a set of criteria

for behavior segmentation that may be applied wherever time series measurements of behavior can

be obtained.

As a simple model of spontaneous behavior, we studied fruit fly locomotion. Due to the fly’s rela-

tively simple nervous systems and compact behavioral repertoire, this model system provides an

opportunity for high-throughput studies of behavior that can be linked with circuit function. In this

model system, a variety of behavioral sequences have been studied (Strauss and Heisenberg, 1990;

Pick and Strauss, 2005; Branson et al., 2009; Chen et al., 2002; Spieth, 1974), and powerful

genetic tools can be used to link behavior to circuits (Simpson, 2009).

To build a catalog of spontaneous behaviors, we acquired large datasets capturing the locomotor

movements of freely walking animals. We then identified patterns in movement dynamics from body

velocity time series using an iterative ICA procedure, and defined unique or interchangeable behav-

ior components from their occurrence statistics. We found that walking behavior can be decom-

posed into a small number of patterns that occur largely independently of all but the immediately

preceding behavior. Next, we developed a statistical model that captured sequences of these pat-

terns over longer timescales, and tested the ability of this model to generate sets of synthetic behav-

ior trajectories matching real fly behaviors. On short time scales, we find a continuum of behaviors

whose variation can be captured by a small number of parameters. Over longer times, variation

grows, but behavior is predictable because it resolves into a small number of distinct, finite memory

episodes, corresponding to elementary walking patterns. As a result, these studies systematically

connect the time scales of velocity modulation on the order of the action-perception cycle with lon-

ger time scales at which ethological units of behavior are observed.
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Results

Behavior shows consistency over short periods, describing the extent
of behavior episodes
We set out to characterize walking at time scales from tens of milliseconds to a few seconds, begin-

ning at the time scale of the fly action-perception cycle and extending to the time scale of locomotor

behaviors (David, 1984; Nagle and Bell, 1987). Spontaneous walking behavior of female flies was

examined in a uniformly illuminated environment without systematically varying visual, auditory or

olfactory stimuli. We were interested in finding reproducible behaviors and sought to eliminate indi-

vidual differences and behavioral changes that might emerge over extended periods of time. To

minimize slow behavior changes due to fatigue, circadian phase, or age, well-fed 2–3 day-old flies (n

= 7364) walking on a glass surface under dim illumination were tracked alone or in groups, in 10 min-

ute trials during 2 hours of peak circadian activity. In aggregate, our datasets comprised over 1000

fly-hours of behavior, and contained over 106 trajectories (Katsov et al., 2017). Three datasets were

collected for different purposes: a dataset of ~ 10
6 trajectories that densely sampled walking behav-

ior on short time scales (Dataset S, trajectory length mean = 1.5 sec, P95 = [0.22,5.1] sec), a dataset

of ~ 10
4 longer trajectories in a large arena (Dataset L, mean = 5.22 sec, P95 = [0.42,14.55] sec), and a

dataset of ~ 10
4 trajectories from isolated individuals (Dataset A, mean = 2.2 sec, P95 = [0.63,7.2]

sec). Given these large datasets, we could effectively sample a wide range of spontaneous locomo-

tor behaviors.

Locomotor behaviors are commonly defined using simple speed heuristics. For instance, turns

have been defined in several species, including flies, by setting a threshold on rotational speed, and

runs and pauses have been defined by thresholds on translation (Berg and Brown, 1972; Pierce-

Shimomura et al., 1999; Geurten et al., 2010; Drai et al., 2000; Wolf et al., 2002). However,

behavior categories are not always reflected unambiguously in instantaneous speeds. For instance,

speed distributions with multiple modes can reflect distinct behaviors, each represented by a typical

speed, but can also reflect biomechanical or other constraints that suppress some speeds in all

behaviors, producing troughs in the distribution. To use more information, we looked at movement

properties over time.

As Drosophila shows little independent head movement in walking maneuvers (Geurten et al.,

2014; Fujiwara et al., 2017), we measured displacement of the entire animal as an oblong shape on

a two dimensional surface and inferred the position of the head statistically with greater than 99.8%

accuracy (Figure 1A; Katsov and Clandinin, 2008). Three velocity components, translation, rotation,

and side-slip, ~vvvvv ¼ ðvT ; vR; vSÞ, completely describe walking at this level (Figure 1B). These velocity

components, plus accelerations _~vvvvv ¼ ð _vT ; _vR; _vSÞ were measured from 10
6 individual trajectories

(Figure 1C).

Movement properties were first examined over a small time step, 33 milliseconds, in a velocity-

acceleration phase space. In this space, starting from velocity trajectories, the average acceleration

at each~vvvvv; E _~vvvvv j ~vvvvv
h i

, was used to construct a kinematic field (Materials and methods). This field shows

average tendencies at different velocities. For example, when flies are not turning (Figure 1D,

vR » 0), but have high side-slip they tend to speed up (arrows up), while at low side-slip they tend to

slow down (center of panel, arrows down). Altogether, this field constitutes a local description of

behavior dynamics as it explicitly describes average dynamics at each velocity bin. For locomotor

behavior, this description captures the mapping between observed behavior and aggregate forces

due to neural control and biomechanical constraints, as indirectly represented in the accelerations

observed at each velocity. If locomotor behaviors are separated by distinct combinations of velocity-

acceleration pairs, different regions of this space should describe distinct behaviors well. However,

in the kinematic field, mean dispersion about the average accelerations is greater than five times the

local averages, many-fold greater than our measurement error (Materials and methods). This large

dispersion may represent intrinsic behavior variability, or suggest that distinct behaviors are not well

represented in their average tendencies at one time scale.

We considered three possible explanations for this large dispersion (Figure 2). First, though

unlikely, the maneuvers of walking flies, like those of flying insects, may be relatively unstable

(Taylor and Thomas, 2003; Sun and Xiong, 2005). As a consequence, two flies initiating a turn in

the same way, with nearly identical velocity, might move in very different ways a short time later. A
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broad range of accelerations at any given velocity will result, and behavior dynamics, represented by

accelerations, would appear poorly constrained. This possibility predicts that if one were to follow

trajectories in velocity space, behaviors would diverge quickly from initially similar velocities

(Figure 2A). Second, behavior dynamics may be stable, but related trajectories can be reasonably

expected to vary (Barlow, 1968). Hence, even if distinct behaviors were well separated in velocity

phase space, a range of accelerations at any given velocity would still be observed. However, unlike

Figure 1. Velocity-acceleration phase space captures aggregate constraints on behavior. (A) An example

trajectory fragment of an individual fly walking on a surface. The animal’s orientation (red arrows) and

displacement (gray arrows) are tracked at 30 frames per second. (B) A schematic illustration of the three velocity

components~vvvvv ¼ ðvT ; vR; vSÞ around the major body axis of a fly. These three components completely describe

whole-animal movement in two dimensions. (C) Example trajectory in velocity phase space parameterized by

~vvvvv ¼ ðvT ; vR; vSÞ. Red arrows denote the magnitude of the acceleration vector at each velocity. (D) A single plane in

the 3-dimensional phase space, E _~v j ~v
h i

; ~v ¼ ðvT ; vR ¼ 0; vSÞ (black arrows), with an example trajectory (red

arrows), projected into this plane (x-axis: vS; y-axis: vT ).

DOI: 10.7554/eLife.26410.002
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the first possibility, the second predicts that movements of one type will maintain velocities that are

more similar to each other over time than to other movement types (Figure 2B). Related behaviors

should remain close in velocity space over time, in distinct regions from other behaviors. The final

possibility is that distinct movement patterns use distinct accelerations at similar velocities, and

therefore overlap in velocity phase space. As a result, different patterns contribute different acceler-

ations to the same velocity neighborhood. In this case, initially similar velocities would remain similar

when behavior is committed to a particular movement type, but will diverge at other times

(Figure 2C, red, black squares, respectively).

To test these alternatives, we randomly sampled small velocity neighborhoods, each correspond-

ing to approximately 0.004% of velocity space, and measured divergence of trajectories from each

neighborhood over time (Materials and methods). On average, trajectories quickly diverged up to

the extent of the entire velocity space (Figure 2D, solid line), excluding the possibility that stable

behaviors are well-separated in instantaneous velocities (Figure 2B). Of the remaining possibilities,

is walking behavior unstable (Figure 2A), or composed of distinct patterns that re-use similar veloci-

ties (Figure 2C)? We reasoned that if stable behaviors exist, they should be most consistent when

Figure 2. Trajectory divergence in velocity phase space and definition of a behavior episode around vR extrema. (A) Starting from a small

neighborhood of similar velocities (box), diverging trajectories spread throughout velocity phase space, increasing in a measure of their spread. (B)

Starting from the same neighborhood, divergence of trajectories corresponding to modal patterns is bounded for the duration of each pattern. (C)

Bounded or unbounded divergence can be seen when modal patterns overlap in velocity phase space, depending on when trajectories are sampled in

the course of these patterns. (D) The normalized standard deviation of trajectories at time t after passage through a small neighborhood, averaged over

a random sample of NB ¼ 200 neighborhoods, sðtÞ ¼ 1

s vT½ �s vR½ �s vS½ � hst ½vT �st ½vR�st ½vS�iNB
(Equation 1, Materials and methods). Shaded areas represent

95% confidence intervals of the estimate of sðtÞ. Neighborhoods were sampled from anywhere in velocity space, and for each neighborhood all

trajectories were included (dot-solid line), or only those with a turn peak 100 ms after passing the neighborhood (dashed line). (E) An example trajectory

fragment depicting vRðtÞ [˚ s�1], vT ðtÞ and vSðtÞ [cm s�1]. (F) The autocorrelation functions of vRðtÞ; vT ðtÞ and vSðtÞ.

DOI: 10.7554/eLife.26410.003
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behavior is committed to a particular movement type. Therefore, we looked for behavior episodes

between locomotor adjustments. Whenever locomotor behavior is adjusted, some force must be

applied to alter velocity. As a result, behavior adjustments will correspond to accelerations or decel-

erations. As flies accelerate or decelerate for finite periods of time, episodes of behavior adjustment

must have extrema. Acceleration extrema correspond to inflections in velocity and hence we chose

to examine trajectory intervals that included at least two velocity inflections, bounding an interval

between behavior adjustments. We observed that the rotational component fluctuated throughout

all trajectories, and displayed a steep autocorrelation falloff (Figure 2E,F). Indeed, local peaks in vR

arise frequently enough, with an inter-peak interval of 250� 110 ms, that almost every trajectory can

be represented in its entirety by short trajectory fragments surrounding vR peaks. When fragments

include most of each interval before and after a peak, they are nearly guaranteed to include behavior

adjustments on either side of the peak, capturing a relevant behavior interval. To test whether

behavior divergence is ever bounded during these episodes, we examined behavior starting from

defined times preceding velocity peaks. Specifically, we selected velocity neighborhoods randomly

throughout velocity space again, but only examined divergence of trajectories where a vR peak

occurred a defined time later, ranging from 70 ms to 170 ms. Divergence should be unaffected by

this selection if behavior is unstable (Figure 2A). To the contrary, we observed that on average

divergence plateaued for up to 200 ms when trajectories were sampled up to 130 ms before vR

peaks, but not earlier (Figure 2D, dashed line, and d.n.s). This period of bounded divergence sug-

gested that there exist behavior patterns that remain consistent for about 200 ms, beginning from

approximately the middle of the average interpeak interval. Taken together, our findings excluded

possibilities A and B, suggesting that different movements must overlap in velocity phase space

(Figure 2C), while consistent behaviors may be defined with respect to vR peaks.

