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Simple Summary: Despite decades of clinical use and detailed understandings of their mechanisms
of action, clinically useful predictive biomarkers for approved microtubule targeting agents such as
eribulin, paclitaxel and vinorelbine have eluded development. Our results now provide the basis for
gene expression-based, drug-specific predictive biomarkers for eribulin and vinorelbine, as well as
deeper understandings of the molecular pathways associated with eribulin and vinorelbine response.

Abstract: Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncyto-
toxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma.
To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified an-
tiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell
lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases
to identify genes and pathways associated with eribulin response, either uniquely or shared with
paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive
cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely
associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum
2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-
specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met
all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique finger-
print genes of both drugs were primarily associated with cellular signaling, not microtubule-related
pathways, although considerable differences existed in individual pathways identified. Finally, four-
gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10)
multivariate regression models for eribulin and vinorelbine showed high statistical correlation with
drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s
for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders,
respectively. Collectively, these results provide a foundation for developing drug-specific predictive
biomarkers for eribulin and vinorelbine.

Keywords: eribulin; paclitaxel; vinorelbine; gene expression; predictive biomarkers

1. Introduction

Microtubule targeting agents (MTAs), including eribulin, several taxanes, vinca al-
kaloids, and at least one epothilone, are important clinical anticancer drugs for several
cancer types [1–4]. Despite sharing targets of MTs and their α/β-tubulin building blocks,
different MTAs have different clinical profiles, binding sites, mechanisms of inhibiting MT
dynamics, as well as different effects on mitotic versus interphase cells [1–4]. For example,
paclitaxel is an MT stabilizer, while eribulin and vinorelbine are MT destabilizers; both MT
stabilization and destabilization are sufficient to disrupt the MT dynamics that underly MT
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function, yet their mechanisms of doing so are quite different [1–4]. While such differences
must certainly contribute to the different clinical profiles seen with these agents, to date,
knowledge of differences at the molecular, biochemical and cellular levels has not yielded
reliable and clinically useful predictive biomarkers for any MTA. Thus, despite decades of
clinical use, the need for predictive biomarkers to identify patients most likely to respond
to specific MTAs remains.

Eribulin, a synthetic analog of the marine sponge natural product halichondrin
B [5], is an MT dynamics inhibitor with both cytotoxic antimitotic mechanisms [6,7] and
noncytotoxic effects on tumor vasculature, tumor phenotype and the tumor immune
landscape [8–13]. Eribulin’s unusual combination of cytotoxic and noncytotoxic effects
suggested that identifying determinants of eribulin response might be possible given a
sufficiently broad survey of cancer cell lines with differing sensitivities and baseline gene
expression patterns. Accordingly, we quantified in vitro antiproliferative responses to
eribulin, versus paclitaxel and vinorelbine as clinically relevant comparators, in 100 human
cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) [14] and correlated the
results against the expression of 11,985 genes in the publicly available DepMap database
to assess genetic and pathway determinants of eribulin response. Here, we report the
identification of small sets of drug-specific unique fingerprint genes (UFGs) that strongly
correlate with drug-specific responses to eribulin and vinorelbine. Network propagation
and Reactome pathway analyses seeded by these UGFs pointed to cellular signaling, not
MTs and mitosis, as the most dominant overall theme driving response to both drugs.
Finally, multivariate regression (MVR) models constructed from four- and five-gene UFG
subsets correlated with drug-specific responses across all 100 cell lines and accurately
predicted mean response levels (IC50s) of the most and least sensitive cell line quartiles as
modeling surrogates for responder and nonresponder populations.

2. Materials and Methods
2.1. Test Agents

Eribulin mesylate (hereafter, eribulin) was supplied by Eisai Inc. (Cambridge, MA,
USA) as laboratory-grade dry powder active pharmaceutical ingredient (API) obtained
from the same manufacturing stream used for Eisai’s branded clinical product, Halaven®.
Paclitaxel and vinorelbine tartrate (hereafter, vinorelbine) were obtained as dry powders
from Selleckchem (Shanghai, China). Eribulin, paclitaxel and vinorelbine were prepared
as 10 mM stock solutions in 100% (v/v) DMSO, aliquoted into small volumes and stored
at −20 ◦C until day of use. Although not a designated test agent for this study, cisplatin
was included in all assays as an internal reference control for assay performance; cisplatin
was obtained as a laboratory grade liquid formulation from Hospira Australia Pty Ltd.
(Melbourne, Australia), with storage per manufacturer’s instructions and dilutions for cell
culture studies on day of use.

2.2. Human Cancer Cell Lines

One hundred established human cancer cell lines were selected based on inclusion in
both the CCLE and Crown Bioscience’s OmniPanelTM in vitro cell line screening service
(see Section 2.3). A list of selected cell lines and their tissues of origin are presented in
Supplemental Table S1. Cell line selection was based on a combination of common usage,
well-established characterization in the literature, personal experience and our hypothesis
that the most diverse cell line panel would provide the highest likelihood of identifying
genes and pathways associated with specific drug responses, agnostic of cancer type.

2.3. In Vitro Cell-Based Antiproliferative Assays

Measurement of antiproliferative activities of test agents against the selected 100 CCLE
cell lines was performed by Crown Bioscience under contract from Eisai Inc., using Crown’s
OmniPanelTM in vitro cell line screening service in their Beijing (China) laboratories. All
OmniPanelTM cell lines are routinely tested for mycoplasma and authenticated using
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short tandem repeat (STR) DNA profiling. Testing was conducted using the CellTiter-
Glo® Luminescent Cell Viability Assay (Promega Corp., Beijing, China) following 72 h
compound exposures in 96-well plate assay formats. Compounds were added 24 h after
cell seeding into plates, with initial seeding densities for individual cell lines having been
previously optimized for OmniPanelTM screening. Based on the authors’ prior experience
with the test agents, assays employed 9-step half-log test concentrations of 30 pM–300 nM
for eribulin and 100 pM–1 µM for paclitaxel and vinorelbine. Concentrations of test agents
inhibiting 50% of viable cell densities in vehicle-treated control wells compared to wells
with the highest drug concentrations were defined as IC50s and were determined using
GraphPad Prism software (version 5.0; GraphPad-Prism China, Beijing, China). Dose–
response curve fitting used a nonlinear regression model with sigmoidal dose response,
fixed 100% top y-axis values defined by vehicle and floating bottom y-axis values at either
the highest concentration tested or another concentration that resulted in a minimum
y-axis reading, ensuring that calculated IC50s represent actual antiproliferative biological
responses occurring during the 72 h treatment period without plateau artifacts based on
different growth rates of different cell lines.

IC50s for 5 cell lines for eribulin (769-P, 786-O, CADO-ES1, HCT-15, NCI-H716) and
1 cell line for paclitaxel (HCT-15) exceeded the 300 nM and 1000 nM top concentrations used
for these 2 drugs, respectively, so surrogate values of 301 nM eribulin and 1001 nM paclitaxel
were assigned for purposes of defining cell lines in the bottom (least sensitive) quartile and
calculating means/medians of bottom quartiles. Although using such surrogates does not
change assignment of bottom quartiles or median IC50 values, it probably results in minor
underestimations of mean bottom quartile IC50s, SDs and SEMs for eribulin and paclitaxel,
although such underestimations are likely to be small due to the large overall number of
cell lines tested.

