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Abstract

Gene expression profiling using transcriptional drug perturbations are useful for many bio-

medical discovery studies including drug repurposing and elucidation of drug mechanisms

(MoA) and many other pharmacogenomic applications. However, limited data availability

across cell types has severely hindered our capacity to progress in these areas. To fill this

gap, recently, the LINCS program generated almost 1.3 million profiles for over 40,000 drug

and genetic perturbations for over 70 different human cell types, including meta information

about the experimental conditions and cell lines. Unfortunately, Big Data like the ones gen-

erated from the ongoing LINCS program do not enable easy insights from the data but pos-

sess considerable challenges toward their analysis. In this paper, we address some of these

challenges. Specifically, first, we study the gene expression signature profiles from all cell

lines and their perturbagents in order to obtain insights in the distributional characteristics of

available conditions. Second, we investigate the differential expression of genes for all cell

lines obtaining an understanding of condition dependent differential expression manifesting

the biological complexity of perturbagents. As a result, our analysis helps the experimental

design of follow-up studies, e.g., by selecting appropriate cell lines.

Introduction

Despite continuous progress in our understanding of the genetic origin of diseases our ability

of treating and curing such diseases lacks far behind [1–5]. For this reason, it has been pro-

posed to utilize genomic information for the development of drugs to directly translate results

from basic research to clinical applications [6, 7]. A particular example of such a genome-scale

project is the Library of Integrated Network-based Cellular Signatures (LINCS) program [8].

The LINCS program [8] (https://clue.io), generated genetic and molecular signatures of

human cell lines in response to a variety of perturbations. Specifically, a vast library of gene

expression profiles that includes over one million experiments covering more than seventy
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human cell lines has been generated by measuring the expression values for 978 landmark

genes, hence, called the LINCS L1000 data. These data include experiments using over 20,000

chemical perturbagens (small drug molecules), namely drug compounds added to the cell cul-

ture to induce changes in the gene expression profile. In addition, there are genetic perturba-

tion experiments targeting a single gene to control its expression level, either suppressing it

(knockdown) or enhancing it (overexpression). The LINCS L1000 data is publicly available for

download from (https://clue.io/data) and from the Gene Expression Omnibus (GEO) database

with accession number GSE92742 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE92742).

The LINCS L1000 data provide an unprecedented compendium of both structural and tran-

scriptomic drug data. However, the availability of such Big Data [9, 10] like LINCS L1000, pro-

vide also major challenges for their analysis requiring the development of novel approaches

and methods. Examples of such approaches for exploring the LINCS L1000 data can be found

in [11]. This study focused on finding structural similarities of drugs with a combination of 3D

molecular structure to show significant associations of drugs with similar transcriptional

changes, supporting the usage of drug-related data [11]. Another study showed that perturba-

tional data can be used for finding common and cell-type specific responses to anti-cancer

drug [12]. One major challenge in drug discovery is identifying biochemical interactions of

small drug molecules [13]. For this reason, vast effort has been put into discovering the drug

MoA and understanding the genetic interactions within cells that will lead to a much fuller

understanding of how organisms develop interactions at a cellular level, as well as how diseases

such as cancer affect cells and how they can be treated [14, 15]. Several methods such as high-

throughput screen is used in identifying interactions of small drug molecules showing activity

in biological assays (cellular assays, enzyme activity assays, binding assay) for a single thera-

peutic target or pathway of interest [16–18]. These examples show the vast use of such data in

drug discovery applications.

One problem of the LINCS program is that it constitutes an ongoing endeavor. That means

at present there is no foreseeable end when the last samples are deposited. This feature is

shared with other genomic data repositories, e.g., Gene Expression Omnibus (GEO) [19], Pro-

tein Data Bank (PDB) [20] or Reactome (database of reactions, pathways and biological pro-

cesses) [21]. All of these data repositories have in common that the data have not been

generated from one laboratory sponsored by one funding agency, but multiple independently

funded laboratories generated and are still generating data to date. As a consequence, the

information contained in such repositories and also in LINCS is a function of time. A problem