Unbiased segmentation of trajectories defines modal movement
patterns
We next sought to separate behavior patterns statistically. In walking flies, certain movement pat-

terns stand out for human observers: for instance, stops, crabwalks, sharp turns, straight and curved

walks (eg: Strauss and Heisenberg, 1990; Branson et al., 2009; Kain et al., 2013; Geurten et al.,

2014). However, on closer inspection, even seemingly stereotyped patterns like sharp turns present

a variety of movements, producing a range of very large to barely perceptible orientation changes.

Does this range include distinct movement patterns? Conversely, are movement patterns that look

similar to human observers really used by animals as if they are the same? Without explicit human

guidance, approaches to behavior segmentation have been based on models of joint kinematics,

movement dynamics, or muscle synergies (eg: Fod et al., 2002; Del Vecchio et al., 2003;

d’Avella and Bizzi, 2005), or on classification of movements from distributions of instantaneous

velocities (Braun et al., 2010; Gallagher et al., 2013), or postures (Stephens et al., 2008,

2010; Berman et al., 2014; Schwarz et al., 2015; Wiltschko et al., 2015), or experimental activa-

tion of neuron groups (Vogelstein et al., 2014). Our strategy was to identify any behaviors that may

be different in dynamic structure, and then to use statistical relationships between these behaviors

to determine if multiple behaviors belong in the same group, or whether one identified behavior is

used in different ways so as to suggest multiple underlying states.

Distinct behaviors arise from differences in how flies accelerate or decelerate. Due to inertia,

velocities cannot change instantaneously. However, as observed in Figure 2D, velocities may or may

not remain similar over time, depending on what phase of behavior is examined. Because behaviors

maintained similarity around vR peaks, trajectory fragments surrounding vR peaks were chosen for

analysis. Specifically, fragments were selected including 550 ms before and after each vR peak,

encompassing over 99% of all interpeak intervals (Figure 3A, Box 1). This fragment length extended

beyond the average period of bounded divergence to include as many full intervals between behav-

ior adjustments as possible, allowing for extended behaviors. As a result, a series of partially overlap-

ping fragments were extracted from each trajectory. These fragments were aligned in time to when

a peak occurred in vR, thereby aligning the adjoining rising and falling vR signals across trajectories.

In this aligned dataset, distinct movement patterns would be marked by different magnitudes of vR
peaks, different temporal patterns of changes in velocities around turn peaks, or both. The aligned

dataset was represented in a matrix, where each column contained a different fragment around a

unique vR peak, and each row represented a step in time relative to that peak, for each velocity
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component. Different columns then contained either variants of related behaviors, or distinct move-

ment patterns.

To identify potentially different movement patterns, we looked for simple descriptors of velocity

fragments, asking which fragments are well captured by the same set of descriptors, and which frag-

ments require different sets of descriptors. These descriptors were inferred from patterns of varia-

tion in the fragment set, using independent components analysis, ICA (Hyvärinen, 1999;

Hyvärinen and Oja, 2000; Himberg et al., 2004), Box 1, 2, Materials and methods). Using ICA, the

shapes of trajectory fragments in velocity space were reduced to a set of independent parameters.

These parameters may be thought of as degrees of freedom in the temporal structure of velocity tra-

jectories. An individual trajectory fragment, as one trajectory shape described by a set of parame-

ters, is represented by a coefficient in each parameter. To separate potentially unrelated fragments,

we assumed that under most circumstances, parameter coefficients should be distributed unimodally

if a parameter represents one degree of freedom of a single movement pattern. Alternatively, a mul-

timodal coefficient distribution indicates that movement represented in this parameter may be

impeded by some mechanical constraint, that movement is not well represented in this parameter,

or that more than one movement type is present. For these reasons, coefficient distributions were

examined once independent components were identified in a fragment dataset, starting from the

complete dataset consisting of 2:9 � 106 trajectory fragments. Whenever a coefficient distribution

showed multiple modes or inflections, raising the possibility of contributions from multiple move-

ment patterns, data were separated by mode and the smaller pool of trajectory fragments corre-

sponding to each subset was reanalyzed to find its own independent components. Because different

Figure 3. Iterative ICA segmentation reveals dynamic submodes. (A) Iterative ICA procedure. Local vR peaks are identified in a single trajectory (red

dots). Fragments of trajectories are then selected around vR (dashed lines), and all velocity components are aligned in time on vR extrema in matrix M.

In M, turn direction is normalized while preserving the relative direction of side slip by multiplying vR and vS by c, the sign of vR extremum at aligned

time 0. M dimensionality is then reduced and independent components are identified. In these independent components, velocity trajectories are

represented by a coefficient in each component. If a multimodal coefficient distribution is found, coefficient clusters corresponding to distinct trajectory

fragment subsets are separated, and the entire procedure is repeated iteratively on each fragment subset to identify distinct submodes. (B)

Segmentation tree showing decision points (triangles), and submodes (dashed circles). 15 submodes were identified, but the decision tree is drawn up

to branching levels supported by Markov modeling (Figure 5, Figure 5—figure supplement 1). Submodes are described in Figure 4 and Figure 4—

figure supplement 1.

DOI: 10.7554/eLife.26410.004
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movement patterns could arise at different frequencies, and require disambiguation of different

velocity components on distinct time scales, the entire procedure was repeated iteratively for each

Box 1. Segmentation of movement patterns, set-up.

Starting with the full set of trajectories ~vvvvvðtÞ ¼ ½vT ; vR; vS�ðtÞ, times fteg of local extrema in vRðtÞ

were identified and trajectory fragments were isolated around each extremum, ~vvvvvðt ¼ teÞ. These

fragments, ~vvvvvðt0Þ, t0 ¼ t� te, were normalized to the sign of vRðt
0 ¼ 0Þ, making all turns at t0 ¼ 0

positive but preserving side-slip direction relative to the turn. Each fragment of n time samples

was represented as a ð3n� 1Þ column vector:

v¼
cvRðt

0Þ
vTðt

0Þ
cvSðt

0Þ

2
4

3
5; c¼ sgn½vRðt

0 ¼ 0Þ�

Then, vectors vðjÞ; j¼ 1; . . . ;N, representing N vR peaks, were concatenated horizontally into a

ð3n�NÞ matrix M, such that each row i was a velocity cvR; vT or cvS at the same time t0 from a vR

peak at t0 ¼ 0;

M¼ vð1Þ vð2Þ � � � vðNÞ
� �

Correlations between rows in this matrix relate velocity components at aligned times t0 from vR

peaks in the dataset. Because velocity components differ in range and distributions, which can

also change over time relative to vR peaks, rows were standardized to obtain matrix

Z¼ zð1Þ zð2Þ � � � zðNÞ
� �

; z
ðjÞ
i ¼

v
ðjÞ
i �hv

ðjÞ
i ij

s½vi�

This matrix may contain two kinds of mixtures of movement patterns. First, each column (or a

part of it in time) may represent a variant of a single movement pattern. This movement pattern

may be described in terms of independently adjustable parts of its temporal structure, or inde-

pendent components. Framed in terms of the standard ICA generative model (Hyvärinen and

Oja, 2000), it is hypothesized that vectors of this matrix can be described as:

zðjÞ ¼AsðjÞ; or zðjÞ ¼
XD

i

aisij

where ai are columns of a mixing matrix A, and sij is a coefficient of sample j in the ith basis vec-

tor, of the D basis vectors that span the space of independent components of Z. This basis vec-

tor set represents degrees of freedom in velocity trajectory shapes over time. sij may take on

continuous or discrete values, corresponding to continuous or discrete modes of movement con-

trol. The matrix A produces time-evolving trajectories by giving each scalar sij an extent in time,

and mixing these components. If movement dynamics can be represented by fewer degrees of

freedom than dimensions of the standardized velocity-time vector z, then D < jzðjÞj ¼ 3n.

The second kind of mixture in Z may be a mixture of distinct movement patterns, such that any

given column (or part of it in time) contains one type of movement pattern, while different col-

umns may contain qualitatively different patterns. If all movement dynamics are subject to the

same degrees of freedom, then the same mixing matrix A applies to the entire dataset, and the

space of independent components fsg is spanned by the same basis vector set b. Alternatively,

different mixing matrices AðCÞ and independent components bðCÞ describe each subset C, corre-

sponding to distinct movement patterns.

DOI: 10.7554/eLife.26410.005
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subset of raw velocity trajectories corresponding to a distinct coefficient subset, until further itera-

tion produced no separable data features, did not converge, or produced independent components

that did not differ from previous iteration (Box 2 and Materials and methods).

Walking patterns classified in this way were termed submodes, as this analysis favored splitting

over lumping of distinct behaviors and left open the possibility that identified behaviors may be sub-

sets of larger behavior groups. Submodes included stops and dithers, when flies shifted around

while remaining in one place, straight runs, smooth turns and several kinds of sharp turns, as well as

different crabwalks marked by sideways motion. In addition, several variations of a sharp turn were

found that included sideways or backward movement at high velocity (Figure 3B, Figure 4 and Fig-

ure 4—figure supplement 1). As no more than 5–6 parameters were needed to account for at least

Figure 4. Submode velocity profiles for each submode. (1-15) Velocity distributions over time for each identified submode. The central 68% of the

distribution is shown at each time point for up to 200 ms around peak vR. The time within each submode relative turn peak is color-coded. Submodes

are shown in columns, by membership in modes I � V (Figure 5). (1’�15’) Example trajectory fragment of each submode type is illustrated. Three time

points are shown per trajectory, each spaced 100 ms apart. A diagrammed fly illustrates the centroid location and orientation of an animal at each time

point. Note that only one time point illustrates submode 8 because this submode consists of stops.

DOI: 10.7554/eLife.26410.007

The following figure supplement is available for figure 4:

Figure supplement 1. Example trajectory fragments from each submode class.

DOI: 10.7554/eLife.26410.008
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85% of data variance at each iteration of the classification procedure, each movement pattern was

reasonably well captured by a small number of parameters (see Materials and methods). Altogether,

15 submodes were identified that tiled individual trajectories from a dataset collected from thou-

sands of individuals, likely accounting for all major walking patterns of female flies.