2.4. Gene Expression Data Analysis

Expression data for 11,985 genes from the 100 selected cell lines were downloaded
from the Cancer Dependency Map (DepMap) project portal (https://depmap.org/portal/
accessed on 3 August 2021; release version “DepMap Public 18Q2”, 2 May 2018). DepMap
data using the symbol SEPT10 were replaced with the currently accepted symbol SEPTIN10.
Expression values are log2 gene-level reads per kilobase million (RPKM) derived from
RNA Sequencing (RNA-Seq), aligned using TopHat version 1.4 and quantified using the
pipeline developed for the Genotype-Tissue Expression (GTEx) project as described by
Tsherniak et al. [15]. Systems-level analyses of genes associated with drug response were
performed using the Data4Cure Biomedical Intelligence® Cloud (La Jolla, CA, USA) [16] to
identify gene-level determinants of response that were unique to eribulin or shared with
vinorelbine or paclitaxel (see Section 2.5). Differential gene expression analysis comparing
top and bottom cell line quartiles for each drug (most and least sensitive 25 cells lines,
respectively) was performed using the limma R package [17], fitting a linear model for each
gene and producing a moderated t-statistic, fold-change, p-value and q-value for each gene,
with q-values representing p-values adjusted for multiple hypothesis testing using the false
discovery rate (FDR) method of Benjamini and Hochberg [18].

2.5. Identification of Drug-Specific UFGs

Ratios of mean expression levels for each gene between the most and least sensitive cell
line quartiles (top and bottom quartiles, respectively) for each drug were calculated. Genes
with top/bottom quartile ratios with p < 0.0025 significance for a given “cognate” drug were
further restricted by sequentially (i) excluding genes having p < 0.0025 overlaps with either
of the 2 “noncognate” drugs, (ii) retaining only genes with either ≥2× increased or ≤0.5×
decreased expression ratios between top and bottom quartiles (|log2[quartile expression
ratio]| ≥ 1) and (iii) after reintroducing data from the middle two cell line quartiles,
retaining only those genes with statistical significance (p < 0.05) for the cognate drug in full
linear regression analysis with all 100 cell lines, but lacking statistical significance for both

https://depmap.org/portal/
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noncognate drugs. Genes meeting all the above criteria for a given drug were designated
as unique fingerprint genes or UFGs for that drug. No gene met all criteria for paclitaxel;
thus, no paclitaxel UFGs were identified in this study.

2.6. Network Propagation and Reactome Pathway Analyses

Network propagation [19] starting with the 9 eribulin UFGs and 13 vinorelbine UFGs
as query inputs was performed using the Network Enrichment platform in the Data4Cure
Biomedical Intelligence® Cloud [16]. The resulting 100-gene networks were then used
as query inputs for Reactome pathway analyses [20,21] using the Reactome portal in the
Data4Cure platform.

2.7. Multigene MVR Model Building

MVR model building was performed to develop multigene panels of UFGs that can
predict the likelihood of high versus low response to eribulin and vinorelbine (MVR model
building was not performed for paclitaxel since no gene met all UFG criteria for that
drug). Full sets and subsets of eribulin and vinorelbine UFGs were combined as follows.
Since the criteria for UFGs demand that expression levels of each UFG show statistically
significant correlation with IC50s in linear regressions across all 100 cell lines, individual
correlation equations for each UFG were used to predict IC50s for each cell line based only
on expression of that gene in that cell line. This was repeated for all UFGs and cell lines,
followed by averaging predicted IC50s for each cell line based on either full sets or subsets
of eribulin and vinorelbine UFGs. Predicted mean IC50s were then correlated with actual
measured IC50s by linear regression analysis, thereby obtaining both statistical significance
and the equation of the model.

Since IC50s predicted from equations of individual UFGs are actually drug-agnostic
(independent of the cognate drug for which UFG status was accorded), MVR models built
from eribulin and vinorelbine UFGs were assessed for their abilities to predict responses
not just to the corresponding cognate drug but also to the 2 noncognate drugs (including
paclitaxel). As expected, MVR models built with full sets of eribulin and vinorelbine UFGs
showed highly significant correlations with their cognate drugs (Supplemental Figure S2).
Unexpectedly, however, full set MVR models also showed significant correlations with one
or both noncognate drugs, presumably due to consolidation and statistical strengthening
of nonsignificant numerical trends for noncognate drugs that can be observed for many
individual UFGs (visible in Supplemental Figure S1). Accordingly, MVR models using UFG
subsets were constructed by prioritizing UFGs based on the highest individual correlation
coefficients (R2 values) across all 100 cells lines for each gene. This approach yielded MVR
models based on 4 eribulin UFGs (C5ORF38, DAAM1, IRX2, CD70) and 5 vinorelbine UFGs
(EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10), both of which showed highly significant
correlations between predicted and measured IC50s across all 100 cell lines for cognate but
not noncognate drugs.

3. Results
3.1. Antiproliferative Effects of Eribulin, Paclitaxel and Vinorelbine against 100 CCLE Cell Lines

In vitro antiproliferative potencies of eribulin, paclitaxel and vinorelbine against
100 CCLE cell lines were determined during 72 h compound exposures (Figure 1A–D,
Table 1, Supplemental Table S1). Overall, eribulin IC50s correlated with those for paclitaxel
and vinorelbine with high statistical significance across the 100 cells lines (Figure 1A), al-
though slopes for paclitaxel and vinorelbine were notably shallower compared to eribulin,
whose lowest IC50s dipped well below 10−9 M, thus driving the steeper eribulin slope. The
overall order of potency was eribulin > paclitaxel > vinorelbine, with eribulin showing 1.5-
to 6.7-fold greater potency compared to paclitaxel (means and medians, respectively), and
2.0- to 14.9-fold greater potency compared to vinorelbine (Table 1).
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Figure 1. Antiproliferative effects of eribulin, paclitaxel and vinorelbine on 100 CCLE cell lines.
(A) Correlations of IC50s for eribulin versus paclitaxel and vinorelbine, with eribulin versus itself
shown to compare slopes with paclitaxel and vinorelbine (R2 and p-values not shown for eribulin
versus itself). For eribulin (B), paclitaxel (C) and vinorelbine (D), cell lines are ordered from most
sensitive (left) to least sensitive (right), with IC50s as log[M]. The most and least sensitive quartiles
for each drug are delineated by vertical dashed lines. Measured IC50s for 5 eribulin and 1 paclitaxel
cell lines exceeded the highest concentrations tested for these 2 drugs; see Material and Methods for
correction strategies used. Panels (E,F) show Venn diagrams of numbers of unique and overlapping
cell lines in the most and least sensitive cell line quartiles for each drug.

Table 1. Antiproliferative activities (IC50s) against 100 CCLE cell lines 1.

Compound Mean, nM SD SEM Median, nM

Eribulin 2 20.1 66.2 6.6 1.6
Paclitaxel 2 31.0 106.9 10.7 10.7
Vinorelbine 39.9 65.2 6.5 23.9

1 Averaged values for all 100 cell lines are presented here. Individual IC50s for each drug for all 100 cell lines are
presented in Supplemental Table S1. 2 See Material and Methods for strategy used to address the 5 eribulin and
1 paclitaxel cell lines whose IC50s exceeded the highest concentrations tested for these 2 drugs.

