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Identification of epileptic brain 
states by dynamic functional 
connectivity analysis of 
simultaneous EEG-fMRI: a 
dictionary learning approach
Rodolfo Abreu   1, Alberto Leal2 & Patrícia Figueiredo1

Most fMRI studies of the brain’s intrinsic functional connectivity (FC) have assumed that this is static; 
however, it is now clear that it changes over time. This is particularly relevant in epilepsy, which is 
characterized by a continuous interchange between epileptic and normal brain states associated with 
the occurrence of epileptic activity. Interestingly, recurrent states of dynamic FC (dFC) have been 
found in fMRI data using unsupervised learning techniques, assuming either their sparse or non-sparse 
combination. Here, we propose an l1-norm regularized dictionary learning (l1-DL) approach for dFC 
state estimation, which allows an intermediate and flexible degree of sparsity in time, and demonstrate 
its application in the identification of epilepsy-related dFC states using simultaneous EEG-fMRI data. 
With this l1-DL approach, we aim to accommodate a potentially varying degree of sparsity upon the 
interchange between epileptic and non-epileptic dFC states. The simultaneous recording of the EEG is 
used to extract time courses representative of epileptic activity, which are incorporated into the fMRI 
dFC state analysis to inform the selection of epilepsy-related dFC states. We found that the proposed 
l1-DL method performed best at identifying epilepsy-related dFC states, when compared with two 
alternative methods of extreme sparsity (k-means clustering, maximum; and principal component 
analysis, minimum), as well as an l0-norm regularization framework (l0-DL), with a fixed amount of 
temporal sparsity. We further showed that epilepsy-related dFC states provide novel insights into the 
dynamics of epileptic networks, which go beyond the information provided by more conventional EEG-
correlated fMRI analysis, and which were concordant with the clinical profile of each patient. In addition 
to its application in epilepsy, our study provides a new dFC state identification method of potential 
relevance for studying brain functional connectivity dynamics in general.

The simultaneous acquisition of the electroencephalogram (EEG) and blood-oxygen-level-dependent (BOLD) 
functional magnetic resonance imaging (fMRI) has been playing a major role in better understanding human 
brain function in general, but particularly in the field of epilepsy. In fact, while EEG can sample the relatively 
fast electrical oscillations abnormally generated by hypersynchronized populations of neurons, the remarkable 
spatial resolution of fMRI enables their accurate localization in the brain1–4. Typically, features representative of 
epileptic activity are extracted from the EEG data and brain regions exhibiting correlated BOLD signal changes 
are identified as the epileptic network5–8. This is especially important in the case of patients with drug-refractory 
focal epilepsy underdoing evaluation for surgical treatment9–13. With this approach, brain regions within the 
epileptic network are assumed to be functionally connected in a static fashion. More generally, several networks 
of functionally connected brain regions can be found in the normal brain during rest, the so-called resting-state 
networks (RSNs), which exhibit temporally correlated spontaneous fluctuations in the BOLD signal, referred to 
as functional connectivity (FC)14.
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Although most studies of brain FC have assumed temporal stationarity, there is increasing evidence that brain 
networks are in fact continuously reorganizing in response to both internal and external stimuli, resulting in tem-
poral fluctuations of FC within and between networks across multiple time-scales15,16. This is especially impor-
tant in epilepsy, which is characterized by the interchange between epileptic and normal brain states associated 
with the spontaneous occurrence of epileptic activity17. A growing field of research is now dedicated to the study 
of dynamic functional connectivity (dFC), as reviewed in15,18. By far the most common strategy to study dFC 
is based on first parcellating the brain into a number of brain regions and then employing a sliding window 
approach to compute the Pearson correlation between each pair of brain regions over a number of overlapping 
time windows19,20. Interestingly, reoccurring dFC spatial patterns, or states, have been found across time and 
subjects by employing unsupervised machine learning techniques, in particular k-means clustering and principal 
component analysis (PCA)20,21. While clustering assumes that, at each time instant, dFC is described by a single 
dFC state, PCA describes dFC as a linear combination of all dFC states with different weights over time. One 
study compared these two methods and their underlying assumptions regarding the temporal sparsity of dFC 
on both task and resting-state fMRI data, by proposing the use of an l0-norm regularized dictionary learning 
approach22. Briefly, dictionary learning is a matrix factorization method that describes each dFC matrix as a 
linear combination of a subset of dFC states, thus imposing a certain degree of temporal sparsity. When using an 
l0-norm regularization framework, the number of states comprising the subset is determined by a hyperparameter 
and fixed over time. In contrast, with l1-norm regularization, the number of elements in the subset is allowed to 
vary over time. Although dictionary learning allows for variable constraints in the temporal domain, intermediate 
degrees of sparsity have not yet been tested.

Despite the increasing literature on methods for estimating brain states from BOLD dFC data, the neuro-
physiological underpinnings of dFC fluctuations, and consequently brain states, are still not fully understood. 
Given that the dFC fluctuations under study occur spontaneously, the identification of their electrophysiological 
correlates requires the simultaneous acquisition of EEG data, and a number of studies have previously followed 
this approach23. One first study investigated if fluctuations in EEG power within the alpha and theta bands, which 
are known to reflect states of arousal, were related with changes in connectivity between the task-negative default 
mode network (DMN) and the task-positive dorsal attention network (DAN). The authors found a positive/
negative correlation between the alpha/theta EEG power and the DMN-DAN connectivity over time, respec-
tively. Their finding is in agreement with other studies reporting that decreased connectivity between DMN and 
task-positive networks reflects high arousal periods19. In the context of epilepsy, standard EEG-correlated fMRI 
analyses have provided crucial insights into the brain areas involved in the generation of epileptic activity2–6,8,24. 
Motivated by this observation and the categorization of epilepsy as a network disease25, a few studies have inte-
grated simultaneously recorded EEG information onto the dFC analyses in order to identify network connectivity 
changes associated with epileptic activity17,26–28. Apart from two studies17,28, the information retrieved from the 
EEG data has typically only been used to guide the dFC analysis rather than being fully integrated in the dFC 
estimation26,27.