resulting from this and the fact that multiple laboratories contribute to these data is the lack of

global overview statistics that characterize the content of the data. This lack of overview statis-

tics hampers the downstream usage of the LINCS L1000 data for any data analytics application,

as outlined above, severely because essentially any statistical data analysis requires knowledge

of available sample sizes and available experimental conditions in order to design an analysis

properly [22, 23]. For instance, one would like to know how many experiments have three or

more replicates for cell line HA1E? Or how many samples are available for cell line A375 hav-

ing been exposed to four different drug dosages? These and similar questions are currently

unanswered and there is no simple way for obtaining such information. For this reason regular

updates of the content of such data repositories need to be provided in order to inform the

community.

In this paper, we address this problem by exploring and summarizing the LINCS L1000

data as provided by the signature profiles. Specifically, we analyze the LINCS L1000 data for

two different layers. In the first layer we focus on the signature profiles themselves and in the

second layer we focus on the differentially expression of genes derived from the signature
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profiles. This means we are moving from overview distributions on a basic level to characteri-

zations of the biological activity of the cell lines in dependence on multivariate conditions, as

given by, e.g., the number of replicates or the duration of applied drug perturbations. This will

allow to gain insights into the distributions of cell types, time points and small drug molecule

dosages across multiple compounds and all experiments conducted so far.

Methods

LINCS L1000 dataset

The LINCS L1000 dataset comprises 5806 genetic perturbations (e.g., single gene knockdown

and over-expression) and 16,425 perturbations induced by chemical compounds (e.g., drugs)

[24]. So far about 1.3 million gene expression profiles have been generated and collected for

this project using the L1000 technology [25]. The L1000 platform has been developed at the

Broad Institute by the connectivity map (CMap) team to facilitate rapid, flexible and high-

throughput gene expression profiling at lower costs. Specifically, this means the L1000 technol-

ogy measures expression for 978 landmark genes and expression values for the remaining tran-

scriptome is estimated using a computational model based on data from the Gene Expression

Omnibus (GEO) [26].

Metadata pipeline

The LINCS data API provides a programmatic pipeline to annotations and perturbational sig-

natures in the L1000 dataset via a collection of HTTP-based RESTful web services. An example

for such a service is ‘Cell Service’, which is a service that describes the cell line meta-informa-

tion. Table 1 lists all the API services provided by the LINCS API for querying the L1000 meta-

data. These services support complex queries via simple HTTP GET requests that can be

executed in a web browser or with most programming languages.

Results

The LINCS L1000 data is a vast collection of gene expression profiles and meta information

that includes many experimental samples covering more than seventy human cell lines. These

cell lines are populations of cells descended from an original source cell and having the same

genetic make-up, kept alive by growing them in a culture separate from their original source

[27]. In the following, we analyze the LINCS L1000 data for two different layers. The first layer

focuses on the signature profiles themselves and the second layer on the differentially expres-

sion of genes derived from the signature profiles. This means we are moving from overview

Table 1. List of LINCS L1000 metadata APIs.

Service Description URL link

Cell Service The Cell information service returns cell line information. https://clue.io/api#cells

Gene

Service

The Gene information service returns meta-information for measured and

inferred genes in the LINCS dataset.

https://clue.io/

api#genes

Profile

Service

The Profile information service returns meta-information for instances in

the LINCS dataset.

https://clue.io/

api#profiles

Pert Service The Pert information service returns meta-information for perturbations in

the LINCS dataset.

https://clue.io/

api#perts

Plate service The PlateInfo service returns plate information. https://clue.io/

api#plates

Signatures The Signature information service returns meta-information for signatures

in the LINCS dataset.

https://clue.io/

api#signatures

https://doi.org/10.1371/journal.pone.0201937.t001
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distributions on a basic level to characterizations of the biological activity of the cell lines in

dependence on multivariate conditions, as given by, e.g., the number of replicates or the dura-

tion of applied drug perturbations. Hence, this provides an understanding of the biological

functions effected by the perturbations.