Although IC50s across the 100 cell lines were highly correlated as a whole, some lines
individually responded differently to each drug, as shown by analysis of the most and least
sensitive quartiles (25 cells lines with lowest and highest IC50s for each drug, respectively;
Figure 1B–D). Thus, 5, 9 and 4 cell lines were uniquely associated with the most sensitive
quartiles for eribulin, paclitaxel and vinorelbine, respectively, while 11 cell lines were
shared by all 3 drugs, and 12 others were variously shared between the 3 remaining 2-drug
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pairs (Figure 1E). In the least sensitive quartiles, 7, 9 and 7 cell lines were unique to eribulin,
paclitaxel and vinorelbine, respectively, with 12 cell lines shared by all 3 drugs and another
8 variously shared by the 3 remaining 2-drug pairs (Figure 1F).

3.2. Gene Expression Analysis of Most Sensitive versus Least Sensitive Cell Line Quartiles

Baseline expression data for 11,985 genes in each of the 100 CCLE cell lines were
obtained from the publicly available DepMap database. Initial filtering was based on
ratios of average expression of each gene across the 25 cell lines in the top (most sensitive)
versus bottom (least sensitive) quartiles, defined separately for eribulin, paclitaxel and
vinorelbine; top and bottom quartiles thus served as conceptual surrogates for responders
and nonresponders, respectively. Z-score heat map analysis of gene expression at p < 0.05
stringency revealed visual groupings of genes that were positively or negatively associated
with response to all three drugs, to each of the three possible drug pairs, or to each drug
uniquely (Figure 2).
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Figure 2. Z-score heat map showing baseline gene expression across 100 CCLE cell lines. Genes
shown (rows) are those positively or negatively associated at p < 0.05 with the most sensitive versus
least sensitive cell line quartiles for eribulin, vinorelbine and paclitaxel as indicated across the top
of the heat map. The left and right sides of the y-axis show textual or visual representations of
associations of genes with 1, 2 or all 3 of the tested drugs.

Volcano plots of gene expression fold-changes (fold-change refers to mean gene ex-
pression ratios between top and bottom quartiles, with ‘upregulated genes’ expressed at
higher mean levels in the most sensitive versus least sensitive cell line quartile) versus
p-value revealed 949, 646 and 1143 differentially expressed genes for eribulin, paclitaxel and
vinorelbine at p < 0.05, and 61, 30 and 90 genes at p < 0.0025, respectively (Figure 3A–C and
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Supplemental Table S2). Further analysis showed that 342, 228 and 334 of the upregulated
genes and 279, 189 and 392 of the downregulated genes were uniquely associated with
responses to eribulin, paclitaxel and vinorelbine at p < 0.05, respectively (Figure 3D,E). With
greater stringency at p < 0.0025, 34, 21 and 48 nonoverlapping upregulated genes and 18,
8 and 32 nonoverlapping downregulated genes were uniquely associated with eribulin,
paclitaxel and vinorelbine responses, respectively (Figure 3F,G).
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Figure 3. Genes associated with responses to eribulin, paclitaxel and vinorelbine. Volcano plots
of ratios of gene expression levels between most and least sensitive cell line quartiles are plotted
versus p-values for eribulin (A), paclitaxel (B) and vinorelbine (C). For visual clarity, only genes with
p < 0.2 are plotted (3149, 2486 and 3435 genes for eribulin, paclitaxel and vinorelbine, respectively).
Horizontal dashed lines denote statistical significance and numbers of genes below p < 0.05 and
p < 0.0025. Venn diagrams of numbers of genes positively (D,F) and negatively (E,G) associated with
responses to eribulin, paclitaxel and vinorelbine at p < 0.05 (D,E) and p < 0.0025 (F,G) stringency
levels are shown.

3.3. Identification of Unique Fingerprint Genes (UFGs) for Eribulin and Vinorelbine

While initial filtering by expression ratios between most and least sensitive cell line
quartiles narrowed potentially relevant genes from many thousands to just a few dozen,
this came at the expense of (i) not utilizing gene expression information from the 50 cell lines
in the middle two quartiles, (ii) accepting a risk that small numbers of cell lines in the top
and bottom quartiles might have outlier expression patterns that could disproportionately
influence gene selection, and (iii) failing to provide a basis for identifying drug-specific
UFGs based on the informational power available from all 100 cell lines. To address these
limitations, a final curation of the 52, 29 and 80 p < 0.0025 genes for eribulin, paclitaxel and
vinorelbine, respectively (Figure 3F,G), was performed to include only drug-unique genes
that were at least 2-fold up- or downregulated between the most and least sensitive cell line
quartiles (equivalent to absolute value of log2[fold-change] ≥ 1). Following this restriction,
data from the middle two cell line quartiles were then reintroduced, and each gene in the
three subsets was subjected to full linear regression analysis including expression data and
IC50s from all 100 cell lines. Only genes with expression showing statistical significance for
a given cognate drug but lacking statistical significance for the other two noncognate drugs
were designated as UFGs for each drug. This selection process yielded 9 UFGs for eribulin
and 13 UFGs for vinorelbine (Table 2; Supplemental Figure S1). Unexpectedly, no gene, up-
or downregulated, met these final criteria for designation as a paclitaxel UFG.
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Table 2. Unique fingerprint genes (UFGs) associated with drug response 1,2,3.

Eribulin Vinorelbine

Up (7):
ARRB1, C5ORF38, DAAM1, GPR157, IRX2,

KRT16, OSBPL1A

Up (2):
PREX1, SH2B2

Down (2):
BICC1, CD70

Down (11):
EPHA2, GSTT2, GSTT2B, NGEF, PEAR1,
PRSS3, RAP1GAP2, SEPTIN10, STEAP2,

TRIP10, VSIG10
1 See Materials and Methods and Results text for criteria and methods used to define and identify UFGs. Individual
linear regression plots of gene expression versus IC50s across all 100 cell lines for each of the 22 genes in this table,
including R2 and p-values, are presented in Supplemental Figure S1. 2 No gene met all criteria for paclitaxel, so
only eribulin and vinorelbine UFGs are listed here. 3 Genes are listed in alphabetical order within each subgroup.
Up and down genes refer to higher and lower gene expression levels, respectively, associated with greater drug
response (lower IC50s).

3.4. Molecular Interactions Associated with Eribulin and Vinorelbine UFG Sets

We next asked what mechanisms and pathways were associated with eribulin and vi-
norelbine UFGs. To this end, network propagation [19] analyses were performed to identify
molecular networks associated with eribulin and vinorelbine UFGs followed by pathway
enrichment analyses to identify the pathways highlighted by the resulting networks. Using
the eribulin and vinorelbine UFG sets as query inputs, 100 gene networks (UFG interac-
tomes) were obtained for both drugs (Figure 4A,B and Supplemental Table S3)—network
propagation and Reactome analyses were not performed for paclitaxel since no gene met
all criteria for a paclitaxel UFG. These networks included seven of nine eribulin UFGs
and 13 of 13 vinorelbine UFGs; two UFGs for eribulin, C5ORF38 and GPR157, were not
themselves captured by network propagation. Interestingly, despite sharing mechanistic
similarity as MTAs, only four genes overlapped between the eribulin and vinorelbine
100-gene propagated networks (ESR2, HNRNPL, MTNR1B, TRIM25). We speculate that
this may relate to the fact that the original UFGs were selected, in part, based on lack of
correlations to noncognate drugs.