As a whole, the submode set included movements salient for human observers (Branson et al.,

2009; Kain et al., 2013, pers. observation), but the extent and composition of some submodes and

the diversity of others was not intuitive. For instance, turns represented in submodes 7,10, and 11

(Figure 4, Figure 4—figure supplement 1) were easy to pick out as one kind of behavior, but not

necessarily three. Some human calls picked out features that were not identified as individual

Figure 5. Identified movement patterns as distributions in velocity phase space. (A–E) Top: Modes are described as velocity distributions over time,

termed ‘velocity profiles.’The central 68% of the velocity distribution at each time point around peak vR is shown. The time relative to a turn peak within

each mode is color-coded; green represents time of peak vR. Bottom: Example trajectory fragments from each mode are illustrated. Except for Mode I,

two trajectories are shown per mode, three time points per trajectory, each spaced 100 ms apart. A diagrammed fly illustrates the centroid location and

orientation of an animal at each time point. Note that only one time point illustrates Mode I because this mode consists of stops. (F) Projection of all

mode velocity profiles into a vT � vR plane. Note that modes overlap in this joint velocity projection, and modes spanning smaller velocity regions are

plotted on top of broader modes. (G) Residence time distributions, by mode, from real (light blue) and model-generated (black) trajectories. Two

model-generated distributions are plotted for mode I (left panel): a Markov model without hidden states captures short residence times in the real

distribution, while a Markov model that included an additional, non-communicating hidden state captures both short and long residence times. (H) The

chosen 5-state Markov model, MM5. Edges are labeled with transition probabilities between modes. This model does not represent hidden substates

of mode I.

DOI: 10.7554/eLife.26410.009

The following figure supplements are available for figure 5:

Figure supplement 1. Grouping submodes by kinetic criteria to define a behavioral model.

DOI: 10.7554/eLife.26410.010

Figure supplement 2. Information between modes in sequences.

DOI: 10.7554/eLife.26410.011
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submodes: for instance, reversals did not appear in submodes on their own, but as part of more

complex movement patterns. Similarly, submode 1 spanned a range of movements from clear turns

to relatively straight walks, while submode 2 included both average and very slow walks, sometimes

but not always with a clear side-slip component. Are such different movements really associated

together? Conversely, five submodes represented more or less subtle variants of sharp turns (subm-

odes 3,6,7,10,11) and several submodes included various subtle rotations or side-slip (submodes

4,5,9,12–15). Are these similar movement patterns really used by animals in different ways?

To answer these questions, we examined submode relationships over time. One possibility is that

each of the identified submodes represents a completely autonomous behavior. If this were the

case, each submode would occur independently of submodes that come before or after. In all other

cases, the statistics of submodes that tend to occur before or after a given submode can be used to

identify submodes that share the same statistical relationships. Such submodes will be grouped into

units we will call ‘modes.’

Submode sequences demonstrate limited memory
To measure the extent of submode relationships over time, we first measured how well the identity

of submodes at one time predicts the identity of their neighbors in the same trajectory. Velocity tra-

jectories were converted to submode sequences by classifying each vR peak and the surrounding tra-

jectory fragment, using parameters found in the previous analysis (Materials and methods). For each

trajectory j, we obtained a submode sequence fuig
ðjÞ, where u represents submode identity, and i

indexes time. Among all trajectories, we found that over a quarter of the uncertainty about submode

Box 2. Segmentation iteration.

(1) Construct matrix M from trajectory fragments around vR peaks. Include all velocity compo-

nents (Box 1, and Materials and methods Equation 3). Columns are aligned in time with respect

to vR peaks.

(2) Standardize, whiten rows of M to obtain matrices Z and Zw, respectively (Materials and meth-

ods Equations 4–5).

(3) Select the largest principal components (PCs) to retain >85% of total data variance. Eliminate

rows corresponding to the remaining PCs from Zw, obtaining a reduced matrix eZw.

(4) Apply Independent Components Analysis (ICA) to eZw. Repeat with random initial guesses for

ICs.

(5) Examine ICs and data projected into ICs

if ICs fail to converge then

(5.1) Terminate procedure. Examine previous steps; reduce velocity-time points in M

(dimensions of interest) as warranted. Proceed from step 1.

else if ICs represent the same dimensions as pre-ICA then

(5.2) Terminate procedure. Trajectories in matrix M represent a submode

else

(5.3) Project trajectories into ICs

if Parameter distribution in ICs contains no separable features then

(5.3.1) Terminate procedure. Trajectories in matrix M represent a submode

else

(5.3.2) Separate features in IC projections.

(5.3.3) Identify trajectory fragments that correspond to each feature class in ICs.

(5.3.4) Repeat, from Step 1, for each data subset.

end

end

DOI: 10.7554/eLife.26410.006

Katsov et al. eLife 2017;6:e26410. DOI: 10.7554/eLife.26410 11 of 32

Research article Neuroscience Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.26410.006
http://dx.doi.org/10.7554/eLife.26410


identity ui is explained by the previous submode ui�1, indicating that submodes are not independent

ð� ¼ Iðui; ui�1Þ=HðuÞ ¼ 0:271; CI95 ¼ ½0:270; 0:272�; where I is mutual information and H is Shannon

entropy (Cover and Thomas, 1991) ). However, after accounting for the history of one previous sub-

mode, almost none of the remaining uncertainty was explained by submodes one step further in the

past, ui�2 ð�2 ¼ Iðui; ui�2 j ui�1Þ=Hðui j ui�1Þ ¼ 0:015; CI95 ¼ ½0:014; 0:015�Þ. This result suggested that

transitions between submodes depend on the current submode, and negligibly on submode history

two or more steps in the past. However, it is possible that a small contribution of prior memory can

accumulate over time.

To test the cumulative impact of history on submode transitions, two Markov models that

neglected all but one or two-step submode history were used to generate short synthetic submode

sequences that were then compared with real sequences. These two models generated nearly indis-

tinguishable sets of submode sequences, each comparable to random sets of real sequences (Fig-

ure 5—figure supplement 1A). Specifically, synthetic sequences from a first-order Markov model

matched almost the same number of real sequences as were matched between two random sets of

real sequences (matched fraction = 0:93� 0:009, see Materials and methods), while sequences from

a second-order Markov model matched real sequences only slightly better (matched fraction =

0:96� 0:008). Given that nearly equal data fractions were matched accurately by assuming either one

or two submode history, we concluded that models conditioned on one previous submode are suffi-

cient to capture most short submode sequences. As one submode but not prior history effectively

influenced transitions to the next submode, this analysis argues that memory of past behavior must

extinguish between the start of one submode and the start of the next. Hence, while individual

submodes represent unique temporal correlations in velocities, submodes also correspond to peri-

ods during which memory of past behavior is effectively extinguished. In this way, velocity associa-

tions over short periods captured by submode identities also defined behavior elements that are

decoupled over longer periods.

Statistical relationships between submodes suggest groups of related
submodes
Next, we asked whether the statistics of submode transitions suggested additional levels of behavior

organization. In principle, there are two possibilities. Statistical relationships shared by more than

one submode could indicate that these submodes are interchangeable in the context of other subm-

odes, and therefore may be grouped, or transition statistics may indicate that more than one behav-

ior underlies a single submode. To allow for both possibilities, we used the framework of Hidden

Markov Models (HMMs) to identify statistical patterns in submode sequences. Different HMMs were

constructed and evaluated using multiple criteria while systematically varying the assumed number

of hidden states (Materials and methods). For each number of hidden states, multiple models were

trained from random initial conditions to fit observed submode sequences. All models assumed that

state transitions depend only on the current state, approximating history dependence in submode

transitions. Models of equivalent complexity were evaluated using the likelihood attributed by each

model to real submode sequences. Models of different complexity were compared using a variant of

sampling from a generative model, testing each model’s ability to generate sets of individual behav-

ior sequences that correctly represented the distribution of real trajectories (Materials and methods).

By these criteria, it was found that 6-state models reproduced real submode sequences as well as

models that used information about all 15 submodes, some 5-state models performed similarly to 6-

state models, and all simpler models performed significantly more poorly (Figure 5—figure supple-

ment 1C). Therefore, we concluded that a five state model represented a good tradeoff between

model complexity and accuracy, and chose one such model based on its performance (Figure 5—

figure supplement 1E,F and Materials and methods). This model, as all well-performing models,

revealed a largely straightforward pattern: most submodes mapped predominantly to a unique

underlying state (Figure 5—figure supplement 1D). This result was surprising as by construction,

HMMs allowed each submode to be associated with multiple states. As most submodes mapped to

only a single state, some submodes were associated with the same state because there were more

submodes than states. Submodes that mapped to the same state could be considered a group

based on their shared statistical properties. An exception to this pattern was behavior at low veloci-

ties and stops (submode 8, and one or more of the rare submodes 4,5,9,14,15), which showed signa-

tures of potentially mixed behavioral states (see Materials and methods and below). However, where
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evaluated, division of submodes into more underlying processes increased model complexity with-

out substantially improving fit to data (see below). As many different models were evaluated, we

observed that groupings of the most frequent submodes agreed between the best Markov models

but submodes that occurred rarely in trajectories could be assigned to different groups, presumably

reflecting their modest contributions to the dataset. As a result, a small number of models that

grouped rare submodes in different ways performed comparably well by all model selection criteria,

and could not be differentiated further (Figure 5—figure supplement 1C,E). In addition, transition

probabilities below approximately 0.005 could not be accurately determined, due to finite dataset

sampling error (see Materials and methods). Nevertheless, as a 5-state Markov model could gener-

ate sets of synthetic behavior sequences that matched the distribution of real sequences nearly as

well as more complex models, we concluded that five submode groups, or modes, provided a suffi-

cient model of submode organization (Figure 5—figure supplement 1A,E, Materials and methods).

How are submodes organized? Multiple submodes may map to the same mode because each

occurred between the same set of other movements, with similar transition probabilities. Provided

their statistics are well-sampled, either similar or distinct movements may be legitimately grouped

by these criteria. Were similar or distinct movements grouped in modes? Each mode, like each sub-

mode, can be described as a distribution in four dimensions: the three-component velocity vector ~vvvvv,

plus time. We call this distribution a velocity profile. Qualitatively, the velocity profiles of most subm-

odes assigned to the same mode are similar (Figure 4), suggesting modes represent major groups

of movements.

Movement patterns represented in two of the modes were confined to either low or high ranges

of vR and vT (Modes I, V respectively, Figure 5A,E). Velocity profiles of the other three modes all

spanned low and high velocities in multiple velocity components (Modes II-IV Figure 5B–D). Move-

ment patterns in these modes included: sharp and shallow turns accompanied by forward accelera-

tion (Mode II), various side-slip motions at slow speeds, often but not always preceded by

decelerations (Mode III), and slower, relatively straight runs with occasional side-slip (Mode IV)

(Figure 5B–D, Figure 4). Individual movement patterns assigned to a mode could be largely judged

by human observers to represent variations on a theme (Figure 4, Figure 4—figure supplement 1,

and pers. obs.).