A. Signature profiles

Cell line and small molecule annotations. Various cancer cell lines and non-transformed

primary cultures were used to represent disease models in the LINCS L1000 data [28]. To

enable an integration and analysis of large cell-based screening profiles in the LINCS project,

the cell lines were annotated with labeled terms to identify the associated organs and diseases.

In Fig 1 we show the overall distribution of profiled samples for 71 cell lines across all experi-

ments. These counts include all the corresponding cell line profiles. For obtaining this infor-

mation, we used the metadata annotations that are available via the Cell Service API. By

summation over all cell lines in Fig 1 we find that, currently, the total number of signature pro-

files (excluding the profiles treated with knockdown and overexpression genes) is 215,224.

This number is much smaller than the 1.3 million raw gene expression samples because the

replicated raw sample have been summarized for obtaining the signature profiles resulting

from a comparison of treatment with control conditions.

From Fig 1 it is clear to see that there are many cell lines that are not highly profiled and

therefore have low profile counts. For this reason, in the following we focus on the 9 cell lines

Fig 1. Cell line signature profile counts. The drug signature profile count distribution is shown for all 71 cell lines across all

experiments in the LINCS L1000 dataset. Each bar gives the number of available signature profiles per cell line.

https://doi.org/10.1371/journal.pone.0201937.g001
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with the highest profile counts. In Table 2 we show the count distribution of these 9 cell lines,

each containing more than 20,000 profiles.

The LINCS L1000 data include experiments for more than 20,000 small molecule perturba-

tions. The perturbations are applied to the cell culture to induce changes in the gene expres-

sion profiles. Furthermore, there are genetic perturbation experiments targeting single genes

to control their expression levels, by either suppressing or enhancing them [29]. Detailed

information for small molecule perturbations can be retrieved using the Pert Service API that

identifies unique and common drugs used in the L1000 dataset. In Fig 2 we show the count

distribution of 6 different treatment and control samples including genetic and small molecule

perturbations. The count distributions shown correspond to the same 9 cell lines as in Table 2.

Table 2. Cell lines with the highest number of available signature profiles in the LINCS L1000 data and their corre-

sponding annotation according to the Cell Service API.

Cell line Profile count Tissue

A375 33,656 Skin

A549 37,577 Lung

HCC515 23,714 Lung

HA1E 26,164 Kidney

HEPG2 21,032 Liver

HT29 30,449 Colon

MCF7 52,373 Breast

PC3 21,032 Prostate

VCAP 21,032 Prostate

https://doi.org/10.1371/journal.pone.0201937.t002

Fig 2. Distribution of experimental conditions for 9 highly profiled cell lines. Each stack bar shows the proportion

of available profiles for different small molecules and controls used for the experimental condition.

https://doi.org/10.1371/journal.pone.0201937.g002
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The 6 experimental conditions considered are: controls, ligands, poscons, compounds, overex-

pression and shRNAs. As one can see the number of controls and compounds is always highest

for all cell lines followed by the number of overexpressed profiles.

Experimental replicates have been investigated and found to be useful in simulation and in

boosting analysis [30] and decreasing the number of replicates will adversely affect the power

of experiments [30, 31]. For this reason we studied the distribution of replicate experiments of

the LINCS L1000 data. From this we find that the plate variation is ranging mostly between 1

to 8 replicates with the majority of samples having 3 replicates. There are also conditions for

which more than 9 replicates have been generated, however, these are rare covering only 1% of

all profiles, whereas 1 to 8 replicates cover 99%. The largest number of replicates observed is

27, e.g., found for cell line VCAP, drug Vorinostat, a dosage of 10um and a time duration of

24h. In Fig 3 we show the number of replicated experiments cross the 9 selected cell lines. The

figure includes also information about 9 or more replicates and shows that the availability vari-

ous greatly between the cell lines.

Next, we show in Fig 4 results for the number of different dosages (concentrations) applied

to the 9 highly profiled cell lines. The figure shows distributions for 8 different concentrations

and 9 or more concentrations. However, almost 99% of the treated samples are measured for 1

to 8 different concentrations. From the available 49,400 perturbations, most of them were

tested for a duration of 6, 24, 48, 96 and 120 hours. Overall, the number of cell lines per com-

pound represented in the treatments ranged from 1 to 8 different time duration points (see Fig

A in S1 File). Around 99% of the perturbations affected at least one gene significantly in a sin-

gle cell line after treatment with the varying number of time points.