3.5. Reactome Pathways Associated with Eribulin and Vinorelbine Response

To further elucidate the pathways associated with the eribulin and vinorelbine UFG
interactomes, the eribulin and vinorelbine 100-gene propagated networks were used as
query inputs for Reactome pathway enrichment analyses. The resulting Reactome maps
indicate that most pathways for both drugs fall into three main Reactome groupings or
‘islands’: the Signal Transduction, Immune System and Cell Cycle islands (Figure 4C,D).
While top-level viewing reveals these commonalities, detailed blowups of the three islands
show clear differences in the specific pathways identified for the two drugs (Figure 4E–J).
For instance, in the Signal Transduction island, the eribulin UFG interactome is strongly
associated with Rho GTPase signaling pathways, while the vinorelbine interactome shows
stronger associations with FGFR, EGFR/ERBB and NGF pathways (Figure 4E,F). Similarly,
in the Immune System island, the eribulin UFG interactome shows strong association with
Toll-like receptor (TLR) signaling, which notably was not covered at all by vinorelbine,
while the vinorelbine UFG interactome shows stronger associations with both adaptive
and innate immune branches as well as cytokine signaling (Figure 4G,H). Finally, while
Cell Cycle island pathways were generally more similar for the eribulin and vinorelbine
UFG interactomes compared to Signal Transduction and Immune System islands, eribulin
alone was associated with chromosome maintenance pathways, while vinorelbine alone
was associated with cell cycle checkpoint pathways (Figure 4I,J). Thus, despite top-level
Reactome island commonalities between the two drugs, detailed inspection within the
islands themselves reveals significant differences in specific pathway associations.

Cataloging of the individual Reactome pathways identified confirms differences in
pathway involvement between the UFGs of the two drugs. Using combined criteria of
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p < 0.05 significance plus q < 0.1 to account for FDR, 26 and 122 Reactome pathways were
identified for eribulin and vinorelbine UFG interactomes, respectively (Table 3); consider-
able differences in pathways are evident among these. First, only two Reactome pathways
were shared: Immune System and Signaling by Interleukins. More notably, TLR-related
pathways accounted for 17/26 (65.4%) pathways for eribulin, yet none of the 122 pathways
for vinorelbine. Seven of the remaining nine pathways for eribulin involved Rho GTPase-
and cell cycle/mitosis-related pathways, which were all but absent for vinorelbine. In
contrast, 45 of 122 (36.9%) Reactome pathways for vinorelbine involved FGFR, PI3K/Akt
and EGFR/ERBB, yet such pathways were not highlighted by the eribulin UFG interactome.
Thus, cataloging Reactome pathways in Table 3 confirms the visual observations of Figure 4
that, despite top-level commonalities seen for the Signal Transduction, Immune System and
Cell Cycle islands, individual pathway details point to considerable differences in pathway
determinants of eribulin and vinorelbine response, as highlighted by the UFG interactomes.
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gene networks shown, which included 7 of the 9 eribulin UFGs and all 13 of the vinorelbine UFGs;
2 eribulin UFGs, C5ORF38 and GPR157, were not themselves captured in the network propagation.
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Immune System (G,H) and Cell Cycle (I,J) islands shown for eribulin (E,G,I) and vinorelbine (F,H,J).

Table 3. Reactome pathways associated with eribulin and vinorelbine response at p < 0.05 plus
q < 0.1 1.

Drug Reactome Pathway 2 p-Value q-Value Genes in
Pathway

Over-Lapping
Genes Shared 3

Eribulin RHO GTPase Effectors 0.000010 0.012839 251 10
Eribulin RHO GTPases Activate Formins 0.000016 0.012839 114 7
Eribulin Signaling by Rho GTPases 0.000045 0.019422 363 11
Eribulin Toll Like Receptor 9 (TLR9) Cascade 0.000047 0.019422 92 6
Eribulin MyD88 cascade initiated on plasma membrane 0.000343 0.057053 85 5
Eribulin Toll Like Receptor 10 (TLR10) Cascade 0.000343 0.057053 85 5
Eribulin Toll Like Receptor 5 (TLR5) Cascade 0.000343 0.057053 85 5

Eribulin TRAF6 mediated induction of NFkB and MAP
kinases upon TLR7/8 or 9 activation 0.000363 0.057053 86 5

Eribulin MyD88 dependent cascade initiated on
endosome 0.000403 0.057053 88 5

Eribulin Toll Like Receptor 7/8 (TLR7/8) Cascade 0.000403 0.057053 88 5
Eribulin Toll-Like Receptors Cascades 0.000514 0.057053 142 6

Eribulin MyD88: Mal cascade initiated on plasma
membrane 0.000574 0.057053 95 5

Eribulin Toll Like Receptor 2 (TLR2) Cascade 0.000574 0.057053 95 5
Eribulin Toll Like Receptor TLR1:TLR2 Cascade 0.000574 0.057053 95 5
Eribulin Toll Like Receptor TLR6:TLR2 Cascade 0.000574 0.057053 95 5
Eribulin Immune System 0.000655 0.057053 1232 19 X
Eribulin MAP kinase activation in TLR cascade 0.000674 0.057053 56 4
Eribulin MyD88-independent TLR3/TLR4 cascade 0.000694 0.057053 99 5
Eribulin Toll Like Receptor 3 (TLR3) Cascade 0.000694 0.057053 99 5
Eribulin TRIF-mediated TLR3/TLR4 signaling 0.000694 0.057053 99 5
Eribulin Cell Cycle 0.001075 0.083265 523 11
Eribulin Cell Cycle, Mitotic 0.001134 0.083265 445 10
Eribulin Signaling by Interleukins 0.001164 0.083265 111 5 X
Eribulin Activated TLR4 signalling 0.001312 0.086320 114 5
Eribulin G2/M Transition 0.001312 0.086320 114 5
Eribulin Mitotic G2-G2/M phases 0.001418 0.089698 116 5
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Table 3. Cont

Drug Reactome Pathway 2 p-Value q-Value Genes in
Pathway

Over-Lapping
Genes Shared 3

Vinorelbine Signalling by NGF 4.383506 × 10−12 7.210868 × 10−9 288 18
Vinorelbine Signaling by SCF-KIT 6.752605 × 10−11 5.554018 × 10−8 144 13
Vinorelbine Signaling by FGFR3 3.228850 × 10−10 8.992552 × 10−8 163 13
Vinorelbine Signaling by FGFR4 3.228850 × 10−10 8.992552 × 10−8 163 13
Vinorelbine Signaling by FGFR1 3.485981 × 10−10 8.992552 × 10−8 164 13
Vinorelbine DAP12 signaling 3.761623 × 10−10 8.992552 × 10−8 165 13
Vinorelbine Signaling by FGFR2 4.056969 × 10−10 8.992552 × 10−8 166 13
Vinorelbine Signaling by FGFR 4.373277 × 10−10 8.992552 × 10−8 167 13