However, both unexpected groupings and distinctions were found for statistically well-repre-

sented movement patterns. Fast, straight walking was grouped with smooth turning in the high

velocity Mode V, while intermediate and slow straight walks, with occasional side slip, were grouped

together in a different mode, IV (Figure 5D). That is, in this segmentation, two apparently different

behaviors, some turns and straight runs, were grouped together, and were distinguished from other

types of related behaviors. On the other hand, two sharp turns (submodes 6 and 7) differed only

subtly, but were never assigned to the same mode in any well-performing Markov model we evalu-

ated. These groupings contrast with previous behavior segmentation efforts, where turns were

deemed by human observers to be separate, a priori, from straight runs of all speeds, and sharp

turns were treated as a single category (Pierce-Shimomura et al., 1999; Branson et al., 2009;

Kain et al., 2013; Geurten et al., 2014). Crucially, in our segmentation distinct movements such as

turns and straight walks of Mode V were not grouped because they tended to occur one after the

other, but because they occurred interchangeably between other movements. Statistical relation-

ships therefore also revealed associations beyond movement similarity. These relationships, the tran-

sition statistics between modes, showed an additional distinction. Modes I and V had high self-

transition probabilities, and did not communicate with each other directly at significant frequencies

(Table 1A). Rather, transitions between Modes I and V typically required passage through one or

more of the intermediate Modes II-IV (Figure 5H). Due to this transition structure, Modes I and V

showed longer residence times than other modes (Figure 5G).

A critical prediction of the Markov model used to capture mode transitions is that the dwell time

distribution describing the time flies spent in each mode should be fit by a single exponential. An

excellent fit between real and model-generated dwell time distributions shows that the model cap-

tures most transition probabilities in all modes, although some slow transitions in modes I and III are

missed (Figure 5G). Because mode III occurred infrequently (accounting for 7.3% of data), and its

dominant, fast component is well captured by the model (Figure 5G) it was not segmented further.

Two components in the stopped mode (I) dwell time distribution were separated using a Hidden

Markov model, capturing observed dwell times that varied over 2–3 orders of magnitude
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(Figure 5G). However, the additional stopped mode (IB) that the HMM uncovered only communi-

cated with other stops (mode IA), and did not improve model performance quantitatively (data not

shown). We therefore did not consider this additional mode in our subsequent analysis, and infer

that this second stopping mode, IB, likely represents a generally non-responsive state, such as sleep

(Shaw et al., 2000; Hendricks et al., 2000). However, stopped flies also engage in several non-loco-

motor behaviors such as eye, wing, and abdomen grooming, oviposition, and defecation that our

dataset was not designed to resolve. These behaviors would then comprise subsets of mode I.

The set of observed behaviors, characterized as submodes, is also described more coarsely by

the smaller number of modes, potentially eliminating information. However, in sequences, uncer-

tainty about mode identity is explained as well by the previous mode as uncertainty about submode

identity is explained by the previous submode (mode � ¼ 0:303; CI95 ¼ ½0:302 0:304�). Conversely, as

with submodes, almost none of the remaining uncertainty is explained between modes two steps

apart (mode �2 ¼ 0:0069; CI95 ¼ ½0:0066 0:0072�). By contrast, when submodes are grouped arbitrarily

into five elements, information can both decrease between adjacent elements in a sequence, and

increase spuriously between elements two steps apart (Figure 5—figure supplement 2). These

results argue that grouping submodes into modes neither lumped behaviors in a way that eliminated

information, nor scrambled existing relationships.

We next sought to determine the extent to which the structure of our model was influenced by

the structure of our chamber, or by trajectory length. We therefore examined whether submode seg-

mentation, groupings, and transition structure remained adequate in another dataset collected

under identical illumination, but in a large arena where longer individual trajectories were obtained

(Dataset L). Altogether, stereotyped patterns were broadly preserved between datasets, as the

same segmentation criteria unmixed trajectory coefficient distributions from either dataset in the

same independent components at all steps (Figure 6). At a more detailed level, we quantified veloc-

ity profile similarity using an intuitive measure of distribution overlap, the Bhattacharyya coefficient B

that ranges from 0 (no overlap) to 1 (complete overlap) (Kailath, 1967, Materials and methods).

Overlap was high between the same mode types segmented in different datasets (median overlap

B ¼ 0:976; P95 ¼ ½0:942 0:982�). By comparison, overlap was lower between different modes both

within and between datasets (median B ¼ 0:642; P95 ¼ ½0:190 0:822�). Comparable results were

obtained using other metrics of similarity, as well as in a third dataset where individual flies were

recorded in isolation (data not shown). Thus, modes retained over 90% identity and remained dis-

tinct, with only small shifts in their velocity profiles, across different datasets.

Because trajectories are continuous and different modes must connect with each other as the fly

moves, a mode’s velocity profile could include parts of transition periods between modes. Velocity

profiles may thus change because the distribution of adjacent modes changes. In addition, velocities

may also be modulated independently of mode structure. To investigate these possibilities, we com-

pared transition probabilities and velocity profiles during transition periods in datasets S and L, rep-

resenting two conditions. Indeed, although mode connectivity remained largely the same, transition

probabilities differed between conditions (Figure 6—figure supplement 1). As modes were defined

by classifying trajectory fragments around vR peaks, in this segmentation transition periods occurred

in the intervals between vR peaks. Accordingly, we compared velocity profiles of the 25 possible

interval types between the five modes from datasets S and L. Of these interval types, 22 were suffi-

ciently well sampled to compare (Table 1), and of these, 19/22 showed velocity profiles that were

Table 1. Transition rates ½Tr�ij, dataset S (uniform illumination, test tubes). Rows: ‘From’ mode; Col-

umns: ‘To’ mode. Transitions below sampling error are gray.

I II III IV V

I 0.7764 0.1572 0.0608 0.0037 0.0020

II 0.0058 0.2010 0.0521 0.5598 0.1812

III 0.3129 0.3464 0.3082 0.0227 0.0098

IV 0.0029 0.0353 0.0349 0.7111 0.2159

V 0.0248 0.1298 0.1364 0.3422 0.3668

DOI: 10.7554/eLife.26410.012
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Figure 6. Submode segmentation in two datasets, S and L. Histograms of trajectory coefficients sðjÞ in independent component space (Box 1 and

Materials and methods) are shown at decision points of the iterative segmentation procedure. Heat maps show counts in two dimensions of the

independent component space, and line plots show counts in one dimension. Decision points (numbered triangles) correspond to decision points

labeled on the segmentation tree in Figure 3B. Subsets of coefficients separated at each decision point are shown in the same dimensions, as noted.

Plot dimensions do not necessarily correspond to independent components, as sometimes data was rotated in IC space to visualize multimodal

coefficient distributions. Trajectories from two different experimental conditions, corresponding to datasets S and L, were projected in the same

independent components, and their coefficients are shown on the same or adjacent plots, as noted below. The initial decision point (1) and all terminal

decision points (2,4–7) are shown. The coefficient distribution at decision point three is not shown because it could not be represented in two

dimensions. Decision pt. (1). sðjÞ histograms in two dimensions, showing the multimodal distribution of coefficients from the entire dataset (Top plots),

and coefficient clusters 1 and 2 after they were separated at this decision point (Bottom plots). Decision pt. (2) Data projection in two dimensions

before segmentation, showing the segmentation cut (white oval), and the dwell time distributions for each resulting submode, along with single

exponential fits. Note that dwell time distributions are consistent with one dominant component for each segmented submode, despite differences in

the joint velocity distributions and dwell times between datasets S and L. Decision pts. (4-7) sðjÞ histograms in one dimension, as used for segmentation.

Note that the distribution at decision point six is plotted on a log scale, where segmentation separates the long tail. Decision pt. seven is upstream of

Figure 6 continued on next page
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statistically distinguishable between conditions (Table 2, Table 3, Materials and methods). However,

interval velocity profiles of the same type overlapped to a high degree, even when they differed sta-

tistically (median overlap B ¼ 0:96; P95 ¼ ½0:87 1:0�). Hence, considering both velocity profiles and

mode connectivity, model structure was broadly similar between two different experimental condi-

tions. At the same time, transition probabilities between modes changed with condition, and veloc-

ity profiles differed subtly regardless of how they were measured. While modes can be reliably

identified under different conditions, subtle velocity profile shifts may reflect altered transitions

between modes, behavioral changes independent of mode structure, or both.

How well does a Markov model that ignores velocity profile shifts and lingering correlations

between submodes predict real behavior? Can real, extended behaviors be reproduced by a model

that abstracts velocity trajectories as modes connected by Markovian transitions? To test the model,

we measured matches between real mode sequences observed in trajectories, and synthetic sequen-

ces produced by the Markov model, while varying sequence length. Real sequences were obtained

by classifying sequences of vR peaks and their surrounding trajectory fragments in trajectories from

dataset L according to the 5-mode model (Materials and methods, Figure 5—figure supplement 1).

Synthetic sequences were sampled from a generative model, the 5-state Markov chain representing

mode transitions (Figure 5H). As in previous analyses, sets of both real and synthetic sequences can

be considered a random sample of all sequences flies, or the model, might generate. Accordingly,

model performance was assessed by resampling sequences from real and synthetic sequence sets,

then measuring the average number of exact matches between synthetic and real samples, normal-

ized by matches between two real samples (Materials and methods). As before, this procedure was

quantified by the match fraction f , ranging from 0 when synthetic sequences differ completely from

real ones, to one when synthetic and real sequence sets are indistinguishable. Measuring f at

increasing sequence lengths, we defined tP as the time interval over which f � 0:9, corresponding to

sequence lengths over which the model performed accurately. Remarkably, the Markov model

remained accurate over seconds (tP ¼ 4:3� 0:55 s, Figure 7A). By comparison, velocity autocorrela-

tions nearly vanish by 1 s (Figure 2F) and similar velocity patterns diverge throughout velocity space

after about 200 ms (Figures 2D and 7B). The Markov model thus reproduced samples of individual

behavior beyond the time scale when patterns in velocity trajectories remain similar enough to be

predictable. In fact, the Markov model was accurate across the entire time span of behavior that was

Figure 6 continued

further segmentations that were not validated by Markov models. As these submodes are very low frequency, they may represent distinct submodes

that can be validated using larger datasets. The 5-state MM5 groups submodes as follows:

Mode I : u8; Mode II : u7; u3; u10�13; Mode III : u9; u4; u5; u14�15; Mode IV : u2; Mode V : u1; u6.

DOI: 10.7554/eLife.26410.013

The following figure supplement is available for figure 6:

Figure supplement 1. Model connectivity and transition frequencies in two datasets.

DOI: 10.7554/eLife.26410.014

Table 2. Comparison of transition velocity profiles between datasets S and L. Overlap between mode

velocity profiles is shown by transition type, comparing modes in datasets S and L. 1 = perfect over-

lap; 0 = no overlap. Rows: ‘From’ mode; Columns: ‘To’ mode. Gray values fail significance criteria as

reported in Table 3.

I II III IV V

I 1.00 0.97 0.96 0.83 0.83

II 0.76 0.94 0.89 0.93 0.96

III 0.99 0.95 0.95 0.87 0.82

IV 0.89 0.94 0.95 0.94 0.97

V 0.99 0.96 0.97 0.97 0.99

DOI: 10.7554/eLife.26410.015
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well sampled in our trajectory datasets, raising the possibility that it may also describe walking

behavior over longer periods.