Fig 3. Distributions of experimental replicates for the signature profiles. The number of available replicates is

shown for small molecule treatments in the LINCS L1000 data for 9 highly profiled cell lines.

https://doi.org/10.1371/journal.pone.0201937.g003
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B. Differentially expression of genes

Differentially expression of genes and small molecule diversity. Our next analysis

focuses on the activity level of the gene expression data as quantified by differentially expressed

genes. For this analysis we utilized the L1000 raw z-scores from the GEO repository and pre-

processed these by using the R L1000 tools [32]. We utilized the signature meta-information in

Signature Service API for selecting the same subset of 9 cell lines as in Table 2 (with highest sig-

nature counts across all cell lines). Here a signature for a small molecule is defined as a vector

of z-score values, each representing differential expression of genes profile between small mol-

ecule treated samples and control samples. In total there are 169,239 z-score signature profiles

for the 9 cell lines that satisfied the well- and plate-based quality control. This signature profile

subset comprises 20,009 small molecules (out of 49,400 perturbations) that were repeatedly

measured between 1 to 8 times. To further simplify the data and the quality of the analysis, we

selected 6, 24 and 48h time points. In total this leaves us 158,054 signature profiles (i.e., any

combination of the small molecule, time, and cell line) for our analysis. These signature pro-

files come from experiments that were carried out on 391 multi-wells, where 362 wells were

used for treatment and 29 DSMO wells were for control vehicles.

In order to obtain the number of differentially expressed genes between treatment and con-

trol samples for each of the 384 plates we used the z-score signature vectors obtained from the

Signature Service setting the z-score threshold to> 2.0 and< -2.0 for up- and down-regulated

genes respectively. For measuring the signature type effects that have been shown to be robust

in biological interpretations, we use the assigned z-score thresholds to measure the biological

Fig 4. Distributions of unique dosages for the signature profiles. The number of available profiles is shown for

different dosages (concentrations) of small molecules for 9 highly profiled cell lines.

https://doi.org/10.1371/journal.pone.0201937.g004
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effects encoded in the gene expression data. We found that 19,957 small molecules from

20,009 that are used in 158,054 signature profiles yielded at least one gene that is significantly

differentially expressed when compared with the corresponding control samples. We further

found that 15,714 small molecules reveal significant differences for at least 50 genes, and 8, 211

small molecules are differentially expressed for at least 100 or more genes. Table 3 summarizes

these results.

Cell type specific differentially gene expression. Since not all cell lines measure the tran-

scription effects of small molecules for the same time points, we subset the treatments accord-

ing to cell lines and evaluate the number of significant genes for the 9 cell lines separately. In

Fig 5 we show our results giving the number of signature profiles for each cell line for three

categories. The three categories correspond to (I) at least one significant gene, (II) at least 50

significant genes, and (III) at least 100 significant genes when compared with vehicle controls.

Table 3. Summary of z-score signature profiles resulting in differentially expressed genes (DEG) between treat-

ment and control samples for the 9 cell lines in Table 2.

Differentially expressed genes Signature profiles Small molecules

No significant gene 24 19

At least 1 significant gene 158,030 19,957

At least 50 significant genes 58,739 15,714

At least 100 significant genes 23,867 8,211

Total 158,054 20,009

https://doi.org/10.1371/journal.pone.0201937.t003

Fig 5. Number of significant profiles found when comparing signature profiles of treatment and control samples.

The cell lines are categorized according to the number of DEGs and the DEG have been estimated based on the z-score

signatures profiles.

https://doi.org/10.1371/journal.pone.0201937.g005
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Since there were only 24 profiles with no significant genes in total, this category is not shown

in the figure.