Vinorelbine NGF signalling via TRKA from the plasma
membrane 5.528565 × 10−10 1.010499 × 10−7 207 14

Vinorelbine DAP12 interactions 1.111051 × 10−9 1.661526 × 10−7 180 13
Vinorelbine Signaling by EGFR 1.111051 × 10−9 1.661526 × 10−7 180 13
Vinorelbine Signaling by the B Cell Receptor (BCR) 1.309948 × 10−9 1.673749 × 10−7 221 14
Vinorelbine Downstream signaling of activated FGFR1 1.627962 × 10−9 1.673749 × 10−7 150 12
Vinorelbine Downstream signaling of activated FGFR2 1.627962 × 10−9 1.673749 × 10−7 150 12
Vinorelbine Downstream signaling of activated FGFR3 1.627962 × 10−9 1.673749 × 10−7 150 12
Vinorelbine Downstream signaling of activated FGFR4 1.627962 × 10−9 1.673749 × 10−7 150 12
Vinorelbine Interleukin-3, 5 and GM-CSF signaling 1.767887 × 10−9 1.710691 × 10−7 45 8
Vinorelbine Signaling by ERBB4 2.205662 × 10−9 2.015730 × 10−7 154 12
Vinorelbine Downstream signal transduction 3.945920 × 10−9 3.416336 × 10−7 162 12
Vinorelbine Signaling by ERBB2 4.540573 × 10−9 3.734621 × 10−7 164 12
Vinorelbine PI3K/AKT activation 6.543594 × 10−9 5.125815 × 10−7 103 10
Vinorelbine Diseases of signal transduction 1.515872 × 10−8 1.133459 × 10−6 267 14
Vinorelbine Signaling by PDGF 1.780926 × 10−8 1.273749 × 10−6 185 12

Vinorelbine Role of LAT2/NTAL/LAB on calcium
mobilization 2.254580 × 10−8 1.545327 × 10−6 151 11

Vinorelbine Downstream signaling events of B Cell
Receptor (BCR) 7.714714 × 10−8 4.001226 × 10−6 170 11

Vinorelbine PI-3K cascade:FGFR1 7.783541 × 10−8 4.001226 × 10−6 100 9
Vinorelbine PI-3K cascade:FGFR2 7.783541 × 10−8 4.001226 × 10−6 100 9
Vinorelbine PI-3K cascade:FGFR3 7.783541 × 10−8 4.001226 × 10−6 100 9
Vinorelbine PI-3K cascade:FGFR4 7.783541 × 10−8 4.001226 × 10−6 100 9
Vinorelbine PI3K events in ERBB2 signaling 7.783541 × 10−8 4.001226 × 10−6 100 9
Vinorelbine PI3K events in ERBB4 signaling 7.783541 × 10−8 4.001226 × 10−6 100 9
Vinorelbine PIP3 activates AKT signaling 7.783541 × 10−8 4.001226 × 10−6 100 9
Vinorelbine GAB1 signalosome 1.096689 × 10−7 5.466829 × 10−6 104 9
Vinorelbine Fc epsilon receptor (FCERI) signaling 1.417907 × 10−7 6.860169 × 10−6 223 12
Vinorelbine Immune System 1.922234 × 10−7 8.825209 × 10−6 1232 27 X
Vinorelbine Signaling by Interleukins 1.931353 × 10−7 8.825209 × 10−6 111 9 X
Vinorelbine PI3K/AKT Signaling in Cancer 3.077967 × 10−7 0.000014 85 8
Vinorelbine Innate Immune System 8.845427 × 10−7 0.000038 689 19
Vinorelbine Adaptive Immune System 2.458655 × 10−6 0.000104 665 18
Vinorelbine Cytokine Signaling in Immune system 4.429201 × 10−6 0.000182 308 12
Vinorelbine CD28 costimulation 4.691035 × 10−6 0.000187 32 5

Vinorelbine Regulation of mRNA stability by proteins that
bind AU-rich elements 4.785766 × 10−6 0.000187 86 7

Vinorelbine Regulation of KIT signaling 6.232763 × 10−6 0.000238 16 4
Vinorelbine Insulin receptor signalling cascade 8.078116 × 10−6 0.000302 93 7
Vinorelbine Regulation of signaling by CBL 0.000010 0.000379 18 4
Vinorelbine CD28 dependent PI3K/Akt signaling 0.000020 0.000711 21 4
Vinorelbine HuR stabilizes mRNA 0.000026 0.000922 8 3

Vinorelbine Constitutive Signaling by AKT1 E17K in
Cancer 0.000035 0.001189 24 4

Vinorelbine Signaling by Insulin receptor 0.000036 0.001223 117 7
Vinorelbine GPVI-mediated activation cascade 0.000040 0.001291 49 5
Vinorelbine Interleukin-2 signaling 0.000040 0.001291 49 5
Vinorelbine SHC-related events 0.000041 0.001299 25 4
Vinorelbine VEGFR2 mediated vascular permeability 0.000048 0.001497 26 4
Vinorelbine Signal Transduction 0.000055 0.001666 2260 33
Vinorelbine Integrin alphaIIb beta3 signaling 0.000056 0.001683 27 4
Vinorelbine Interleukin receptor SHC signaling 0.000065 0.001917 28 4
Vinorelbine IRS-related events 0.000070 0.002024 89 6
Vinorelbine Interleukin-6 signaling 0.000076 0.002165 11 3
Vinorelbine IGF1R signaling cascade 0.000090 0.002460 93 6

Vinorelbine Signaling by Type 1 Insulin-like Growth Factor
1 Receptor (IGF1R) 0.000090 0.002460 93 6

Vinorelbine Disease 0.000106 0.002860 714 16
Vinorelbine SHC1 events in ERBB2 signaling 0.000112 0.002969 32 4
Vinorelbine Signalling to RAS 0.000143 0.003724 34 4
Vinorelbine Signal attenuation 0.000166 0.004255 14 3
Vinorelbine Signalling to STAT3 0.000187 0.004720 3 2
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Table 3. Cont

Drug Reactome Pathway 2 p-Value q-Value Genes in
Pathway

Over-Lapping
Genes Shared 3

Vinorelbine TP53 Regulates Metabolic Genes 0.000195 0.004720 68 5
Vinorelbine Transcriptional Regulation by TP53 0.000195 0.004720 68 5
Vinorelbine VEGFA-VEGFR2 Pathway 0.000195 0.004720 107 6
Vinorelbine Platelet Aggregation (Plug Formation) 0.000200 0.004756 37 4
Vinorelbine Constitutive Signaling by EGFRvIII 0.000206 0.004768 15 3
Vinorelbine Signaling by EGFRvIII in Cancer 0.000206 0.004768 15 3
Vinorelbine Costimulation by the CD28 family 0.000272 0.006221 73 5
Vinorelbine Signaling by VEGF 0.000289 0.006514 115 6
Vinorelbine Platelet activation, signaling and aggregation 0.000340 0.007564 221 8
Vinorelbine SHC activation 0.000372 0.008165 4 2
Vinorelbine Signalling to ERKs 0.000393 0.008513 44 4

Vinorelbine Constitutive Signaling by Ligand-Responsive
EGFR Cancer Variants 0.000428 0.008920 19 3