Did the model capture the range of observed individual behaviors? In principle, a model might

perform well simply by capturing the most common transitions in individual trajectories, such as self-

transitions of stops and high-speed runs and turns (modes I and V), and matching only common

behaviors like extended stop or run episodes. If this happened, matches evaluated in the generative

test could be skewed by common behavioral sequences. To address this possibility, frequencies of

real and model-predicted mode sequences were compared over increasing sequence lengths up to

tP ¼ 4:3 s. Importantly, the observed frequencies of individual sequences in real trajectories were

reproduced in the model-generated sequences, and thus the model did not simply describe behav-

ior on average (Figure 7C). Moreover, as common mode sequences were no better matched than

rarer ones, model accuracy did not depend on a few overrepresented trajectory types (Figure 7C).

Finally, because frequencies of all real mode sequences above the sampling error in our data were

matched by the Markov model with a Pearson Coefficient of R = 1.00, we conclude that the model

captured all measurable transition types. Ten of these mode sequences were selected randomly and

five random samples of each sequence type are shown in Figure 7—figure supplement 1, along

with samples of the most frequent sequence type, repeats of the high-speed runs and turns mode V.

In sum, velocity patterns were distinguished by the same segmentation criteria on different condi-

tions and Markov models captured transition probabilities specific to each condition, sufficiently to

predict individual behavior sequences at least an order of magnitude longer than the extent of

locally correlated velocity patterns.

Finally, we asked whether velocity trajectories become predictable over longer periods once

mode identity is known. Starting from small neighborhoods in velocity space preceding each of the

five modes, trajectory divergence was measured separately for each mode. We found that after the

same short period over which unsegmented trajectories remain nearby, divergence in velocity space

is unaffected by segmentation (Figures 2D and 7B). Whether segmented by mode identity or not,

similar trajectories diverged from <0:004% of velocity space 100 ms before vR peaks, near mode initi-

ation, across 15–20% of velocity space over the following 200 ms, during mode execution, and

throughout velocity space afterwards (Figure 7B, Figure 7—figure supplement 2). As unbounded

divergence occurred at the average time of behavior adjustments, mid-way between velocity peaks

or modes, this finding raises the possibility that divergence is linked with apparent memory extinc-

tion captured by Markov models between the start of one mode and the start of the next. Intrigu-

ingly, bounded but significant divergence within modes also raises the possibility that a mechanism

for memory loss can be intrinsic to mode structure: first order Markovity may be approximated as

trajectory history is scrambled over the course of one mode (Figure 7D,E).

Discussion
This work examined dynamics of walking in a relatively complex animal, the fruit fly, using principled

criteria. We find that fly movements naturally decompose into different time scales, identify major

movement patterns, and characterize properties of these patterns over time. On a fast time scale,

distinct movement patterns emerge from patterns of variation in trajectory fragments. Each

Table 3. Probability that dataset L and S transitions are drawn from the same velocity profiles, by

bootstrap for each transition type. p<0:002 is significant at Prob<0:05 level, using Bonferroni correc-

tion for 25 independent comparisons.

I II III IV V

I 0.0001 0.0001 0.0001 0.2354 0.4162

II 0.1739 0.0001 0.0001 0.0002 0.0001

III 0.0001 0.0002 0.0002 0.0003 0.0901

IV 0.0138 0.0001 0.0001 0.0001 0.0001

V 0.0284 0.0001 0.0001 0.0001 0.0001

DOI: 10.7554/eLife.26410.016
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Figure 7. Model prediction and trajectory divergence over time. (A) Matched fraction ðf Þ of mode sequences

from real trajectories as a function of sequence length. Synthetic mode sequences were generated using the

transition component of the model MM5. Red dashed line marks f ¼ 90%, red tick and arrow mark the sequence

length when f first crosses below 90%. (B) Trajectory divergence in velocity space from randomly sampled small

neighborhoods, without and with information about current mode identity. Two divergence curves from

Figure 2D are replotted over a longer time scale: starting from neighborhoods anywhere in velocity space, and

including all trajectories (dot-solid line), or including only trajectories that attained a turn peak 100 ms later(dashed

line), or only those with a turn peak 100 ms later corresponding to a given mode (solid line). Dashed and solid

lines overlap for their durations. Note the short s plateau, and rise after approximately 200 ms. (C) Predicted

versus actual log-frequency of all mode sequences above measurement noise, up to trajectories that include 17

consecutive modes, covering 4.3 s. Markers are colored by sequence length, from shortest (2-mer, dark blue) to

longest (17-mer, dark red). R ¼ 1:00; n ¼ 60; p � 0:001; Sampling error cutoff is at freq < 1

2
ð2:58N�1

2Þ, N = number

of sequences in each condition. Ten of these sequences (#2–11) were randomly selected for display in Figure 7—

figure supplement 1, plus the most common sequence (#1). (D) Illustration of velocity trajectories specified by a

stable dynamical system. Two trajectories starting from similar velocities (arrowheads, bottom), follow similar paths

over time that show little divergence some time later (arrowheads, top). (E) Illustration of mode structure and

transitions in velocity space. Trajectories from a small region of velocity phase space (black and red arrows) display

bounded divergence for the duration of a mode (gray area) but display approximately no memory of past

behavior at transitions (gaps between gray regions) beyond their current mode. Note divergence in the course of

mode traversal may lead to path scrambling inside modes (jagged lines).

DOI: 10.7554/eLife.26410.017

The following figure supplements are available for figure 7:

Figure supplement 1. Examples of common mode sequences.

DOI: 10.7554/eLife.26410.018

Figure supplement 2. Trajectory divergence in velocity space, measured from the center or periphery of each

mode’s velocity distribution.

DOI: 10.7554/eLife.26410.019
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movement pattern corresponds to a continuum of behaviors that can be described by a common set

of parameters, representing stereotyped, but not invariant behaviors. On a longer time scale,

sequences of these patterns can be approximated as a stochastic, finite-memory process. In all, this

description captures a dynamic structure of behavior spanning tens of milliseconds to seconds.

Defining behavior structure from dynamics
Our behavior segmentation criteria were designed to identify subsets of trajectories that showed

common dynamics within a subset, and mutually independent variation between subsets, consistent

with signatures of distinct motor planning or control. Segmented by these criteria, some elementary

behaviors were behaviors picked out by human observers or prior automated segmentation strate-

gies, while others revealed surprising associations or distinctions between movement patterns. For

instance, behaviors we termed submodes identified smooth turns, sharp turns, and sideways move-

ments, all of which can be picked out by human observers (Branson et al., 2009; Kain et al., 2013),

pers. obs.). Less intuitively, sharp turns that differed only subtly were distinguished as different

behaviors (Figure 4: submodes 3 or 7 vs. 6), while a range of behaviors from turns to straight walks

were associated in a single behavior element (Figure 4 and Figure 4—figure supplement 1: sub-

mode 1). Consistently, when statistical relationships between segmented elements were examined,

subtly different sharp turns remained separate (in modes II vs. V), and turns remained grouped with

some straight runs but not others (modes IV vs. V, modes II vs. III). By comparison, human observers

have recognized sharp (‘saccadic’) turns as a distinct behavior, but had not recognized the spectrum

of different turn types, and had culled turns from straight runs as different behaviors a priori

(Croll, 1975; Pierce-Shimomura et al., 1999; Branson et al., 2009; Kain et al., 2013). Likewise, so

had behavior segmentation strategies that largely removed human judgment but parsed behavior in

instantaneous observable parameters, by thresholding fast versus slow velocities, or by segmenting

orthogonal (mutually exclusive) animal postures (Braun et al., 2010; Geurten et al., 2010,

Geurten et al., 2014). These simple examples underscore how differently behavior dynamics may

be organized relative to behavior features salient to human observers, or machine classification that

collapses time scales.

Contrary to these segmentation strategies, our criteria identified distinct behavior patterns that

overlap substantially in velocity space (Figure 5F). Because they overlap, these patterns cannot be

separated from each other solely due to biomechanical constraints. At the same time, these patterns

are unlikely to represent mere extremes of a behavior continuum (Gallagher et al., 2013;

Szigeti et al., 2015), because they show mutually independent variation and approximately Markov-

ian statistical relationships over time.

We hypothesize that dynamically independent behaviors in our segmentation reflect differences

in neural control. While no comparable data yet exist in walking Drosophila, dynamics of global neu-

ral activity in C. elegans suggested that worm locomotion includes multiple, distinct turn types and

forward run states that had not been uniquely identified in previous analyses of worm behavior

(Kato et al., 2015). In worms, however, behaviors have not yet been defined directly from the

dynamics of locomotion. It remains to be seen whether neural and behavioral states correspond

when both are defined from dynamics.

Measurement
Several approaches to behavior segmentation have been developed to date, using different meas-

urements that include parameterized models of limb or whole-animal posture (Fod et al., 2002;

Stephens et al., 2008), two- or three-dimensional images of postures (Berman et al., 2014;

Wiltschko et al., 2015), measures of gait (Kain et al., 2013), and whole-body velocity (Braun et al.,

2010; Geurten et al., 2010). The most comprehensive measurements could seem like the best start-

ing point for unbiased segmentation, but which measures of behavior are informative depends on

behavior organization, itself unknown. Since similar goals can be reached using different movements,

and similar movements can be produced by different muscle actions (Bernstein, 1967; Win-

ter, 1984), an increase in measured parameters does not guarantee a proportional increase in

behavior resolution. On the other hand, to find behaviors from first principles requires searching

potential combinations of parameters and their dynamics. This search space expands with the num-

ber of parameters. To aid search, two strategies have been applied. In one, the space of
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instantaneous postures is decomposed first, and then, in a reduced space of posture elements,

dynamics are fitted to indirect measures of behavior (Stephens et al., 2008, 2010). In other

approaches, indirect measures of dynamics are included with posture measurements (Berman et al.,

2014; Wiltschko et al., 2015). In both cases, the representation of either behavior or its dynamics is

indirect at segmentation.

For this work, our aim was to analyze behavior directly from dynamics. For this reason we chose

behaviors that could be represented by a small number of parameters. Walking Drosophila show

multiple gaits (Strauss and Heisenberg, 1990), but gait use is correlated with velocity, gaits transi-

tion smoothly with velocity changes (Mendes et al., 2013), and movements of different body seg-

ments are tightly correlated during walking maneuvers (Geurten et al., 2014; Fujiwara et al.,

2017). For these reasons, and since body displacement is the goal of locomotion, measurement of

body velocities over time can provide sufficient resolution for locomotor behaviors in flies. However,

many animals use more complicated limb or body segment movements during locomotion, and non-

locomotor behaviors require measurements of posture (Stephens et al., 2008; Wiltschko et al.,

2015). In spite of a long history of investigations, it remains to be seen in what ways movement is

structured with respect to specific body configurations, action goals irrespective of configuration, or

both.