In this work, we propose a novel methodology for the identification of epilepsy-related dFC states from simul-
taneous EEG-fMRI data, consisting of: (1) estimation of dFC states using an l1-norm regularized dictionary learn-
ing (l1-DL) approach, allowing for an intermediate, and variable, degree of sparsity in time; and (2) identification 
of epilepsy-related dFC states by incorporating information from concurrent EEG recordings. A group of eight 
focal epilepsy patients was selected for the purpose of testing the proposed methodology, and comparing it with 
two factorization methods of extreme sparsity: k-means clustering (k-CL; maximum) and PCA (minimum). 
Extending the work by22, and applying it in the context of epilepsy, intermediate, but fixed, degrees of sparsity 
were also tested by means of an l0-norm regularized dictionary learning (l0-DL) approach.

Methods
Data acquisition procedures will be presented first, followed by the methods employed to estimate dFC and to 
integrate EEG-based metrics representative of epilepsy-related BOLD signal changes in the subsequent identi-
fication of dFC states. The main steps of the proposed methodology are depicted in Fig. 1. All the procedures 
described next were coded in MATLAB®, and are available together with all data upon request.

Patient selection.  The current population cohort comprises fourteen drug-refractory focal epilepsy patients. 
These were recruited by the clinical team from the Program of Surgery for Epilepsy of the Hospital Center of West 
Lisbon, and underwent an EEG-fMRI study at the Imaging Center of Hospital da Luz in Lisbon, Portugal. All 
adult patients gave written informed consent; a parent and/or legal guardian provided the informed consent in 
the cases of patients under 18 years old. This study was designed in accordance with the Declaration of Helsinki. 
The methods carried out in this study, namely those regarding patient recruitment, experimental protocols 
and data acquisition, were evaluated and approved by the Ethics Committee of Hospital Center of West Lisbon 
(Lisbon, Portugal). Because of the known effects of anesthesia regarding the suppression of BOLD fluctuations of 
neuronal original29, seven patients who were submitted to sedation during their MRI examination following local 
guidelines for small children and uncooperative patients were excluded, and thus only eight patients were eligible 
for the current study. According to the visual inspection by the neurophysiologist in the team, epileptic activity 
was recorded on the EEG of five patients (P1, P2, P3, P4 and P5) during the EEG-fMRI study: an epileptic seizure 
was recorded on patient P3, and inter-ictal epileptiform discharges (IEDs) were recorded on patients P1, P2, P4 
and P5. No epileptic events were detected on the EEG of the remaining three patients (P6, P7 and P8). Details of 
all patients are provided in Table 1.

EEG-fMRI data acquisition.  “Imaging was performed on a 3 Tesla Siemens Verio scanner (Siemens, 
Erlangen) using a 12-channel RF receive coil. Functional images were acquired using a 2D multi-slice 
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gradient-echo echo-planar imaging (EPI) sequence, with TR/TE = 2500/30 ms, from 37 or 40 contiguous 
axial slices with interleaved acquisition, and 3.5 × 3.5 × 3.0 mm3 voxel size, yielding whole-brain coverage. 
Whole-brain, 1 mm isotropic structural images were acquired using a T1-weighted 3D gradient-echo MPRAGE 
sequence. EEG data were recorded using an MR-compatible 32-channel BrainAmp MR plus amplifier (Brain 
Products, Germany). A standard BrainCap MR model (EasyCap, Herrsching, Germany) was used, containing 
31 Ag/AgCl ring-type electrodes arranged according to the 10–20 system, a dedicated electrode for referencing, 
and one electrode placed on the back for electrocardiogram (ECG) recording. Sampling was performed at 5000 
Hz, synchronized with the scanner’s 10 MHz clock. For each patient, two or three simultaneous EEG-fMRI runs 
of 5, 10 or 20 min were then performed inside the MR scanner, yielding a total recording time of 30 min. Overall, 

Figure 1.  Schematic diagram of the processing pipeline (example from patient P3). After the estimation of dFC 
using a sliding-window Pearson correlation approach: (A) dFC states are identified using DL (A1), k-means 
clustering (A2) and PCA (A3), ranging the number of states k to be estimated, and the regularization parameters 
λ in DL. The dFC states estimated using each method for k = 4 are shown. (B) The respective non-sparse weight 
time-courses (dashed gray or black traces) are correlated with the EEG-PSI metric (red trace, representative of 
the epileptic activity), and the state yielding the highest correlation ρ is identified. The optimal k, and λ for DL, 
are determined for each patient and method as those that maximize ρ.
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10/7 simultaneous EEG-fMRI datasets were acquired from the 5/3 selected patients with/without clear epileptic 
activity recorded on the EEG, respectively”8.

EEG data analysis.  Pre-processing steps.  EEG datasets from all patients underwent gradient artifact cor-
rection on a volume-wise basis using a standard artifact template subtraction (AAS) approach30. For the removal 
of the pulse artifact, the method presented in31 was employed, whereby the EEG data is first decomposed using 
independent component analysis (ICA), followed by AAS to remove the artifact occurrences from the independ-
ent components (ICs) associated with the artifact. The corrected EEG data is then obtained by reconstructing the 
signal using the artifact-corrected ICs together with the original non-artifact-related ICs. Finally, the EEG data 
was down-sampled to 250 Hz and band-pass filtered to 1–45 Hz. For the purpose of removing the pulse artifact 
from the EEG, and the physiological noise from the fMRI (see below), the Pan-Tompkins algorithm32 was opti-
mized and used for the detection of R peaks on the ECG data33.

EEG predictor of epilepsy-related BOLD-fMRI fluctuations.  In order to identify epilepsy-related BOLD dFC 
changes, fluctuations representative of epileptic activity were extracted from the EEG for all patients resorting to 
synchronization measures, particularly the phase synchronization index (PSI). This feature was chosen because 
we have recently shown that it yields a more sensitive and specific predictor of the associated BOLD signal when 
compared to other commonly used univariate EEG metrics, irrespective of the presence of epileptic activity on 
the EEG8. PSI is a measure of the phase difference between the EEG signals recorded in two different channels. 
Because the common reference and volume conduction of the source activity in scalp recordings are known to 
overestimate synchronization measures, these were tackled by applying the Surface Laplacian transformation 
to the EEG data as implemented in the MATLAB® toolbox SSLTool (http://ssltool.sourceforge.net/). From the 
resulting current density data, the spectral profile of each channel was obtained by time-frequency decomposition 
using Morlet wavelets34,35. PSI was then computed, for each pair of channels l and m, and for each time segment j 
and frequency bin f, according to the equation36:

= +PSI j f X j f Y j f( , ) ( , ) ( , ) (1)lm lm lm
2 2

with

Patient Age [years] Dataset Duration [min] # IEDs Mean head displacement [mm] Clinical Condition

P1 8

1* 10 387 N.A. CSWS1, with right neonatal thalamic hemorrhage 
and IEDs over the posterior right quadrant 
epileptogenic focus and frontal propagation.