Vinorelbine Signaling by EGFR in Cancer 0.000428 0.008920 19 3

Vinorelbine Signaling by Ligand-Responsive EGFR
Variants in Cancer 0.000428 0.008920 19 3

Vinorelbine G beta:gamma signalling through PI3Kgamma 0.000550 0.011319 48 4
Vinorelbine IRS-mediated signalling 0.000583 0.011844 86 5
Vinorelbine SHC1 events in EGFR signaling 0.000669 0.013264 22 3
Vinorelbine SHC-mediated signalling 0.000669 0.013264 22 3
Vinorelbine G-protein beta:gamma signalling 0.000694 0.013600 51 4
Vinorelbine IRS-related events triggered by IGF1R 0.000718 0.013900 90 5
Vinorelbine Growth hormone receptor signaling 0.000870 0.016635 24 3
Vinorelbine Activation of BH3-only proteins 0.000983 0.018369 25 3
Vinorelbine SHC-related events triggered by IGF1R 0.000983 0.018369 25 3

Vinorelbine Antigen activates B Cell Receptor (BCR)
leading to generation of second messengers 0.001059 0.019578 57 4

Vinorelbine Signaling by Leptin 0.001105 0.020001 26 3
Vinorelbine CLEC7A (Dectin-1) signaling 0.001106 0.020001 99 5

Vinorelbine Constitutive Signaling by Aberrant PI3K in
Cancer 0.001367 0.024339 61 4

Vinorelbine SHC1 events in ERBB4 signaling 0.001376 0.024339 28 3
Vinorelbine Apoptosis 0.001649 0.028564 160 6
Vinorelbine GRB2 events in ERBB2 signaling 0.001686 0.028564 30 3
Vinorelbine Hemostasis 0.001698 0.028564 497 11
Vinorelbine Negative regulation of the PI3K/AKT network 0.001702 0.028564 8 2
Vinorelbine Release of eIF4E 0.001702 0.028564 8 2
Vinorelbine Programmed Cell Death 0.001813 0.030122 163 6
Vinorelbine TGF-beta receptor signaling activates SMADs 0.002037 0.033502 32 3
Vinorelbine AKT phosphorylates targets in the nucleus 0.002177 0.035451 9 2
Vinorelbine Glutathione conjugation 0.002228 0.035926 33 3
Vinorelbine PI3K Cascade 0.002276 0.036351 70 4
Vinorelbine EPHA-mediated growth cone collapse 0.002429 0.038426 34 3
Vinorelbine Signaling by TGF-beta Receptor Complex 0.002524 0.039538 72 4
Vinorelbine C-type lectin receptors (CLRs) 0.002888 0.044825 123 5
Vinorelbine S6K1-mediated signalling 0.003291 0.050602 11 2
Vinorelbine Intrinsic Pathway for Apoptosis 0.003348 0.050997 38 3

Vinorelbine Chk1/Chk2(Cds1) mediated inactivation of
Cyclin B:Cdk1 complex 0.003929 0.059302 12 2

Vinorelbine p75 NTR receptor-mediated signalling 0.004223 0.063160 83 4

Vinorelbine deactivation of the beta-catenin transactivating
complex 0.004454 0.066013 42 3

Vinorelbine Downregulation of ERBB2:ERBB3 signaling 0.004620 0.066667 13 2
Vinorelbine mTORC1-mediated signalling 0.004620 0.066667 13 2
Vinorelbine Regulation of Rheb GTPase activity by AMPK 0.004620 0.066667 13 2
Vinorelbine TCF dependent signaling in response to WNT 0.004891 0.069957 199 6
Vinorelbine FCERI mediated MAPK activation 0.004996 0.070851 87 4
Vinorelbine Prolactin receptor signaling 0.006156 0.086551 15 2
Vinorelbine EPH-Ephrin signaling 0.006567 0.091554 94 4
Vinorelbine G2/M DNA damage checkpoint 0.006999 0.095156 16 2
Vinorelbine Rap1 signalling 0.006999 0.095156 16 2
Vinorelbine Spry regulation of FGF signaling 0.006999 0.095156 16 2
Vinorelbine Developmental Biology 0.007292 0.098323 517 10

1 Reactome pathways for eribulin and vinorelbine at p < 0.05 plus q < 0.1 were obtained using the 100 gene
networks (Supplemental Table S3) as query inputs. 2 Both spellings, ‘signaling’ and ‘signalling,’ are used in the
Reactome database. Spellings used here exactly reflect those downloaded from the database to facilitate searching
for specific Reactome pathways names. 3 Shared between eribulin and vinorelbine at p < 0.05 plus q < 0.1.

3.6. Multivariate Regression (MVR) Model Building to Predict Drug Sensitivities

Finally, multigene MVR models for eribulin and vinorelbine were assembled (not
done for paclitaxel since no gene qualified as a paclitaxel UFG) by first calculating each cell
line’s predicted IC50 based on individual expression of each of the 9 eribulin or 13 vinorel-
bine UFGs for that cell line, averaging the resulting 9 or 13 predicted IC50s for each cell
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line, then comparing the averaged predicted IC50s to actual measured IC50s for each cell
line for all three drugs. Although no gene met the criteria for assignment as a paclitaxel
UFG, predicted IC50s based on expression of eribulin or vinorelbine UFGs are concep-
tually drug agnostic, so paclitaxel was included as a drug specificity comparator. Not
surprisingly, the resulting MVR models built from all 9 or 13 eribulin or vinorelbine UFGs,
respectively, successfully predicted cognate drug IC50s with high statistical significance
(Supplemental Figure S2). Unexpectedly, however, these two MVR models also showed
statistical correlations with one or both noncognate drugs (albeit at lower statistical signifi-
cance), even though one criterion for each individual UFG was lack of statistical correlation
with the two noncognate drugs. Thus, IC50s predicted from the 9 UFG eribulin MVR
model correlated with measured IC50s not just for eribulin, but also for paclitaxel and
vinorelbine, with p-values of <0.001, 0.022 and 0.021, respectively, while those predicted
from the 13 UFG vinorelbine MVR model correlated with measured IC50s for not just
vinorelbine, but also for eribulin with p-values of <0.001 and 0.009, respectively; correlation
with paclitaxel was not significant (p = 0.097; Supplemental Figure S2). We speculate that
acquisition of statistical significance for noncognate drugs in MVR models built from all
9 eribulin or 13 vinorelbine UFGs probably reflects consolidation and statistical strength-
ening of nonstatistical numeric trends for noncognate drugs that can be seen for several
individual UFGs (Supplemental Figure S1).