Dosage specific differentially gene expression. For studying the effect of drug dosages

we repeated a similar analysis as above. Specifically, we systematically classified the small mole-

cule dosages into two categories for ‘low’ and ‘high’ concentrations. The ‘low’ concentration

group contains all measurements in nanomolar (nM) and doses less than or equal to 5 micro-

molar (μM) while the ‘high’ concentration group includes all measurements greater than 5

μM. In total, we find 63,113 and 94,941 signature profiles for low and high dosages respec-

tively. In Fig 6, the number of differentially expressed genes is shown for the 9 cell lines and

the two dosage categories. From this we observe two different behaviors. First, the number of

differentially expressed genes increases with time, e.g., cell line A375 or A549. Second, the

number of differentially expressed genes decreases with time. This behavior is only observed

for cell line VCAP. The first type of behavior is expected because higher dosages of drugs

should result in more severe changes in the expression of genes. The reverse of this effect for

cell line VCAP, a prostate cancer cell line, averaged over all drugs is counter intuitive and

points to follow-up investigations.

Drug perturbation specific differentially gene expression. Next, we analyze the number

of differentially expressed genes according to the time duration of the treatment with small

molecules. In Fig 7 we show results for 6 and 24 hours. From this we again observe two differ-

ent behaviors. First, the number of differentially expressed genes increases with time, e.g., cell

line A375 or A549. Second, the number of differentially expressed genes decreases with time,

e.g., cell line HA1E or HCC515.

Fig 6. Dosage specific differentially gene expression. The differential expression of genes for 9 cell lines is shown

categorized in Low and High dosages of small molecules.

https://doi.org/10.1371/journal.pone.0201937.g006
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Changes in biological activity. Finally, we compare the findings shown in Figs 6 and 7 to

reveal changes in the biological activity of the corresponding cell lines. In order to do this, we

estimate the fraction of change for each of the two categories ‘at least 50 significant genes’ and

‘at least 100 significant genes’ with respect to the category ‘at least 1 significant gene’. That

means we are estimating

f 50

A ¼
#profilesðat least 50 significant genesjAÞ
#profilesðat least 1 significant genejAÞ

ð1Þ

f 100

A ¼
#profilesðat least 100 significant genesjAÞ

#profilesðat least 1 significant genejAÞ
ð2Þ

wheres A corresponds either to Low dosage or 6 hours and

f 50

B ¼
#profilesðat least 50 significant genesjBÞ
#profilesðat least 1 significant genejAÞ

ð3Þ

f 100

B ¼
#profilesðat least 100 significant genesjBÞ

#profilesðat least 1 significant genejAÞ
ð4Þ

whereas B corresponds either to high dosage and 24 hours. This results in 8 percentage

values for each cell line, 4 values from Fig 6 (f 50
Low, f 100

Low, f 50
High, f 100

High) and 4 values from Fig 7

(f 50
6 hours, f 100

6 hours, f 50
24 hours, f 100

24 hours). From these we obtain four straight lines per cell line defined by

the pairs (f 50
Low, f 50

High) (green line in Fig 8) and (f 100
Low, f 100

High) (blue line in Fig 8) for dosages and

Fig 7. Drug perturbation specific differentially gene expression. The differential expression of genes for 9 cell lines

is shown categorized in the time durations (6 and 24h) of drug perturbations.

https://doi.org/10.1371/journal.pone.0201937.g007
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(f 50
6 hours, f 50

24 hours) (red line in Fig 8) and (f 100
6 hours, f 100

24 hours) (orange line in Fig 8) for time points.

Overall this means Fig 8 shows a summary of the fraction (percentage) of changes in the bio-

logical activity in dependence on different experimental conditions.

From Fig 8 we obtain two major observations. First, regarding the slope of the four straight

lines, we observe that either these are parallel or they intersect each other. A parallel behavior

is observed for cell line HEPG2 or VCAP, whereas an intersection is observed for HT29 or

A375. This means that changes in the drug dosages has a nonlinear effect for cell line HT29 or

A375 compared to, e.g., cell line HEPG2 or VCAP, if contrasted with changes in the time

points. The second major observation from Fig 8 is the change of the top y-scale. For instance

for cell line HEPG2 we find the highest percentage change of 60% for 24 hours, whereas for

cell line VCAP this is only slightly over 30%. The difference is almost a factor of two in the

activity changes.