2 20 754 0.26

3 10 292 0.12

P2 9

1* 10 164 N.A. CSWS1, with IEDs over the left temporal lobe, 
and verbal agnosia (Wernicke type) and impaired 
ability to sustain attention.

2 10 596 0.04

3 20 738 0.06

P3 11
1* 10 — N.A. Childhood absence epilepsy (CAE), with IEDs 

restricted to the left hemisphere.2 10 1 (seizure) 0.14

P4 27

1* 10 70 N.A. Refractory focal epilepsy, with IEDs over the 
posterior occipital-temporal lobe, and frontal 
propagation.

2 10 15 0.19

3 20 7 0.21

P5 33

1* 10 837 N.A.
Continuous partial epilepsy, with large left-
temporal cortical dysplasia, accompanied by 
continuous myoclonias of the right hand.

2 10 288 0.16

3 10 287 0.12

4 10 342 0.15

P6† 15

1* 10 0 N.A.

Benign occipital epilepsy, with IEDs prominently 
over the left hemisphere.

2 5 0 0.18

3 20 0 0.11

4 10 0 0.13

P7† 15

1* 10 0 N.A.
IEDs over the frontal lobe bilaterally, with a 
hypothesized hypothalamic hamartoma.2 10 0 0.23

3 10 0 0.19

P8† 16

1* 10 0 N.A. IEDs over the frontal lobe and a poorly 
characterized hyper-intense region on structural 
MR images, compatible with an hypothalamic 
hamartoma.

2 10 0 0.12

3 10 0 0.10

Table 1.  Characterization of the EEG-fMRI datasets for all patients. The duration of the datasets, the number 
of IEDs/seizures identified in each case, and the mean head displacement are reported, the latter estimated by 
the FSL’s motion correction tool (MCFLIRT39). A brief description of each patient’s clinical picture at the time 
of the simultaneous EEG-fMRI studies is also provided. The EEG datasets acquired outside the MR scanner are 
indicated by the*. The patients with no clear epileptic activity recorded on the EEG are indicated by†.

http://ssltool.sourceforge.net/
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∑ ∑ϕ ϕ= ∆ = ∆
= − + = − +

X j f
N

t f Y
N

t f( , ) 1 cos( ( , )) and 1 sin( ( , ))
(2)

lm
t j N

jN

lm lm
t j N

jN

lm
( 1) 1 ( 1) 1

where ϕ∆ t f( , )lm  is the instantaneous phase difference between the EEG signals from channels l and m at time 
point t and frequency bin f; and N is the number of time points within segment j. In order to obtain one PSI value 
per channel pair, frequency bin and fMRI volume, we defined each segment with a duration of 2.5 s, matching the 
repetition time of the fMRI acquisition. For each patient, a single channel pair was selected as the one yielding the 
PSI with the highest temporal variance. The PSI of this selected channel pair was then averaged across the fre-
quency band 3–10 Hz, in order to more specifically encompass the spectral profiles of the epileptic activity 
recorded on patients P1-P5. A single PSI time course was thus obtained for each patient, yielding the EEG-PSI 
metric. Further details regarding the extraction of EEG-PSI can be found in8.

MRI data analysis.  Data pre-processing.  “The following pre-processing steps were applied to the fMRI 
data recorded from all patients prior to subsequent analyses. The first three volumes were discarded to allow the 
signal to reach the steady-state, and non-brain tissue was removed using FSL’s tool BET37. Cardiac and respiratory 
traces synchronized with the fMRI acquisition were obtained from the ECG recording following the methodology 
in33. Quasi-periodic BOLD fluctuations related to cardiac and respiratory cycles were modeled by a fourth order 
Fourier series using RETROICOR38 and removed by linear regression. Subsequently, slice timing and motion cor-
rection were performed using FSL’s tool MCFLIRT39. Next, aperiodic BOLD fluctuations associated with changes 
in the heart rate as well as in the depth and rate of respiration were modeled by convolution with the respective 
impulsive response functions (as described in40) and removed by linear regression. Additionally, the average 
BOLD fluctuations in white matter (WM) and cerebrospinal fluid (CSF), as well as the six motion parameters 
(MPs) estimated by MCFLIRT, were also regressed out of the data as confounds. Finally, high-pass temporal filter-
ing with a cut-off period of 100 s and spatial smoothing using a Gaussian kernel with full width at half-maximum 
(FWHM) of 5 mm were performed.

For each patient, WM and CSF masks were obtained from the respective T1-weighted structural image by 
segmentation into gray matter, WM and CSF using FSL’s tool FAST41. The functional images were co-registered 
with the respective T1-weighted structural images and the Montreal Neurological Institute (MNI)42 template, 
using FSL’s tool FLIRT39,43. Both WM and CSF masks were transformed into functional space and then eroded 
using a 3 mm spherical kernel in order to minimize partial volume effects44. Additionally, the eroded CSF mask 
was intersected with a mask of the large ventricles from the MNI space, following the rationale described in8,45.

Each patient’s structural image was parceled into R = 90 non-overlapping regions of interest (ROIs) according 
to the automated anatomical labeling (AAL) atlas46. These ROIs were co-registered to the patient’s functional 
space, and the pre-processed BOLD data were then averaged within each ROI. The resulting signals were low-pass 
filtered with a cutoff frequency of 0.1 Hz, because synchronized BOLD fluctuations of neuronal origin are mainly 
reflected within this frequency range14,47.

dFC state identification.  For all patients, dFC was first estimated by means of a sliding window approach using 
a window length of 37.5 s (15 TRs) and a step size of 5 s (2 TRs). The pairwise Pearson correlation coefficient was 
computed for all pairs of parcel-averaged BOLD signals, and for each sliding window. The final dFC matrix was 
obtained by extracting the upper triangular part of each correlation matrix and vectorising it for all windows, 
yielding a matrix = … ∈ ×C c c[ , , ]T

M T
1 , where = −M R R( )/22  and T denotes the number of windows. The 

identification of dFC states was then performed using the following four methods.
The proposed l1-norm regularized DL method can be formulated as the following matrix factorization 

problem:

=C DA (3)

where = … ∈ ×D d d[ , , ]k
M k

1  and = … ∈ ×A a a[ , , ]T
k T

1  represent the dFC states and associated weight 
time-courses, respectively; and k is the number of dFC states. The identification of the dFC states D can then be 
formulated as an optimization problem given by:

−C DAargmin (4)F
D,A

2

where D and A are estimated so that the reconstruction error of C, = −E C DA F
2 , is minimized; ⋅ F denotes 

the Frobenius norm of a matrix.
The estimation of D and A was performed using the algorithms implemented in the MATLAB® toolbox 

SPArse Modeling Software (SPAMS48). Since the problem formulated in Eq. (4) is not jointly convex in D and A, 
an iterative estimation procedure is used, whereby these matrices are estimated separately, by keeping one of them 
fixed. Specifically, the optimization problems of estimating D and A, respectively, were formulated as:

∑ λ− +
=T

c Da aargmin 1 1
2 (5)i

T

i i i
D 1

2
2

1

    λ− . . <C DA Aargmin s t (6)A
2
2

1
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where λ is the non-negative parameter that controls the degree of sparsity of the solutions on an l1-norm regular-
ization framework; ci and ai denote the ith column and row of C and A, respectively. In this work, we ranged the 
number of dictionaries, k, from 2 to 20 in unitary steps; the regularization parameter, λ, was also ranged within 
five values determined empirically and specifically for each patient, in order to guarantee solutions of intermedi-
ate sparsity in all cases. In its original formulation, the first iteration on Eq. (4) requires that the dictionaries D are 
randomly initialized48. Here, we tested such implementation, but also investigated the impact of initializing the 
optimization procedure with dictionaries estimated through k-CL and PCA, as described next.

For comparison purposes, k-CL, PCA and l0-DL were tested; these are also techniques of matrix factorization, 
derived by adding specific constraints and/or regularizations to Eq. (4). For k-CL, the MATLAB® implemen-
tation of the k-means algorithm was used, varying the number of clusters k from 2 to 20 with unitary step, the 
same used in DL. For each k value, the procedure was repeated 100 times with random initializations in order to 
avoid the convergence to local minima. The l1-norm was used to compute the distance matrix used for k-CL, as 
recommended in20. In this case, each cluster represents a dFC state, and is characterized by a connectivity matrix 
D (its centroid), as well as a series of all-or-none occurrences A. For PCA, the MATLAB® implementation was 
used to estimate k = 20 PCs, to match the highest number of clusters and dictionaries tested for k-CL and the DL 
approaches, respectively. Each PC represents a dFC state, and is characterized by a connectivity matrix D (the 
eigenvector), as well as a non-sparse weight time-course A (computed by projecting the dFC matrix onto the 
respective principal component).

Finally, the estimation of D and A by l0-DL was also performed using the SPAMS toolbox48. The respective 
optimization problem can be simply formulated by replacing the l1-norm in Eqs (5) and (6) by the l0-norm. The 
number of dictionaries was ranged from 3 to 20 in unitary steps. In this case, the regularization parameter deter-
mines the number of nonzero entries in each column of A (ai), and it was ranged from 2 to k−1, with an upper 
limit of 6 (approximately matching the highest number of nonzero entries observed when using the range of λ 
values for l1-DL). In this way, the extreme cases of sparsity are excluded (since λ = 1 and λ = k reflect approxi-
mately the already considered cases of k-CL and PCA, respectively). As for l1-DL, the impact of initializing the 
optimization procedure with dictionaries estimated through k-CL and PCA was also investigated when using 
l0-DL.

Optimization and comparison of dFC state identification methods.  All dFC state identification methods described 
above were optimized and compared based on their ability to retrieve epilepsy-related dFC states among the 
identified dFC states. Because our previous study showed that EEG-PSI is an accurate proxy of epilepsy-related 
EEG fluctuations, such ability was quantified by comparing the contribution of each dFC state over time with the 
EEG-PSI metric. In contrast with PCA, the contributions estimated by k-CL and the DL approaches are sparse in 
time. For consistency purposes, non-sparse weight time-courses were computed for all methods by correlating 
each dFC state’s matrix D with the dFC matrix C of each time window. The correlation coefficient, ρ, was com-
puted between the non-sparse weight time-course of each dFC state and the EEG-PSI metric, for each patient and 
method, and for each value of k, and also each value of λ in the case of the DL approaches. For each patient and 
method, the values of k (and λ in the DL approaches) yielding the maximum ρ (ρmax) were identified; for PCA, the 
absolute values were considered since the sign of the states is arbitrary in this case. Because we found that, in some 
cases, increasing k beyond a certain value only led to marginal increases in ρ (see Results section), the optimal 
number of states was determined as the minimum k necessary to achieve 90% of ρmax; the corresponding ρ value 
(ρ⁎

max) was considered instead of ρmax, thus favoring a more parsimonious estimation of dFC states.
For the comparison between methods, the average ρ⁎

max across the datasets of all patients (ρ ⁎
max) was computed. 

In order to further corroborate this comparison criterion, the spatial correlation was computed between the con-
nectivity matrix of the dFC state with ρ⁎

max (dFCmax) and the average C across the time windows in which the 
EEG-PSI metric reached a certain percentage of its maximum value (ρdFC), for each patient and method. The 
rationale is that such windows correspond to periods of particularly intense epileptic activity as measured by 
EEG-PSI, and thus are hypothesized to be representative of the epileptic activity of each patient. This percentage 
was set between 90 and 95% and was determined for each patient such that the number of windows was approx-
imately the same for all patients. For control purposes, the spatial correlation was also computed between dFCmax 
and the average C across windows in which the EEG-PSI metric was below 110% of its minimum value (ρCTRL). 
Differences between the performance of the various dFC state estimation methods tested here was evaluated by 
means of a 1-way repeated measures analysis of variance (ANOVA), for each performance measure separately (i.e, 
ρ ⁎

max, ρdFC and ρCTRL). A level of significance p < 0.05 was considered.
In order to assess the impact of the window length on the dFC analyses and the performance of the different 

methods tested, we repeated the procedures described above with four different values of the window length, 
which have previously been indicated as adequate for dFC estimation18: 30.0 s (12 TRs), 45.0 s (18 TRs), 52.5 s (21 
TRs) and 60.0 s (24 TRs). First, we computed the spatial correlation between dFCmax obtained with the original 
window length of 37.5 s (15 TRs) and those obtained with the four additional window lengths, in order to assess 
how stable the dFC states highly correlated with EEG-PSI were across different window lengths. Secondly, we 
compared the performance measures (average ρ⁎

max, ρdFC and ρCTRL) for all methods and window lengths tested, 
in order to evaluate the impact of the window length on the performance of each method.