The use of smaller UFG subsets was then employed to generate MVR models that
could predict IC50s for cognate but not noncognate drugs. Prioritizing UFGs by highest
correlation coefficients (individual R2 values) yielded a four-gene eribulin MVR model
(C5ORF38, DAAM1, IRX2, CD70) and a five-gene vinorelbine MVR model (EPHA2, NGEF,
SEPTIN10, TRIP10, VSIG10); predicted IC50s from both models correlated with measured
IC50s across all 100 cell lines with high statistical significance for cognate but not noncognate
drugs (Figure 5A,C). Equations for these MVR models are as follows, with gene expression
values in RPKM and predicted IC50 values in log10[M]:

Four-gene eribulin MVR model:

IC50predicted = (CD70/5.40) − (C5ORF38/3.21) − (DAAM1/2.06) − (IRX2/3.30) − 8.54

Five-gene vinorelbine MVR model:

IC50predicted = (EPHA2/11.55) + (NGEF/7.75) + (SEPTIN10/8.40) + (TRIP10/4.25) + (VSIG10/4.49) − 9.81

To determine if these MVR models could form the basis for predictive biomarker gene
panels, we returned to the starting concept of most versus least sensitive cell line quartiles
as surrogates for “likely responders” versus “likely nonresponders,” respectively. As shown
in Figure 5B,D, both MVR models calculated mean IC50s for the most and least sensitive
cell line quartiles with high accuracy relative to actual measured IC50s (Figure 5B,D).

In summary, an approach defining drug-specific top and bottom cell line quartiles
from 100 CCLE cell lines allowed distillation of 11,985 genes down to 52 and 80 drug-
nonoverlapping p < 0.0025 genes for eribulin and vinorelbine, respectively, which were
then further distilled to 9 and 13 UFGs by setting expression ratio and drug specificity
thresholds followed by reintroducing data from all 100 cell lines. MVR models comprised
of four- and five-gene UFG subsets accurately calculated mean eribulin and vinorelbine
IC50s of the original top and bottom cell line quartiles based solely on baseline gene
expression levels. We propose that the four- and five-gene MVR panels identified here
may form the basis for drug-specific predictive biomarkers for eribulin and vinorelbine
response, respectively.
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Figure 5. Predicted versus actual IC50s based on limited gene MVR models. (A,B) predicted
IC50s were derived from a 4-gene subset (C5ORF38, DAAM1, IRX2, CD70) of the 9 eribulin UFGs.
(C,D) predicted IC50s were derived from a 5-gene subset (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10)
of the 13 vinorelbine UFGs. (A,C) linear regressions of predicted versus actual IC50s for all 100 cell
lines. (B,D) predicted versus actual mean IC50s (±SEM) for the most sensitive and least sensitive
cell line quartiles as defined in Figure 1. For (A,C), linear regression lines (solid) are shown together
with their corresponding 95% confidence bands (dotted). For visual comparison, scales of x- and
y-axes were kept the same between both panels here and Panels (A,B) of Supplemental Figure S2. No
statistically significant differences were found between predicted and actual quartile mean IC50s in
(B) or (D).

4. Discussion

Despite decades of use in cancer therapy, reliable biomarkers to predict response to
clinically approved MTAs remain lacking. While all MTAs share the top-level mechanism of
inhibiting MT dynamics, differences in binding sites on α/β-tubulin monomers, locations
of those binding sites in the context of polymerized MTs, net effects as MT stabilizers
versus MT destabilizers and demonstrable differences in clinical profiles indicate that
despite our extensive knowledge of MTA biochemistry, utilizing such knowledge to create
predictive biomarkers remains elusive. To address this, we coupled measured response
data from 100 human cancer cell lines from the CCLE with gene expression data for
almost 12,000 genes from each cell line to identify molecular and pathway correlates of
eribulin response, contrasting results with two other clinically used MTAs, paclitaxel and
vinorelbine. Our results identified nine genes (termed UFGs) whose expression is uniquely
associated with response to eribulin versus the other two drugs, with four eribulin UFGs
being sufficient for a multigene panel that accurately predicts high versus low eribulin
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response. Separately, 13 UFGs were identified as uniquely associated with vinorelbine
response, with 5 of these being sufficient for a predictive vinorelbine multigene panel.
Notably, no genes uniquely associated with paclitaxel response were identified using the
same stringent criteria used to identify eribulin and vinorelbine UFGs.

In addition to its cytotoxic antimitotic activity [5–7], eribulin is unusual among MTAs
in that it also exerts a wide range of noncytotoxic effects on the tumor microenvironment,
including vascular remodeling or normalization resulting in increased tumor perfusion
and mitigation of hypoxia, phenotypic changes including reversal of EMT and induced
cellular differentiation, and effects on the tumor immune microenvironment [8–12,22,23].
We hypothesized that the existence of such nonmitotic effects might invoke additional
cellular pathways that could provide the basis for a gene expression-based biomarker
strategy specific for eribulin.

Responses of 100 CCLE human cancer cell lines to eribulin and comparator MTAs
paclitaxel and vinorelbine were first quantified by IC50 values and ordered by response.
While sensitivities across the 100 cell lines trended in the same direction for the three drugs,
the range of eribulin’s response from most to least sensitive was considerably greater than
the other two drugs, reflected by a much steeper IC50 slope for eribulin compared to the
shallower and parallel slopes for paclitaxel and vinorelbine. Importantly, while IC50s for
the least sensitive cell lines were in the same 10−7 to 10−6 M range for all three drugs,
eribulin’s steeper slope resulted primarily from increased responses in its most sensitive
cell lines, which collectively dropped into the sub-nM IC50 range. In addition, several
nonoverlapping cell lines existed for each drug in their respective top and bottom quartiles,
suggesting that aggregating response data across large numbers of cell lines might yield
information on drug-specific pathways and mechanisms, a concept first established by the
well-known NCI60 cell line screen (https://dtp.cancer.gov/discovery_development/nci-60/;
accessed on 26 July 2022). Coincidentally, the NCI60 screen was first used to predict a
tubulin-based mechanism for eribulin’s natural product parent, halichondrin B [24,25].
We speculated that the enhanced responsiveness of many cell lines to eribulin relative
to paclitaxel and vinorelbine resulted from specific upregulation of pathways’ governing
response, as opposed to general downregulation of resistance pathways that might explain
the response to paclitaxel and vinorelbine. Such observations supported the concept that
eribulin’s unique biology among MTAs might provide a basis for developing a predictive
eribulin biomarker strategy.

Using top and bottom quartiles as surrogates for responders and nonresponders,
respectively, IC50s were correlated with DepMap gene expression data for 11,985 genes.
Z-score heat mapping and filtering on p-value and gene expression ratios between top and
bottom quartiles provided the first indications that the three drugs could be distinguished
from each other for biomarker development. Notably, at p < 0.0025 stringency, 52 and
80 genes were unique to eribulin and vinorelbine, respectively, with no genes shared be-
tween eribulin and paclitaxel, and only nine genes shared between eribulin and vinorelbine.
At the same stringency, vinorelbine and paclitaxel shared only one gene. Thus, paclitaxel,
a microtubule stabilizer, showed the least similarity with eribulin and vinorelbine, both
microtubule destabilizers, yet even eribulin and vinorelbine could be distinguished from
each other based on many more genes uniquely associated with each drug compared to
shared genes between them.