Fig 8. Changes of biological activity. Percentage changes in the number of significant profiles for the cell lines in dependence on the dosages and time points obtained

from Figs 6 and 7. A. corresponds either to Low dosage or 6 hours and B. corresponds either to High dosage and 24 hours.

https://doi.org/10.1371/journal.pone.0201937.g008
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Discussion

In this study, we analyzed the LINCS L1000 dataset by characterizing different experimental

variables including cell types, time points, and dosages. We performed our analysis for two dif-

ferent layers. In layer one we focused on distributional characteristics of signature profiles

whereas in layer two we focused on biological activity changes as measured by the number of

differentially expressed genes.

Despite the fact that the LINCS L1000 dataset contains information for 71 cell lines, the vast

majority of data is available for 9 cell lines only, namely A375, A549, HCC515, HA1E, HEPG2,

HT29, MCF7, PC3 and VCAP, as can be seen from Fig 2 and Table 2. Each of these cell lines

contains more than 20,000 signature profiles which enables excellent analysis opportunities. In

contrast, for 46 cell lines less than 500 signature profiles are available. This means the utility of

these 46 cell lines for any pharmacogenomic application is severely limited. Overall this

means, that only 12% of all cell lines enable comprehensive large-scale data-driven pharmaco-

genomic applications.

For the number of replicates, we found that 2, 3 and 4 replicates are the majority for the 9

highly profiled cell lines, see Fig 3. However, also the number of replicates vary greatly between

the cell lines. For instance, for HT29 there are over 8000 profiles with four replicates available

whereas for A549 there are less than 2000 profiles, which means the difference is a factor of

four. For studies requiring a very large number of replicates the cell lines MCF7 and PC3 are

preferable because these cell lines provide experimental condition with over 9 replicates. To a

lesser extend this is also true for A375. This information is important for planning an analysis

in order to prevent an underpowered analysis [33] and ensure accurate estimations in a down-

stream analysis [34].

From the distribution of dosages (concentrations of drugs or small molecules) we found

that most of these are used only with one or two concentrations, see Fig 4. However, for cell

line MCF7 small molecules have been applied for even more than 9 different concentrations.

Overall, the screening character of the LINCS project is well reflected by the distributions for

different concentrations across the 9 cell lines in Fig 4 because of the high variability in the

resulting number of signature profiles.

The second part of our analysis focused on the differentially expression of genes. As an

overall results we find 24 profiles without any significant gene, 158,030 profiles with at least 1

significant gene, 58,739 with at least 50 significant gene and 23,867 profiles with at least 100

significant genes, see Table 3. For these numbers we averaged over all cell lines and experimen-

tal conditions. From this analysis we can conclude that 99.99% of all signature profiles contain

at least some activity changes induced by the applied perturbations. Interestingly, the induced

activity changes in the expression of genes seem to be moderate because 62% of all signature

profiles contain between 1 and 49 significant genes.

It has been pointed out by Iorio et al. [35] that a compound can show inconsistent tran-

scriptional effects when applied across different cell lines, its biological effect may be differenti-

ated when merging gene expression values from different cell lines. Therefore, the compounds

that were used to assess the effect on the cell lines may hold a bias towards a particular biologi-

cal effect, since a cell line might react differently to certain treatment [36–38].

By zooming into the individual cell lines, see Fig 5, these overall observations are con-

firmed, although, there are certainly noticeable variations in the level of activity changes. For

instance, for cell line A375 we find a decrease of around 40% from the number of significant

profiles in category one to category two, whereas for cell line VCAP this decrease is only about

30%. This is actually a desirable observation because it means the LINCS data reflect that natu-

ral variability and sensitivity of the different human cell lines.
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Next, we performed a detailed analysis studying the influence of the dosage and the time

points on the individual cell lines. For the dosages we observed two different behaviors, see Fig

6. Behavior one corresponds to an increase in the number of significant profiles when going

from low to high dosages, across the three gene categories, e.g., for cell line A375 or HA1E. In

contrast, behavior two corresponds to a decrease. Interestingly, this behavior is only observed

for cell line VCAP.