The proposed l1-DL method with initialization based on dFC states estimated through PCA (l1-DLPCA) yielded 
the highest ⁎ρmax (as presented in the Results and Table 2) and was thus the chosen factorization method, and the 
one kept for subsequent analyses.
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Selection and characterization of epileptic dFC states.  First, the statistical significance of the dFC states estimated 
through l1-DLPCA was evaluated without imposing any statistical model, by means of a null distribution generated 
from the data itself for each patient, following the work described in21. For that purpose, the C matrix of each 
patient was first FFT transformed and, for each connectivity pair, a random, uniformly distributed, phase was 
added; the inverse FFT was then applied to transform the data back to the time domain. Next, the patient-specific 
optimal parameters found for l1-DLPCA were used to estimate D from the phase-randomized C matrix. This pro-
cedure was repeated 100 times in order to obtain the null distribution. Since a null distribution must be generated 
for each dFC state, and because the order of the estimated states by l1-DLPCA is random, it is not possible to obtain 
a direct association between the estimated D from real data and that estimated from phase-randomized data. This 
was overcome by first computing the reconstruction error E of C when using each dictionary di and respective 
time-course ai individually, estimated from real and phase-randomized data, according to:

= −E i C d a( ) (7)i i F
2

The association was then obtained after sorting the E values computed for each simulation run and for the 
real data. The sorted E values from all simulation runs comprise the null distributions against which the sorted 
E values from the real data will be tested. The fifth percentile of the null distribution for each dFC state was 
then determined, and the states estimated from real data with a reconstruction error below that value were 
deemed meaningful. Among the statistically meaningful dFC states, those that exhibited a significant (p < 0.05, 
Bonferroni corrected for multiple comparisons) correlation between EEG-PSI and the respective non-sparse 
weight time-courses were deemed epilepsy-related.

These epileptic dFC states were then further characterized in terms of changes in the strength of dFC states 
between brain regions encompassing the epileptic network determined by standard EEG-correlated fMRI 
analysis. For the purpose of mapping this network, the EEG-PSI metric was first convolved with a canonical, 
double-gamma hemodynamic response function (HRF)49. The resulting regressor and its time derivative were 
used as explanatory variables in a general linear model (GLM) that was subsequently fitted to the BOLD-fMRI 
data50. The epileptic network was then defined as voxels at which the BOLD signal was significantly (cluster 
thresholding: voxel Z > 2.3, cluster p < 0.05) related with the EEG-PSI metric. The resulting epileptic network 
was then mapped onto the AAL parcellation space, whereby AAL parcels that contained more than 5% of vox-
els belonging to the epileptic network were selected and used to mask the epileptic dFC states. The AAL brain 
parcels were grouped into the six main brain regions in this atlas: frontal, limbic, occipital, parietal, subcortical 
and temporal regions (separately for the left and right hemispheres); the thalamus was further isolated from the 
remaining subcortical structures given its leading role in the epilepsy of the patients studied here (as described in 
the Results). The dFC strength between AAL groups belonging to the epileptic network and all AAL groups was 
then averaged, in order to quantify whole-brain connectivity changes with the epileptic network.

Results
The performance of the different methods used for identifying epileptic dFC states is first presented. The char-
acterization and plausibility of the dFC states identified with l1-DLPCA (the best method) are discussed next, for 
each patient.

Optimization and comparison of dFC state identification methods.  We started by comparing the 
ability of the different dFC factorization methods tested, with different degrees of sparsity, in identifying 
epilepsy-related dFC states. Results regarding comparisons between the methods’ performance are shown sepa-
rately for the two subgroup of patients: with (P1-P5) and without (P6-P8) clear epileptic activity during the 
EEG-fMRI study. This separation in the two subgroups was motivated by the fact that the former should allow a 

Method

Performance measure

Patients P1-P5 Patients P6-P8

ρ ⁎
max ρdFC ρCTRL ρ ⁎

max ρdFC ρCTRL

k-CL 0.49 0.61 −0.21 0.37 0.52 −0.25

PCA 0.25 0.44 −0.13 0.19 0.31 −0.15

l0-DL 0.49 0.50 −0.29 0.30 0.28 −0.38

l0-DLCL 0.52 0.53 −0.34 0.38 0.26 −0.47

l0-DLPCA 0.34 0.39 −0.23 0.34 0.18 −0.26

l1-DL 0.51 0.62 −0.27 0.35 0.54 −0.31

l1-DLCL 0.51 0.60 −0.30 0.38 0.23 −0.34

l1-DLPCA 0.53 0.67 −0.25 0.38 0.54 −0.31

Table 2.  Average performance of each dFC state identification method: correlation coefficients of interest (ρ ⁎
max, 

ρdFC, ρCTRL), averaged separately across patients with (P1-P5) and without (P6-P8) clear epileptic activity. The 
highest values for each correlation coefficient are highlighted in bold. l1-DLPCA consistently yielded the highest 
ρ ⁎

max and ρdFC for patients P1-P5, thus being deemed the best method; the same was subsequently observed for 
patients P6-P8. Overall, PCA was clearly outperformed by k-CL and the DL approaches, the latter slightly 
surpassing k-CL.
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more reliable verification of epileptic dFC states, and hence a clearer comparison between methods; indeed, dif-
ferences between methods are more evident for patients P1-P5, when compared to patients P6-P8. The results on 
the latter subgroup serve to demonstrate the applicability of the methods even in the absence of clear epileptic 
activity. In Table 2, the average ρ⁎

max, ρdFC and ρCTRL values across the two subgroups of patients (ρ ⁎
max, ρdFC and 

ρCTRL, respectively) are presented, for k-CL, PCA and the l0-DL and l1-DL methods, the latter with random, k-CL 
based and PCA-based initializations. Consistently across subgroups of patients, PCA yielded the lowest ρ ⁎

max, 
suggesting that the orthogonality assumption may not hold for this data. While clustering exhibited slightly lower 
ρ ⁎
max when compared with the DL approaches, the three DL variants of both l0-DL and l1-DL yielded similar ρ ⁎

max 
values. Regarding the ρdFC results, l1-DL methods yielded the highest values compared with all other methods, 
including the l0-DL variants. Despite these trends for both ρ ⁎

max and ρdFC, a significant effect of the method was 
found with repeated measures ANOVA for the ρ ⁎

max measure only. Overall, the l1-DLPCA was the method yielding 
the highest ρ ⁎

max and ρdFC values across all patients, and it was thus deemed the best method at identifying 
epilepsy-related dFC states; the subsequent results will be shown only for this method.