Experimental biases
Animal behavior bridges many types of external events and internal processes. Unsurprisingly,

behaviors operate on multiple time scales, and many behavior properties are sensitive to environ-

mental conditions. Fly locomotion shows trends on the scale of minutes to hours that are sensitive to

age, sex, strain, satiety and other internal and environmental conditions (Martin et al., 1999a); pers.

obs.). For instance, after removal from one type of laboratory food, locomotion decreases over tens

of minutes under low illumination in both genders of different strains, but activity is gender-depen-

dent at shorter time scales, strain-dependent at longer time scales, and illumination-dependent on

the scale of 1–2 hr (Martin et al., 1999a). Under some conditions, fly locomotion has also been sug-

gested to be scale-free (Cole, 1995). In all, fly locomotion can show trends on multiple time scales

that depend on experimental conditions.

For this work, the goal was to describe properties of behavior elements under stable conditions.

Therefore, experimental conditions were chosen so as to minimize trends in locomotion over the

course of experiments. In these conditions, flies kept moving over 30 min and velocities approxi-

mated steady state for the entire period. Data was then collected for 10 min to stay well within this

period. In addition, a few different conditions were explored but all shared the same criterion, that

flies remain active without gross trends in locomotion during the experiment (see Results). By this

criterion, we tried to isolate behavior properties from other potential variables controlling behavior.

Under different conditions, trends in fly behavior were found on long time scales by

Berman et al. (2014), (2016), who attributed these trends to an internal state change. In those con-

ditions, locomotion largely stopped shortly after removal from food and behavior was then analyzed

over the following hour (Berman et al., 2014). As a result, over 85% of analyzed behaviors were

non-locomotor movements while flies were standing, and here, Markovity was found to break down

over one to a few seconds. This time scale is well-sampled in our data, where, by contrast, a genera-

tive Markov model produced excellent fits to data. In all, datasets and analyses differ between the

two studies in several ways (Materials and methods). Since the majority of behaviors analyzed by Ber-

man et al. are non-locomotor, and our studies used different genders, it is possible that non-locomo-

tor and locomotor behaviors have different properties, or that memory in behavior is gender-

specific. A likely possibility is that behavior transitions can be adjusted over time by internal or exter-

nal variables (Berman et al., 2016), suggesting one level at which behavior structure may be modi-

fied. Notably, the time scale of elementary behaviors may be invariant to conditions, gender, or

other differences between studies to date. This time scale is seen to be a few hundred milliseconds

by three different methods in different datasets: increased densities in posture time series power

spectra (Berman et al., 2014), mean residence times in inferred postural states (Berman et al.,

2016), and trajectory divergence properties in velocity phase space (this work).
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Mode structure and finite memory in behavior
We find that temporal structure, defined by correlations in velocities over short times, implies a

decoupling over longer time scales. This decoupling between modes can be described as approxi-

mately Markovian, in that transitions between modes depend on the current mode with negligible

contribution from prior history. Within any one mode, similar velocities diverge, up to a bound of

approximately 20% of velocity space. Around the time of transition between modes, effectively

unbounded velocity divergence is observed. These findings raise three possibilities: history of prior

behavior can be forgotten in the course of executing a mode, during transitions between modes, or

both. While it is possible that there might be specific neural circuits devoted to maintaining and for-

getting prior states (Martin et al., 1998, 1999b), we note that memory loss may also be intrinsic to

the mode structure we describe, or the dynamics of neural activity underlying mode execution.

Mode structure and stability
Behavior is relatively similar any time an animal executes the same mode. Whatever the animal does

beforehand, the range of potentially different behaviors that can precede a given mode must narrow

to the domain of that mode. At this level, modes can be said to show a transient stability. However,

our data provides no evidence that modes show asymptotic stability, under which behaviors would

tend towards some typical, canonical behavior within each mode, or more abstractly, a behavior

attractor. In fact, on average, originally similar velocities diverge severely in the course of mode exe-

cution, and divergence of the more typical velocity trajectories within a mode differs little from that

of the less typical (Figure 7—figure supplement 2). If behavior can be described by attractor

dynamics with noise, the attractors cannot be strong relative to noise. In all cases, similar velocities

at the start of a mode are unlikely to remain similar at the time of transition to the next mode.

Hence, at the level of modes, dynamic stability is a weak constraint in spontaneous behavior.

Interface between behaviors
Many behaviors are thought to comprise sequences of relatively stereotyped movements that unfold

over seconds or longer (e.g. Marler and Hamilton, 1966; Baerends, 1971; Spieth, 1974; Liu and

Sternberg, 1995; Seeds et al., 2014). To specify an entire sequence reproducibly would require a

complex, relatively high-dimensional dynamical system. This dynamical system would need to cope

with internal, neural variation and potentially different initial conditions each time a behavior is to be

executed. For instance, variation in neural signals, mismatched mechanical impedances, or external

forces, as well as changing behavioral goals, muscle tone, or afferent feedback all change the con-

text in which any given movement is planned and executed (Bernstein, 1967). These differences

may persist or become amplified in the course of a sufficiently complex dynamical process unless it

is carefully configured for stability. Yet, in theory, stable high-dimensional dynamical systems are

rare (Smale, 1966).

As one solution, behaviors may be stabilized using feedback between actual and predicted move-

ment outcomes (eg. Todorov and Jordan, 2002). However, some stereotyped behaviors proceed

to completion irrespective of task-specific feedback (Lorenz and Tinbergen, 1938; Willows, 1967;

Barlow, 1968). Moreover, even when movement execution can be stabilized by feedback, the tem-

plate of an intended movement still corresponds to a dynamical system, whose stability remains

relevant.

As another solution, complex movements may be represented in terms of simpler, independently

specified components, sometimes termed primitives (reviewed in: Flash and Hochner, 2005), poten-

tially composed into actions via hierarchies of motor control (Sherrington, 1906; Tinbergen, 1950).

However, modular organization on its own does not guarantee dynamic stability over time. Behavior

primitives must interface with each other. Likewise, so must different levels of control. Yet, when dif-

ferent dynamical systems interact, the history of one system can propagate to another. In this way,

unintended deviations can also propagate over time. Long-term system stability is not guaranteed.

The properties of behavior elements described in this work suggest how potential challenges in

building and maintaining complex, reproducible behaviors may be managed in nature. Broad veloc-

ity distributions associated with each behavior mode may accommodate a range of initial conditions,

allowing different kinds of behaviors to follow one another. At the interface between behaviors, sen-

sitivity to initial conditions can be minimized by memory loss observed over the course of single
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behaviors. In this way, subsequent behavior transitions can be insulated from past ones. Over longer

times, finite memory between behavior elements can bound susceptibility of behavior to instability,

allowing construction of more complex behavioral sequences. Interestingly, human and other verte-

brate movements decompose into short episodes with a single velocity extremum following stroke

or ablations, fusing gradually into smooth movements in the course of recovery; this suggests that

normally smooth movement in vertebrates may be composed from such sub-movements

(Rohrer et al., 2002, 2004; Stein, 2008). To what extent behavior properties found in this work are

also found in other contexts and organisms remains to be investigated. This work suggests one pos-

sibility for how animals maintain dynamic complexity but limited susceptibility to consequences of

any one behavior.

Materials and methods

Datasets
A lab strain of wild-type Oregon-R D. melanogaster with homology to Oregon-R-mod-ENCODE

(RRID:BDSC_25211; D. Gohl, pers. comm.) was used for all data collection. Single fly trajectories

were obtained as described in Katsov and Clandinin (2008) and are available at the Dryad Digital

Repository (Katsov et al., 2017). Briefly, the centroid location and orientation of individual flies

walking alone or in groups under uniform illumination from below (5.5 cd/m2) in an otherwise dark

room were recorded at 30 frames per second. Flies walked either in long test tubes (25 � 150 mm,

VWR 89001–458; Datasets S, A) or a large, custom-built arena (300 mm diameter; Dataset L). Behav-

ior was recorded for 10 min under conditions where locomotion remained near steady state up to

30 min (Katsov and Clandinin, 2008). Trajectories were retained only from the top, central portion

of each chamber (8 � 100 mm of test tube, 200 � 200 mm of arena). The position of the head was

inferred statistically with >99:8% accuracy. Trajectories were filtered with a Gaussian kernel

FWHM » 0:08 s (s.d.=1 camera frame), as in previous work (Katsov and Clandinin, 2008).

Velocity phase space, construction and measurements
Construction. Approx. 106 trajectories from 6930 female flies (median length 0.93 s, P2.5-P97.5 =

[0.30, 4.5] s) were used to measure instantaneous velocity ~vvvvv ¼ ðvT ; vR; vSÞ and acceleration

_~vvvvv ¼ ð _vT ; _vR; _vSÞ. These were used to construct distributions of accelerations at N ¼ 41615 velocity

component locations, Pr _~vvvvv j ~vvvvv
h i

spanning jvRj< 450˚s�1 in 25˚s�1 increments, �0:6 � vT � 3:2 cm s�1

in 0.09 cm s�1 increments, and jvSj< 0.94 cm s�1 in 0.063 cm s�1 increments. Although flies are capa-

ble of attaining velocities outside this range, these were not well sampled in our dataset and the

velocity range was truncated accordingly to retain useful estimates of Pr _~vvvvv j ~vvvvv
h i

. The average number

of acceleration data points per velocity bin was hnvi » 500, but taking into account autocorrelation

time, the effective number of data points per velocity bin was hnvieff » 100, with cutoff set at neff<10.

Acceleration distributions spanned, j _vRj< 4640 ˚s�2, j _vT j< 16.4 cm s�1, j _vSj< 10.1 cm s�1. In all,

99.7% of recorded behavior was retained. The distribution Pr _~vvvvv j ~vvvvv
h i

was averaged over _~vvvvv at each ~vvvvv

to produce E _~vvvvv j ~vvvvv
h i

. This expectation is a vector field, describing average changes in velocity at

each combination of velocity components. Local dispersion was estimated by the mean absolute

deviation, a conservative estimate of dispersion, taking expected value E j _~vvvvv � h _~vvvvvij
h i

over _~vvvvv at each ~vvvvv,

where h _~vvvvvi ¼ E _~vvvvv j ~vvvvv
h i

.

Divergence of trajectories ~vvvvvðtÞ was measured from similar initial conditions, defined as small

neighborhoods in velocity space each covering 0.004% of this space. Velocity neighborhoods were

randomly chosen by sampling velocity bin indices b 2 f1; . . . ;Ng corresponding to bin locations in

the 3-component velocity space. A random sample of NB ¼ 200 bins was drawn. Each sampled bin bi

produced a set of trajectories f~vvvvvðtÞgðbiÞ; i 2 f1; . . . ;NBg, that passed through this bin at time tb, with

t ¼ t� tb. Trajectory spread at time t was quantified by standard deviations st f~vvvvvðtÞgðbiÞ
h i

, averaged
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over all randomly sampled neighborhoods and normalized to the standard deviations of the time-

independent velocity component distributions:

sðtÞ ¼
1

s vT½ �s vR½ �s vS½ �
hst½vT �st½vR�st½vS�iNB

(1)

In the space of the 3 velocity components, sðtÞ describes the dispersion of trajectories as a frac-

tion of the range of attainable velocities. Trajectories were sampled in four ways for different analy-

ses. First, all trajectories were included that passed the same neighborhood at t¼ 0. Second,

trajectories were selected that passed the same neighborhood at t¼ 0 then attained a vR extremum

at different times afterward, t¼ ½67;100; . . . ;300� ms. The delay t¼ 100 ms is half of the average inter-

val between vR extrema. Third, trajectories were selected that passed the same neighborhood at

t¼ 0, attained a vR extremum at t¼ 100 ms, and were classified as a specific mode m at that time.