For the time points we obtain similar results, see Fig 7. For the first behavior the number of

differentially expressed genes increases with time, e.g., cell line A375 or A549. For the second

behavior the number of differentially expressed genes decreases with time, e.g., cell line HA1E

or HCC515.

An explanation for this is that either lower or higher concentration treatments do not kill

cells rapidly. Due to this reason, they should be tested for a longer period of time/days. In

experimental setup of the L1000 data it is possible that a higher concentration might not killed

the entire population rather induced a resistance population in which cell cycle is not be

arrested. Furthermore, it should be also noted that PC3 (high metastasis) and VCAP (moder-

ate) are not in the same state.

Finally, we compared the influence of dosage changes (Fig 6) with the influence of time

point changes (Fig 7) in order to reveal changes in the biological activity of the corresponding

cell lines and summarized these findings in Fig 8. From this we obtained two major observa-

tions. First, either the slope of the four experimental types occurs in parallel or they intersect

with each other. Second, the y-scale is not the same for all cell lines. These results demonstrate

the nonlinearity of the biological activity of the cell lines as a function of the different experi-

mental conditions (types) and, hence, show the biological complexity of the transcription

regulation.

All these results allow to gain insights that go beyond the mere features of gene expression

data, e.g., providing information about the number of samples or number of drugs used for

perturbing the cell lines. Instead, the second part of our study provides information for select-

ing cell lines with respect to their activity profiles. This information is important for the design

of any pharmacogenomic study regardless of their particular goals because it is the biological

activity of genes that decides about the effect of drugs.

Interestingly, in a previous study it has been shown that using additional cell lines provides

more information about the compound-induced biological effects when different time points

are used in the experimental design [39]. We found two time points (6h and 24h) yielded the

most number of significant genes (see Fig 7) in the L1000 data. Therefore, the time point cov-

erage can provide an understanding of how the L1000 data is represented at the gene level.

Moreover, the combination of MCF7, VCAP, A549, HT29, and PC3 cell lines covers the

majority of the transcriptional effects.

Overall, the LINCS L1000 data provides a rich and valuable source of compound-induced

data that addresses some of the problems as mentioned for the CMap data [14, 16]. For exam-

ple, a limited number of replicates, batch effect sizes and small number of profiles, now are all

increased and improved in the L1000 assay. However, there are still shortcomings: First, most

of the compounds are profiled at a high single dose only, causing different variability in dosage

measurements. Second, the dataset does not explicitly follow the conventional settings of using

experimental variables which are needed in a genome-wide transcriptional profiling study

[40], but measure only 978 gene transcripts while the rest of the transcriptome was estimated

by a model. Finally, the compounds are neither from primary-screening libraries such as

FDA-approved nor the molecularly targeted and not highly selective agents that would be of

particular interest for researchers [41].
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Conclusion

In this paper, we used the Big Data from the LINCS project to explore different experimental

settings, such as cell line coverage, time points and dosages using a data pipeline to assess com-

pound-induced transcriptional effects. As a result, first, we provided summary statistics for

distributional characteristics of gene expression signature profiles from all cell lines and their

perturbagents. Second, we revealed changes in the differential expression of genes manifesting

the biological complexity of the perturbagents. As a result, our analysis hopefully helps in har-

nessing the overwhelming complexity of the LINCS data providing guidance for the experi-

mental design of follow-up studies, e.g., by selecting appropriate cell lines.

Given the limitations of previous datasets such as the CMap [14, 16], our analysis suggests

that the L1000 data provide a good opportunity for the characterization of the compound-

induced transcriptional effects. Given the volume and complexity of this dataset for drug dis-

covery, it is necessary to understand the potential of the L1000 dataset and how it can be used

in a drug research setting where every step is driven by data and rigorous data models. For

example, the selection of appropriate tools to access, analyze and create models using the data-

set to validate hypotheses. More efficient ways are expected to quickly transform Big Data dis-

coveries into clinical applications.
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