Figure 2.  Results of the dFC analyses for patient P1 when using the l1-DLPCA method. (A) Bar plot depicting 
the contribution (dictionary weight) of the various dFC states (color-coded as in B) over time windows, 
superimposed with the EEG-PSI metric time course (black trace); the black dashed line represents 90–95% 
of the EEG-PSI maximum value. All values are normalized between 0 and 1, for visualization purposes. (B) 
Estimated dFC states, ordered by statistical significance and correlation between the respective non-sparse 
weight time-courses and EEG-PSI (titles are color-coded as in (A)). Statistically significant dFC states are 
highlighted by a solid black square; epilepsy-related dFC states are highlighted by a dashed black square (and 
indicated with * in the title). All matrices are normalized between −1 and 1. (C) Epileptic network obtained by 
standard EEG-correlated fMRI analysis: Z score map of BOLD changes significantly associated with the EEG-
PSI, superimposed on the patient’s structural image, shown for four illustrative axial slices. (D) Epilepsy-related 
dFC states with connectivity strengths averaged across the 14 groups of AAL regions (left and right frontal, 
limbic, occipital, parietal and temporal lobes, thalamus and other subcortical areas). For each group present 
in the epileptic network shown in (C) (vertical axis), the average connectivity strength with all other groups is 
shown (horizontal axis).
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In addition, and in contrast with ρ ⁎
max and ρdFC, the average correlation coefficient between epileptic dFC states 

and the average dFC across windows of low EEG-PSI values (ρCTRL) was low for all methods. The results of these 
control tests indicate that the state most related with the occurrence of epileptic activity identified with l1-DLPCA 
was similar to the average C matrix across windows of high EEG-PSI values, but not the average C matrix across 
windows of low EEG-PSI values, as hypothesized. As expected, the performance measures for patients P6-P8 were 
consistently lower than those obtained for patients P1-P5. This may in part be explained by the lack of sensitivity 
of EEG-PSI to capture epilepsy-related fluctuations if no, or only negligible, epileptic activity is occurring.

Regarding the comparison of the different window lengths, the average spatial correlation across the two 
subgroups of patients between the dFCmax state obtained with the original window length (37.5 s, 15 TRs) and 
those obtained with the four additional window lengths are presented in supplementary Table S1. The selected 
method l1-DLPCA yielded the highest spatial correlations in most cases; for the remaining few cases, l1-DLPCA was 
only surpassed by other l1-DL variants. This evidences the good stability of the dFCmax state when estimated with 
l1-DL approaches, and particularly l1-DLPCA, regardless of the chosen window length. In terms of the performance 
metrics, presented in supplementary Table S2, l1-DLPCA was found to outperform the remaining methods in most 
cases, being only occasionally surpassed by other DL methods, particularly those using an l1-norm regularization 
framework, and never by PCA or k-CL. This is in agreement with the results for the original window length, and 
also with those from Table S1. Importantly, the standard deviation of the performance measures across all tested 
window lengths was always below 0.10 for l1-DLPCA, showing that such values were not critically dependent on 
the window length.

Concerning the criterion used for selecting the optimal number of states k to be estimated, supplementary 
Fig. S1 illustrates the ρ values obtained with l1-DLPCA for all k and patients, and highlights the values correspond-
ing to ρmax and ρ⁎

max. For patients P1, P2, P3 and P4, a smaller k value was found when considering ρ⁎
max (rather 

than ρmax), with an average decrease in ρmax of only 2% and an increase in ρdFC of 6% for l1-DLPCA.

Selection and characterization of epileptic dFC states.  The results of the dFC analysis leading to the 
selection and characterization the epileptic dFC states, when using the chosen l1-DLPCA method, are illustrated 

Figure 3.  Results of the dFC analyses for patient P2 when using the l1-DLPCA method.
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in Figs 2–9, respectively for patients P1 to P8. All dFC states are shown, indicating those deemed significant 
and those deemed epilepsy-related, together with their weights’ time-courses superimposed with the EEG-PSI 
time-course. The average connectivity strength of epilepsy-related dFC states between AAL groups belonging 
to the epileptic network and all AAL groups is also presented. Overall, novel insights regarding the dynamics of 
epileptic activity were provided by the analysis of the epilepsy-related dFC states, which could not be obtained 
solely based on the epileptic network derived by standard EEG-correlated fMRI analysis. The results obtained in 
each patient are described in detail below, first for patients with clear epileptic activity (P1-P5) and then for the 
remaining patients, without clear epileptic activity (P6-P8).

P1.  3 out of 5 dFC states were statistically meaningful, two of which were deemed epilepsy-related (states #1 
and #2). State #1 shows an increased connectivity between right limbic, and left subcortical regions as well as the 
healthy left thalamus; a decreased connectivity within left parietal regions is also observed. As for state #2, right 
parietal regions exhibit increased connectivity with subcortical regions, and more strongly with the lesioned 
right thalamus when compared with the left thalamus. These results support the relationship between the corti-
cal sources of continuous spike-wave of sleep (CSWS) and the early thalamic lesion on the same hemisphere, as 
postulated in51.

P2.  3 out of 5 dFC states were statistically meaningful, one of which was deemed epilepsy-related (state #1). 
The most striking findings of this state is the increased connectivity between left occipital, parietal and temporal 
regions with the thalamus as well as other subcortical regions. The association of the focal CSWS pattern of this 

Figure 4.  Results of the dFC analyses for patient P3 when using the l1-DLPCA method.
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patient with a strong connectivity to subcortical areas, and in particular the thalamus, resembles the one seen in 
patient P1 and further supports the previously proposed link of CSWS and the thalamus51.