Fourth, trajectories were selected that passed the same neighborhood at t¼ 0, attained a vR extre-

mum at t¼ 100 ms, were classified as mode m, and fell in the same quartile of this mode’s velocity

profile at t¼ 0, Pr vT ;vR;vS½ �ðmÞ; m2 fI::Vg. 95% confidence intervals were obtained by repeating the

procedure 50 times to estimate the error of the mean.

Submode segmentation
ICA setup
As described in Box 1, times fteg of local extrema in vRðtÞ were identified over t� 83:3 ms (±2 cam-

era frames), and trajectory fragments ~vvvvvðt0Þ; t0 ¼ t� te, covering n camera frames were isolated around

each vRðteÞ; initially n ¼ 33; jt0j<550 ms, but see below. Fragments ~vðt0Þ were represented as ð3n� 1Þ

column vectors concatenating the 3 velocity components, normalizing turn direction and preserving

relative side-slip direction:

v¼

cvRðt
0Þ

vTðt
0Þ

cvSðt
0Þ

2
64

3
75; c¼ sgn½vRðt

0 ¼ 0Þ�: (2)

Then, these vectors vðjÞ; j¼ ½1; . . . ;N�, were concatenated horizontally and standardized row-wise:

M¼ vð1Þ vð2Þ � � � vðNÞ
� �

(3)

Z¼ zð1Þ zð2Þ � � � zðNÞ
� �

; z
ðjÞ
i ¼

v
ðjÞ
i �hv

ðjÞ
i ij

s½vi�
(4)

We followed Hyvärinen and Oja (2000), Hyvärinen (1999) and Himberg et al. (2004) to identify

robust convergence of the FastICA algorithm for decomposition Z¼AS, where A is a ð3n�DÞ mix-

ing matrix and S is a ðD�NÞ matrix that contains D independent component coefficients of sample

j; sðjÞ, in each column. This procedure was done on the entire dataset in the first iteration, N »2:9 � 106

trajectory fragments, and then iteratively on subsets as described below.

Treating trajectory fragments z as mixtures of components s in independent components basis b,

the generative model is reformulated using demixing matrix Wb as: S ¼ WbZ. Taking a row wi of the

demixing matrix, s¼wiz represents a coefficient of fragment z in independent component i. Inde-

pendent components are found using the expectation that coefficient distributions tend to become

Gaussian when wz projections represent sums of independent variables, and become less Gaussian

as independent variables are demixed. FastICA searches for wz projections distributed the least like

Gaussians. The FastICA algorithm was used to maximize E GðwzÞ½ �, where G is a contrast function.

We used G » kurtosis, in part to minimize computation time (Hyvärinen, 1999; Hyvärinen and Oja,

2000). To ensure robust convergence, the search was repeated from random initial guesses of W

(Himberg et al., 2004).

Dimensionality reduction
In practice, the search is aided by lower data dimensionality and a W search space limited to

orthogonal transformations. The matrix Z (Equation 4) was whitened to produce
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Zw ¼ ðED
1

2E>ÞZ; (5)

where D is a diagonal matrix of the eigenvalues of Cov½z;z0� ¼ 1

N
ZZ>, and E is the corresponding

matrix of column eigenvectors.

In preliminary data analysis, it was found that principal components corresponding to time points

jt0j > 300 ms accounted for a negligible fraction of total variance in the dataset. Moreover, when

included, these dimensions slowed FastICA convergence and increased the spread of converged val-

ues of W without substantially affecting their mean. We inferred that these time points contributed

more noise than signal and retained only jt0j � 300 ms in further analysis, corresponding to n ¼ 19

camera frames per fragment.

While performing ICA on the entire dataset, it was found that FastICA convergence suffered

when all 3 velocity components were included. Because vS often correlated with vR, FastICA conver-

gence was tested using fragments without any vS dimensions. This improved convergence. However,

we noted that when they did converge, IC solutions found from all 3 velocity components separated

data features better than any solutions from fragments lacking vS. To improve ICA convergence

without eliminating information contributed by vS, we substituted one velocity variable in fragment

matrix M for vR and vS : vH ¼ vR �
q

qt
ðarctan vS

vT
Þ. This is a combined rotational velocity corresponding

to velocity of heading direction, rather than of body orientation only.

Operating on the entire dataset, the first iteration of ICA was set up using modified Equations 2–

5. Reduced ð38� 1Þ vectors,

v¼
cvHðt

0Þ

vTðt
0Þ

� �
; c¼ sgn½vRðt

0 ¼ 0Þ�; jt0j � 300ms; (2A)

were concatenated into (38 x N) matrices

M¼ vð1Þ vð2Þ � � � vðNÞ
� �

(3A)

and standardized to produce matrix

Z ¼ zð1Þ zð2Þ � � � zðNÞ
h i

; zðjÞ

i

¼
v
ðjÞ
i �hv

ðjÞ
i ij

s½vi�
(4A)

The matrix Z was then whitened to produce

Zw ¼ ðED
1
2E>ÞZ; (5A)

where D and E are eigenvalue and eigenvector matrices of Cov½z; z0� ¼ 1

N
ZZ>, respectively.

Evaluating the entire fragment dataset, it was found that six principal components account for

87% of total variance, and only the ð6� NÞ projection eZw into these PCs was used in the first itera-

tion of ICA. Eliminated dimensions may contain biological noise or non-dominant contributors to

total behavior variation. Non-dominant contributors were pursued by applying the procedure itera-

tively on data subsets after removing major components (see below).

Iterative ICA, first iteration
When ICA converged on a solution S ¼ WeZw , we examined joint histograms of independent com-

ponent coefficients obtained in S, fPr Si1 ;Si2½ �g; in specifying a row index, i1 6¼ i2. Each row in S corre-

sponded to coefficients in one independent component for all trajectory fragments, and rows were

examined pairwise for simplicity. After one ICA iteration, at least three clusters in the 6-dimensional

space of S were apparent by visual inspection. As distributions with clear clusters are non-Gaussian

at least in some dimensions, these components may have maximized the contrast function G without

necessarily being independent. For this reason, clearly non-Gaussian features of IC projections were

segmented iteratively. Statistical dependence of segmented components was subsequently assessed

explicitly (below).

To begin the iterative procedure, the biggest cluster in Pr S½ � was separated from smaller ones

along the minimum data density between these clusters (Figure 3B, decision point 1). This
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segmentation turned out to approximately divide trajectories into patterns that graze near-zero vT

(Cluster 1) and those that do not (Cluster 2).

Segmentation iteration
The ICA procedure was repeated on each cluster. Matrix M (Equation 3) was separated into

MðC1Þ andMðC2Þ; C1 and C2 corresponding to column indices of velocity fragments belonging to Clus-

ter 1 and Cluster 2, respectively, when projected to S. The rest of the procedure was repeated on

each M subset as described above, including row-wise standardization, PCA, and ICA repeated

from random initial guesses of demixing matrices W. Pairwise k-means clustering was used to sepa-

rate S features whenever appropriate (Duda et al., 2000). Like the first iteration, each subsequent

iteration began with full 1.1 s fragments vðjÞ. It was found empirically, as in the first iteration, that

fragment interval could be reduced in each subsequent iteration too, in some cases down to

jt0j<200 ms. All velocity components ðvR; vT ; vSÞ contributed useful information for segmentation at

decision points 4,7 and subsequent iterations (Figure 3B). At each iteration, 5–6 PCs were retained

prior to ICA accounting for >90% variance within each subset. The total variance accounted for after

all ICA iterations is a weighted sum, rather than product, of variance retained by PCs at each itera-

tion (weighted by subset size), because each round began with the raw data subsets of velocity frag-

ments (M columns, v). Hence, the total variance accounted for at the end of the procedure is likely

>87%, the lowest variance accounted for by PCs retained at any one step. Iteration was halted when

further rounds failed to find ICs substantially different from those of the starting subset, when pro-

jection into ICs did not reveal clearly separable data features, or when ICA failed to converge from

random initial conditions.

Cluster 1 was segmented over four further iterations into 13 submodes (Figure 3B, decision

points 3–7). These 13 submodes comprised different movement types traversing zero or near-zero

vT .

Cluster 2 was segmented into two submodes, but not using ICA because further ICA on this sub-

set did not converge on dimensions substantially different from the starting ones in v. Nevertheless,

this subset appeared to contain a mixture of movement patterns as its joint distribution

Pr vTðteÞ; vRðteÞ½ � showed two tails and kinetics of exit from this subset showed at least two distinct

components (Figure 6, decision point 2 and data not shown). Furthermore, it was found that behav-

ior switched out of this subset by two distinct sets of velocity trajectories (data not shown). Based on

these observations, Cluster 2 was segmented to separate its distinct joint velocity distribution tails

and transition paths, producing submodes 1 and 2 (Figures 3 and 6).

Evaluating history dependence between submodes
Individual trajectories vðtÞ from Dataset S were segmented using demixing matrices WðCÞ from the

iterative classification, producing submode sequences ðuÞk; u 2 f1::15g; k > 2, and transition probabil-

ity distributions Pr u½ �; Pr ui j ui�1½ �; Pr ui j ui�1; ui�2½ � were measured assuming history dependence on

0 to 2 previous submodes. We then constructed artificial submode sequences drawing iteratively

from these distributions and compared each set with a set of real sequences. The ’matched fraction’

of real sequences, quantifying set overlap, was calculated as described below (‘sampling from a gen-

erative model’, and ‘match test’). This fraction is the average number of exact matches between syn-

thetic and real sets, normalized by the average number of matches between two real sets

(Equation 10).

Markov models
We constructed HMMs treating submode sequences as emissions. Models were trained from ran-

dom initial conditions, assuming a small number of hidden states underlying the 15 previously identi-

fied submodes. Markov model assumptions were tested via three different approaches (described

below), and adequate model convergence was verified when training from different, random initial

conditions converged to nearly identical models. Repeatedly converged models were evaluated in

two ways. Models of the same order (same number of parameters) were compared using the log-

likelihood of observed data given a particular model. In addition, models of the same and different

order were compared using a variant of sampling from a generative model (described below). In

well-performing HMMs, almost every submode was predominantly emitted from a single major
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state, with all secondary states together contributing a small fraction of total emissions per submode

(Figure 5—figure supplement 1D). Based on these observations of HMM structure, we constructed

Markov Models (MM) in which underlying states were no longer hidden, significantly reducing the

number of model parameters. Moreover, MMs permitted direct estimation of model parameters

from submode frequencies observed in movement trajectories, rather than by inference as in HMMs.