Further restriction of the p < 0.0025 genes to include only those with at least 2-fold
expression difference between top and bottom quartiles, followed by reintroduction of
data from the 50 cell lines in the middle two quartiles, resulted in identification of 9 and
13 UFGs for eribulin and vinorelbine, respectively. Interestingly, no gene met these final
UFG criteria for paclitaxel. Notably, seven of the nine eribulin UFGs were upregulated
with increased response, while 11 of the 13 vinorelbine UFGs were downregulated with
increased response, supporting our hypothesis that increased eribulin response may be
driven by upregulation of pathways governing sensitivity, whereas increased vinorelbine
response may depend more on downregulation of general resistance pathways.

https://dtp.cancer.gov/discovery_development/nci-60/
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To elucidate biological pathways associated with eribulin and vinorelbine UFGs, net-
work propagation [19] was used to identify networks highlighted by the 9 and 13 UFG sets
into expanded 100-gene networks, which were then used as query inputs for Reactome
pathway enrichment analyses. Intriguingly, although eribulin and vinorelbine are both
microtubule-depolymerizing MTAs, only 4 of 100 genes in the propagated networks for
each drug overlapped, likely because assignment as a UFG excluded genes that corre-
lated with response to noncognate drugs. Reactome pathway analyses using the 100-gene
propagated networks as query inputs revealed similar top-level pathway commonalities
for both drugs within the major Signal Transduction, Immune System and Cell Cycle
Reactome islands. Nevertheless, specific pathways identified within these islands differed
considerably for the two drugs. Thus, eribulin showed strongest associations with TLR-
and Rho GTPase-associated signaling pathways, while vinorelbine pathways emphasized
FGFR, EGFR/ERBB and both adaptive and innate immune signaling. Cataloging of the
26 and 122 individual Reactome pathways identified for eribulin and vinorelbine UFG
interactomes, respectively, confirmed the lack of specific pathway overlaps. For instance,
TLR-related pathways accounted for ~65% (17/26) of Reactome pathways for eribulin, yet
none for vinorelbine. On the other hand, ~37% (45/122) of Reactome pathways for vi-
norelbine involved FGFR, PI3K/Akt and EGFR/ERBB, yet such pathways were completely
absent for eribulin. While further work will be required to determine how the identified
pathways govern responses to eribulin and vinorelbine, results at the levels of individual
UFGs, 100-gene propagated networks and individual Reactome pathways strongly suggest
that despite their shared classification as MT depolymerizing MTAs, responses to eribulin
and vinorelbine are governed by different genetic and pathway determinants and can be
readily distinguished from each other by gene expression patterns.

Finally, subsets of eribulin and vinorelbine UFGs prioritized by highest individual
correlation coefficients were used to build drug-specific MVR models that correlate with
responses across all 100 cell lines and accurately predict average response levels of the
most and least sensitive quartiles based solely on expression levels of only four or five
genes, respectively. While others have reported gene or pathway signatures for MTAs,
these have been mainly for paclitaxel [26–31] and have not, to our knowledge, explored
the rigorous drug specificity within MTAs required by our criteria. In this regard, it is
noteworthy that no gene met all UFG criteria for paclitaxel, especially considering the
importance of cellular signaling to both eribulin and vinorelbine responsiveness. While
speculative, paclitaxel may represent a ‘purer’ cytotoxic based on its internal MT lumen
binding site [32,33], which may prevent interactions with microtubule-associated proteins
(MAPs) involved in cellular signaling. In contrast, vinorelbine and eribulin bind at or near,
respectively, the so-called β-tubulin vinca binding site near MT ends [33–35], where such
binding may more readily interfere with MAP-mediated signaling events. In this context,
eribulin binds almost exclusively to exposed β-tubulin at growing MT plus (+) ends [34,35],
and such binding rapidly blocks association of plus-end binding proteins (+TIPS) such as
EB1 [36,37] that serve as scaffolds for multiprotein assemblies involved in both structural
and signaling activities [38–40]. For instance, eribulin binding to MT (+) ends disrupts
p130Cas/Src interactions, leading to cortical localization of E-cadherin [41], a hallmark of
eribulin’s ability to reverse EMT [8]. In addition, both eribulin and vinorelbine binding
rapidly inhibits TGFβ-induced Smad signaling by preventing MT-dependent Smad2/3
transport into the nucleus [42]. Thus, binding of both eribulin and vinorelbine to externally
accessible sites at or near MT ends compared to paclitaxel’s inner MT luminal binding
may help explain both the failure to identify drug-specific paclitaxel UFGs as well as the
observation that cellular signaling themes dominated for both eribulin and vinorelbine.

Considering the importance of signaling-related Reactome pathways in eribulin and
vinorelbine responses, it is reasonable to ask if the four eribulin and five vinorelbine UFGs
in the predictive MVR models directly control responses to the two drugs. Strictly speaking,
UFG expression levels were only correlated with response, so firm conclusions of direct
involvement cannot be drawn. However, with that caveat, information on known roles
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of the genes permits some speculation. For eribulin, IRX2 is a homeobox gene important
in normal embryonic development and has been implicated in cancer, while C5ORF38 is
coordinately regulated with IRX2, suggesting both are involved in cellular differentiation
and growth regulation [43]. Similarly, DAAM1 is involved in Wnt signaling and early
embryonic gastrulation, both processes associated with cellular differentiation [44]. Finally,
CD70 codes for a ligand for the immune costimulatory molecule CD27 and thus is involved
in the activation and proliferation of T cells, including regulatory T cells [45]. Thus, while
speculative, all four of the eribulin UFGs in the predictive MVR model appear related to
cell differentiation-, activation- or proliferation-related processes.

For vinorelbine, EPHA2 codes for EPH receptor A2, a tyrosine kinase involved in
cancer-related signaling, while NGEF codes for a guanine nucleotide exchange factor
associated with signaling from EPH receptor A2, RhoA, Rac1 and CDC42 as well as
cellular transformation and tumorigenesis [46,47]. SEPTIN10 is associated with B cell
leukemias [48], while TRIP10 is involved in tumorigenesis and cancer progression [49].
Finally, VSIG10 codes for an immunoglobulin-related protein associated with both cell
adhesion and macrophage involvement in colonic pathologies including colon cancer [50].
Thus, while solid mechanistic links between drug response and the UFGs in the eribulin
and vinorelbine MVR models cannot be established by purely correlational data, the known
roles of these genes are consistent with potential mechanisms that set response sensitivity
levels to these two drugs.

5. Conclusions

In summary, we have combined response data for eribulin, paclitaxel and vinorelbine
from 100 human cancer cell lines together with gene expression data to identify small num-
bers of genes (UFGs) that are uniquely associated with eribulin and vinorelbine responses.
Reactome pathway analyses based on UFG-seeded propagated gene networks revealed that
responses to both eribulin and vinorelbine are dominantly associated with cellular signaling
processes as opposed to canonical MT-based antimitotic processes, perhaps also explaining
our inability to identify paclitaxel UFGs using the same criteria. Despite top-level depen-
dence on cellular signaling for response to both eribulin and vinorelbine, detailed analyses
of the specific Reactome pathways identified reveal considerable discrimination between
the two drugs. Finally, we show that small subsets of eribulin and vinorelbine UFGs can be
successfully combined into MVR models that accurately predict a high versus low response
to the two drugs based on expression of only four or five genes. Our results indicate that
further investigation of the genes, pathways and MVR panels identified here is warranted,
with further validation in both preclinical tumor models and in the clinical setting being of
highest priority. Ultimately, our hope is that the current results together with such future
validation work will lead to the development of drug-specific, gene expression-based pre-
dictive biomarker panels for eribulin and vinorelbine that support improved therapeutic
decision-making in clinical settings.
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