P3.  All 9 dFC states identified were statistically meaningful, but only state #1 was deemed epilepsy-related. The 
very pronounced increase of EEG-PSI values towards the end of the recording is associated with the occurrence of 
an absence seizure characterized by prolonged bursts of 3 Hz spike and wave complexes circumscribed to the left 
hemisphere (atypical case of absence epilepsy52). During the ascending phase of EEG-PSI preceding the seizure, 
dFC state #4 dominates and progressively gives way to state #1; the contribution of these states is negligible at 
windows unrelated with the seizure. The strongly decreased connectivity of the left thalamus with all other brain 
regions is the most remarkable feature of state #1, and suggests that the positive thalamic BOLD activation found 
with standard EEG-correlated fMRI analysis, which is well-established in absence seizures53, is associated with a 
decrease in the normally widespread thalamic connectivity. This could also play a major role in the impairment 
of consciousness associated with the absence seizures.

P4.  All 9 dFC states identified were statistically meaningful, with states #1, #2 and #3 being deemed 
epilepsy-related. Two periods of increased epileptic activity were recorded in this patient, as evidenced by the 
main peaks in the EEG-PSI time-course around windows 60 and 90. For the windows surrounding these peaks, 
the contribution of states #1 and #2 rose drastically. The most striking observation when analyzing these dFC 
states in relation with the epileptic network identified by standard EEG-correlated fMRI is the fact that states 
#1 and #2 exhibit generally increased connectivity across limbic and occipital regions but differ in the thalamic 

Figure 5.  Results of the dFC analyses for patient P4 when using the l1-DLPCA method.
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connectivity, which is decreased in #1 and increased in #2. The connectivity between the left thalamus and left 
subcortical regions is also strongly decreased in state #3.

P5.  All 5 dFC states identified were statistically meaningful, with state #1 being deemed epilepsy-related. This 
state exhibits a modest increase in the connectivity of frontal and parietal regions with the thalamus, suggesting 
that epileptic activity in this cortical dysplasia synchronizes thalamic neurons but not to an extent detectable by 
the BOLD response in the epileptic network obtained though standard EEG-correlated fMRI analysis. This pat-
tern is also present in P2, but with distinct cortical areas involved in the synchronization process.

P6.  All 13 dFC states identified were statistically meaningful, with states #1, #2 and #3 deemed epilepsy-related. 
Despite the absence of clear epileptic activity during the study, the EEG-PSI metric was nevertheless able to detect 
two peaks at windows 112 and 189, the latter associated with a peak in the contribution of state #1. While state 
#2 mainly shows increased connectivity between left limbic regions and the left thalamus, increased connectivity 
between left frontal and occipital regions, as well as the left thalamus and left subcortical regions can be observed 
for state #1. The increased connectivity between left frontal and occipital regions is consistent with the patient’s 
semiology, highlighting the involvement of occipital regions, not detected by standard EEG-correlated fMRI 
analysis.

P7.  Only 2 dFC states were estimated, and none was found to be statistically meaningful. This result was 
somewhat expected given the poor mapping of the epileptic network of this patient when using standard 
EEG-correlated fMRI analysis (also reported in8). This may suggest that the absence of epileptic activity in this 
case precluded the detection of epilepsy-related fluctuations in the EEG-PSI metric.

P8.  All 19 dFC states identified were statistically meaningful, with states #1 and #2 deemed epilepsy-related. The 
most striking feature of state #1 is the increased connectivity between occipital and subcortical regions, as well as 
the thalamus (the latter more pronouncedly). As for state #2, a decreased/increased connectivity between right 

Figure 6.  Results of the dFC analyses for patient P5 when using the l1-DLPCA method.
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limbic and occipital/subcortical regions is observed, respectively. These findings are in line with the hypothalamic 
hamartoma hypothesized for this patient.

Discussion
We proposed an l1-norm regularized DL method for the identification of epilepsy-related fMRI dFC states with a 
flexible degree of temporal sparsity, based on incorporating the highly time-resolved information provided by the 
EEG recorded simultaneously with fMRI. We systematically compared the ability of DL with two other previously 
proposed methods with extreme degrees of temporal sparsity, k-means clustering and PCA, as well as explored 
the temporal sparsity of an l0-norm regularized DL method. We found that the proposed method performed best, 
especially when using a preliminary PCA for initialization, and further showed that changes in the strength of the 
epilepsy-related dFC states provide further insights into the dynamics of epileptic networks that go beyond the 
information provided by more conventional EEG-correlated fMRI analysis.

Relation with other studies of dFC in epilepsy.  A number of studies have previously investigated the 
dynamics of functional connectivity in epilepsy, using either EEG or fMRI. While EEG-based dFC studies are 
mainly focused on seizure prediction and characterization54 and delineation of epileptogenic foci55,56, dFC studies 
using fMRI mostly aim at identifying dFC features that best discriminate epilepsy patients from healthy con-
trols57–61. Only a few studies have attempted to combine the two modalities when analyzing dFC, levering their 
well-known complementary properties1–3. In these studies, dFC is typically measured from the fMRI data, while 
epilepsy-related information is extracted from the EEG in order to guide the fMRI analyses. In particular, the 
fMRI signal can be segmented into different epilepsy-related stages based on the EEG (before, during and after 

Figure 7.  Results of the dFC analyses for patient P6 when using the l1-DLPCA method.
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the occurrence of an epileptic event, plus a baseline period devoid of epileptic activity). A specific connectivity 
matrix is computed for each stage, and changes across the successive epilepsy-related stages and in relation to the 
baseline period are then analyzed26,27. For this purpose, long periods in-between epileptic events are necessary in 
order to define the baseline, which may not be feasible in many cases due to the spontaneous, and often almost 
continuous, nature of epileptic activity. Only in two reports was the EEG information truly integrated, by com-
paring an EEG-derived epilepsy-related metric with the dFC time-course computed for each pair of AAL regions, 
by using Pearson correlation17 or wavelet coherence28. This yields a single correlation/coherence matrix and the 
regions specifically associated with epileptic activity are then identified through appropriate thresholding. The 
major limitation of these approaches lies on the assumption that epileptic activity is described by a single brain 
network exclusively; in fact, different brain networks have been found at different stages of the epileptic activity of 
the same patient26,27. Taking these considerations into account, a fuzzy clustering approach has also been explored 
for the identification of epilepsy-related dFC patterns, which was however found to yield only a small degree of 
fuzziness and therefore performed comparably with k-means while outperforming PCA62.