MMs were constructed by grouping submodes into the same emission class based on their proximity

in the hierarchical clustering tree (Figure 3), or by lumping submodes constituting a dominant emis-

sion from the same hidden state in the best performing HMMs (Figure 5—figure supplement 1E,F).

Multiple MM variants were constructed and evaluated, comprising different MMs with 4–6 states.

The markov model
Starting from a set of possible states and emissions, classified at vR extrema occurring at times fteg,

where stateðteÞ 2 fq1; . . . ; qNg; emissionðteÞ 2 fu1; . . . ; uMg; we trained HMMs with N = 2 to 6 states

and MMs with N = 4 to 6 states, and used all M ¼ 15 submodes identified in segmentation as emis-

sions in both cases. In the case of MMs, states q correspond to submode groups termed modes,

m 2 fm1; . . . ;mNg.

Number of model parameters
The transition probability matrix Tij 2 R

N�N for both HMM and MM models is given by:

½Tr�ij ¼ Pr stateðteþ1Þ ¼ qj j stateðteÞ ¼ qi
� �

Since the sum of each row in the matrix (corresponding to a specific pre-transition state) is equal

to 1, there are NðN � 1Þ free parameters defining this matrix. The emission probability matrix E 2

R
N�M is given by:

½E�ij ¼Pr emissionðteÞ ¼ uj j stateðteÞ ¼ qi
� �

In the HMM case, the sum of each row in the emission matrix (corresponding to a specific state)

is equal to 1, and hence there are NðM� 1Þ free parameters defined by the matrix. In the MM case,

an additional condition is that each column of the emission matrix (corresponding to a particular sub-

mode) contains only 1 non-zero. Accordingly, ðM�NÞ free parameters define the matrix (provided

M �N). Hence, while number of states and their definitions contribute the same number of parame-

ters in HMMs and MMs of comparable size, discrete emissions contribute OðMNÞ free parameters in

the HMM case and OðMÞ free parameters for MMs.

HMM training
For a given model order, models were trained using 15 sets of randomly chosen initialization param-

eters and training data subsets. Random initial transition and emission probability matrices were

generated by sampling from a uniform distribution on [0,1] and normalizing matrix rows, and 1500

short submode sequences were randomly chosen for training out of a set of 371775 sequences

(mean sequence length = 3.32 emissions; s.d. 3.27). A constrained optimization procedure (using the

MATLAB optimization toolbox function fmincon, with an interior-point algorithm) was used to find

locally optimal parameters which maximize the log-likelihood of the training set (computed using the

MATLAB statistics toolbox function hmmdecode) with the constraints being that all rows in the tran-

sition and emission matrices sum to 1.

MM training
A set of models was assessed for each model order of 4, 5 or 6 states. Submodes were grouped

based on (1) results of HMM training, (2) relationship between submodes in the classification tree,

and (3) similarities between submode velocity profiles and connectivity with other submodes. The ini-

tial submode assignment to states was as follows:

for 4 states - {8,[3 10:13],[4 5 14],1};

for 5 states - {8,[3 10:13],[4 5 14],1,2};

for 6 states, 3 different initial state assignments were evaluated:

{8,[10:13],[4 5 14],1,2,3}, {8,[3 10:13],[4 5],14,1,2}, {8,[3 10:13],[4 5 14],15,1,2}.
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Models were generated for all possible combinations of submode-state assignments for the unas-

signed submodes in each case. Maximum likelihood estimates for single and joint submode proba-

bilities were computed from submode occurrence frequencies in the dataset, and transition and

emission matrices were derived from these probability distributions:

½Tr�ij ¼
X

uk2qj;ul2qi

Pr ukðteþ1Þ j ulðteÞ½ � (6)

½E�ij ¼
Pr ujðteÞ

� �
P

uk2qi
Pr ukðteÞ½ �

(7)

Model comparison criteria
We computed log-likelihoods of 371775 submode sequences in the training set from Dataset S,

based on each model. Ten models with the highest log-likelihood scores for each model type (4–6

states) were kept for further validation and performance testing.

likelihood test
For each model, ten test sets consisting of 20000 submode sequences were chosen randomly from

Dataset S, likelihoods for each test set were estimated given the model, and the average likelihood

of all ten test sets reported as the mean likelihood.

sampling from a generative model
First, 11 sets of 5000 submode sequences of length 5 were randomly selected from the 83746 sub-

mode sequences in the training dataset that consisted of no less than 5 submodes. This was done by

first randomly selecting a sequence from all sequences consisting of more than 5 submodes, and

then randomly selecting a starting index that is at least 5 submodes away from the end of the

sequence. No sequence was used more than once in any of the 11 test datasets. The number of

exact matches between one set and each of the remaining 10 sets was counted as described in

‘Match Test’ below (Equation 8). Then, 10 sets of 5000 sequences of length 5 were generated from

each of the generative models evaluated.

For independent, and first and second order Markov models (models I;M1;M2), synthetic sequen-

ces were generated by iteratively sampling from submode transition probability distributions

Pr u½ �; Pr ui j ui�1½ �; Pr ui j ui�1; ui�2½ � (Figure 5—figure supplement 1A).

For HMMs and MMs, first, state or mode sequences were drawn according to model transition

probabilities, and then submode emissions were drawn according to model emission probabilities,

conditioned on the state sequences sampled, to generate submode sequences (Figure 5—figure

supplement 1A,C,E).

Exact matches were then counted between these synthetic sets and the first set of real sequences

(Equation 9), and matched fraction reported (Equation 10, with N = 10).

Stationarity
Stationarity of submode and mode frequencies over the experimental time period was confirmed by

checking their distributions in data subsets over time, and by comparing empirical distributions with

equilibrium distributions estimated from Tij and E.

Dwell time analysis
Dwell times were calculated as follows. Trajectories were segmented according to Markov model

MM5 mode definitions, producing mode sequences of length k; fðmiÞkg; m 2 fI . . .Vg; i ¼ 1 . . . k,

and time sequences of vR extrema associated with each mode mi; fðtiÞkg. Only sequences with an

observed switch into and out of Mode m contributed to the dwell time distribution for Mode m.

Hence, only sequences of length k > 2 were retained. Dwell time in Mode m was taken as the differ-

ence between times of last and first sequential vR extrema classified as Mode m. Dwell times were

also calculated by taking half the time to the vR extremum of last Mode mi as time of entry into

mode m, and half the time to the vR extremum of the next Mode mj as time of exit from

m; mi;mj 6¼ m. This extended dwell time calculation did not affect distribution shape (data not
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shown). Dwell times in model-generated mode sequences were estimated the same way as in real

sequences. The time base of all model-generated sequences was fixed such that the interval

between modes was taken as a constant 167 ms. This time corresponds to the modal value of times

between vR extrema.

Test of velocity profile changes between training and test conditions
Velocity distributions fPr v½ �ðmÞ¼ Pr vT ; vR; vS j t0½ �ðmÞg;m 2 fI . . .Vg, represent time-dependent velocity

profiles for each mode m specified by MM5. These distributions were compared between modes

classified from Dataset S and Dataset L over jt0j < 300 ms. Distribution overlap was computed for

each comparison using the Bhattacharya Coefficient for discrete distributions: BðP;P0Þ ¼
P

v PðvÞP0ðvÞ½ �
1

2 (Kailath, 1967). Significance was estimated by bootstrap (Rice, 1994): trajectory

fragments representing the same transition type (same from: and to: states) were pooled from the

two datasets, and resampled to generate 10000 comparisons between two randomly drawn trajec-

tory subsets, maintaining the same sample sizes as in original sets. Each comparison produced an

overlap value, and distributions of overlap values Pr B½ � were used to evaluate the probability that

the observed differences between two conditions are due to random chance while sampling from

identical Pr v½ �ðmÞ distributions.

Match test
Sequence subsets were sampled from a set of real behavior sequences or produced by a generative

model. Subsets R and R0 were drawn independently from a set of real sequences, and subset S was

drawn from a set of synthetic sequences. Different R;R0; and S were drawn and compared N times,

as described for each analysis.

Some sequences may occur more than once in the same subset. Therefore, we counted sequence

matches between two sets taking into account sequence multiplicity. For each unique element x of

multiset X, multiplicity nXðxÞ is the number of times element x occurs in X. For two multisets X and Y,

nX\YðxÞ :¼ minðnXðxÞ; nYðxÞÞ.

For each unique sequence r in subset R and each unique sequence s in subset S, with subsets of

equal size jRj ¼ jSj, define:

FR:R :¼
1

jRj

X

r

nR\R0ðrÞ (8)

FS:R :¼
1

jRj

X

s

nS\RðsÞ (9)

f :¼
hFS:RiN
hFR:RiN

(10)

where h�iN is an average over N comparisons. Metric f reports the average fraction of synthetic

sequences found in a random real set, normalized to the average fraction of real sequences found in

two randomly sampled real sets.

Match test as a function of time
Mode sequences of length k; ðmÞk were sampled with replacement from sets of real or synthetic

sequences. Real sequences were derived from Dataset L trajectories using the 15-submode segmen-

tation criteria and 5-mode grouping criteria of MM5. Synthetic sequences were generated by itera-

tively sampling from state transition probability distributions of model MM5. The total number of

sequences in each set ranged from 88434 ðk ¼ 2Þ, to 5159 ðk ¼ 20Þ. For each set of length k sequen-

ces, fk was computed for subsets fðmiÞ
k
i¼0

g; k ¼ 2 . . . 20; with jRj ¼ jSj ¼ 500;N ¼ 5000. hFR:RiN
ranged from 465 (k=2) to 96 (k=20). hFS:RiN ranged from 462 (k=2) to 76 (k=20).
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Dataset and code availability
Full trajectory datasets and segmentation code are available at the Dryad Digital Repository

(Katsov et al., 2017). The datasets include raw trajectories and annotation of submodes and modes.

Summary of dataset and analysis parameters
Materials and methods - Table 4.
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Table 4. Materials and methods – Supplementary table 1. Comparison of dataset parameters, measurements, and findings.

Work
Fly
strain Gender

Age (days,
p. e.)

Recording
Duration(min)

Fly speed (median,
cm/sec) [c]

Measure-
ment

Segmented
behaviors, Total

Segmented behaviors,
Locomotor

Berman
et al. [a]

Oregon-
R

♂, ♀ 1-14 60 0.3 (♂) 2-D image
(posture)

117 17

Berman
et al. [b]

. ♂ . . . . . .

Katsov
et al.

Oregon-
R

♀ 2-3 10 2.0 body
velocity

15 15[d]

[ . ] same value as row above.

[a] (Berman et al., 2014)

[b] (Berman et al., 2016)

[c] Berman et al. (2014) show median velocity ~0.3 mm/sec (Fig S1); the units appear to be a typographical error.

[d] Count includes submode 8/mode I, a mixture of locomotor and non-locomotor states (stops).
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