Relation with other methods to identify dFC states.  We found that the proposed l1-norm regularized 
DL approach was the best at retrieving epileptic dFC states, when compared with k-means clustering or PCA. We 
believe that, by forcing an intermediate, but variable, degree of sparsity in time, a more natural description of the 
brain’s functional connectivity dynamics is achieved. In fact, while clustering assumes that the brain is at a single 
state at each given period of time, PCA imposes that all states contribute to the overall brain functional connec-
tivity to some extent. In contrast, with DL, a subset of the estimated states describes the dFC at each time window, 
the extent of which is limited by the regularization parameter. This feature of DL was particularly relevant when 
studying patients P3 and P4, for whom clear periods of increased epileptic activity as quantified by EEG-PSI were 
described by specific dFC states, but more interestingly, the transition to periods of more intense epileptic activity 
(or even the beginning of a seizure) were described by a gradual replacement of non-epilepsy-related states by 
epilepsy-related states, and vice-versa. While such transition behavior cannot be captured by clustering, PCA does 
not clearly differentiate the contribution of epilepsy-related states during epileptic periods because all states have 
a non-null contribution to the overall dFC.

Regarding the l0-DL and the l1-DL approaches, their difference lies on the regularization framework: the 
l0-norm fixes the number of non-zero entries in the weight matrix (i.e., number of active dFC states) at each 
time window, whereas the l1-norm allows for a variable number of active dFC states at each time point. An l0-DL 
approach has been previously used for investigating whether dFC patterns are expressed separately or jointly over 
time22. In this work, the authors derived the specific cases of k-means and PCA from the general formulation of 
l0-DL, by manipulating λ accordingly, and found that k-means was the best method at recovering true dFC pat-
terns from data simulating both separate and joint expression of dFC patterns. The authors also found evidence 
for a separate expression in task-based fMRI data and for joint expression in resting-state fMRI data. Our findings 
are generally in agreement with this observation, and further extend it to the study of epileptic states. In fact, 
while in periods of intense epileptic activity a dominant (usually epilepsy-related) dFC state was evident (suggest-
ing separate expression), periods of weak epileptic activity were usually described by a roughly evenly distributed 
subset of dFC states (suggesting joint expression). Because of the fixed amount of temporal sparsity, l0-DL was 
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Figure 8.  Results of the dFC analyses for patient P7 when using the l1-DLPCA method.
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in principle not suitable to analyze the dFC of epileptic patients, which is expected to alternate between periods 
of separate and joint expressions intimately related with the occurrence of epileptic activity. Our comparison 
between l1-DL and l0-DL approaches corroborated this observation, with l1-DL generally outperforming l0-DL in 
the identification of epileptic dFC states, suggesting that intermediate and variable, rather than fixed, temporal 
sparsity is necessary to capture dFC changes in epilepsy.

Relation with other methods to estimate dFC.  In this work, we estimated dFC using a standard 
approach consisting of brain parcellation into 90 AAL regions followed by sliding-window Pearson corre-
lation, according to commonly adopted procedures in the literature. Other sliding-window based strategies 
have also been used in this context, namely tapered sliding-windows20 or exponential weighted moving aver-
age63. Alternatively, spatial independent component analysis (sICA) has been applied on a sliding-window 
basis64. In order to overcome the selection of a window length, approaches capable of estimating dFC at the 
quasi-instantaneous level have been proposed, namely: phase coherence connectivity65,66 and multiplication 
of temporal derivatives67. Such approaches provide dFC time-series with higher temporal resolution, but also 
make them more prone to high frequency noise fluctuations66. More complex approaches for estimating the dFC 
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can also be found in the literature, namely through wavelet transform coherence68, multivariate empirical mode 
decomposition (MEMD)69 and 4D spectral analysis70.

Mainly motivated by their simplicity and proved ability to estimate meaningful dFC fluctuations, 
sliding-window based approaches are still the most common in the literature. Nonetheless, this approach is 
well-known to present important limitations, mainly associated with the selection of the window length71. In 
fact, different results can be obtained when using different window lengths, which are possibly of physiological 
relevance72. Despite the attempt to draw guidelines for a more informed selection of the window length71, there 
are still no clear general indications regarding which window length is the most suitable for a specific study. 
Interestingly, the recent review by18 revealed that most studies were able to detect meaningful resting-state dFC 
fluctuations when using a window length between 30 and 60 s. Taking these considerations into account, we opted 
to also use a conventional sliding-window approach, setting the window length to 37.5 s (15 TRs) and the step 
size to 5 s (2 TRs), which facilitates the comparison of our results with previous studies. Nonetheless, we tested 
different window lengths and showed that l1-DL approaches, and particularly l1-DLPCA, outperform the other 
methods irrespective of the window length. Moreover, l1-DLPCA also yielded the most stable epileptic dFC states 
across different window lengths, which may be the result of a more robust identification.

Limitations.  Statistical inference on the results shown here is not possible at the group level, not only because 
of the limited number of patients recruited, but also due to the heterogeneity of their epilepsy syndromes. 
Nonetheless, and despite the lack of a ground truth, the results obtained for each individual patient were not 
only consistent with the respective clinical profiles and standard EEG-correlated fMRI analyses, but also pro-
vided further insights into the dynamics of epileptic networks that go beyond the information provided by such 
analyses. This was observed for each patient, demonstrating the applicability of the proposed methodology at the 
individual level and to a range of different types of epilepsy, rather than only limited to one specific syndrome.

Conclusion.  This is the first study to apply a dictionary learning method of intermediate, and varia-
ble, sparsity in time for dFC state estimation, and to fully incorporate EEG information for the identification 
of epilepsy-related dFC states. We compared the dictionary learning method with other methods of extreme 
sparsity, and found that it was the best suited for this purpose. This finding suggests that functional connectiv-
ity in the epileptic brain is best described by a combination of multiple dFC states that changes over time (in 
terms of the contributing dFC states and their contribution weights). Our results also show that, by analyzing the 
epilepsy-related dFC states, novel insights can be gained on the changes in functional connectivity across brain 
networks that underlie the spontaneous occurrence of epileptic activity, with potential impact for the pre-surgical 
evaluation of these patients. Moreover, the proposed methodology provides a new dFC state identification 
method of potential relevance for studying brain functional connectivity dynamics in general.
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