
ARTICLE

Received 1 Apr 2016 | Accepted 15 Jul 2016 | Published 30 Aug 2016

Purification of a single-photon nonlinearity
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D. Bouwmeester1,2 & W. Löffler1

Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity

are a promising candidate for integrated optical quantum information processing nodes. In

practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to

reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the

weak coupling regime, polarization pre- and postselection can be used to restore high fidelity.

The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for

special polarization angles, which depend only on the device cooperativity, this enables

cancellation of light that did not interact with the quantum dot. With this, we can transform

incident coherent light into a stream of strongly correlated photons with a second-order

correlation value up to 40, larger than previous experimental results, even in the

strong-coupling regime. This purification technique might also be useful to improve the

fidelity of quantum dot based logic gates.
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S
ingle-photon nonlinearities enabled by quantum two-level
systems are essential for future quantum information
technologies, as they are the building block of quantum

photonics logic gates1, deterministic entanglers of independent
photons2 and for coupling distant nodes to form a quantum
network3. Near-unity fidelity interaction of photons with a two-
level system such as an atom or quantum dot (QD) is enabled by
embedding it into an optical cavity4. Next, the electronic and
photonic states become bound and form the dressed states5

of cavity quantum electrodynamics (CQED). A hallmark of
single-photon nonlinearities is the modification of the photon
statistics of a quasi-resonant weak coherent input beam6:
the transmitted photon statistics can become antibunched due
to the photon blockade effect1,7,8. The anharmonicity of
the Jaynes–Cummings (JC) ladder9–11 can also be used to reach
the regime of photon tunnelling6,12 where the single-photon
component is reduced, leading to enhanced photon correlations,
or the appearance of N41 multiphoton ‘bundles’13,14.

In terms of the second-order photon correlation function g2(0),
values up to B2 (refs 15–18) have been obtained experimentally
with QDs, which hardly exceeds even the classical case of
thermal light following Bose statistics of g2(0)¼ 2. In atomic
systems with much longer coherence times, values up to B50
have been obtained6 and it is known19 that strict two-photon
light sources exhibit diverging g2(0) if the two-photon flux is
reduced. Most related QD experiments to date have been
operating in the strong-coupling regime of CQED, which is
considered to be essential due to its photon-number-dependent
energy structure6,17,18. In the weak-coupling regime, the energy

structure is not resolved and it is an open question whether
photon-number-dependent JC effects can still be observed20.
The strong coupling regime, however, requires a small optical
mode volume, which in turn makes it extremely hard to achieve
polarization degeneracy of the fundamental cavity mode.
This is due to unavoidable deviations from the ideal shape and
intrinsic birefringence21,22 on the GaAs platform, precluding
implementation of deterministic polarization-based quantum
gates2,23,24.

Here we show, using a nearly polarization-degenerate cavity in
the weak coupling CQED regime, that we can transform incident
coherent light into a stream of strongly correlated photons with
g2(0)¼ 25.7±0.9, corresponding to \40 in the absence of detector
jitter. The polarization-degenerate cavity enables us to choose the
incident polarization yin¼ 45� such that both fine-structure split
QD transitions along yX

QD ¼ 0� and yY
QD ¼ 90� are excited, and we

can use a postselection polarizer behind the cavity (yout) to induce
quantum interference of the two transmitted orthogonal polariza-
tion components (Fig. 1a). This leads to the appearance of two
special postselection polarizer angles y��out (depending on sample
parameters), which can be used to restore perfect QD contrast
(red curves in Fig. 1b). This compensates fully for reduced QD
cavity coupling due to finite QD lifetime and QD cavity coupling
strength, leading to complete suppression of transmission
of the single-photon component in the low excitation limit. The
transmission of higher-photon number states remains largely
intact, allowing us to observe in Fig. 1c the strongest photon
correlations to date in a solid-state system, reaching the range of
strongly coupled atomic systems6. In the following, a detailed
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Figure 1 | The purification technique. (a) Cartoon of the experiment: polarization pre- and postselection in a resonant transmission CQED experiment

enables tuning of the photon statistics from antibunched to bunched. (b) Theoretical resonant transmission spectra for coherent light with mean photon

number oo1, with and without the QD, comparing the conventional case (parallel polarizers) with the case of special polarization postselection along y�out:

close to one of the QD resonances, single-photon transmission is perfectly suppressed, despite the finite lifetime and cavity coupling of the QD transition.

(c) Second-order correlation function for the special polarization angle case, comparing theory and experiment using two different sets of single photon

counters (SPCs) with different timing jitter, 50 ps and 500 ps.
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experimental and theoretical investigation of this effect, which can
be seen as a purification of a single-photon nonlinearity, will be
presented.

Results
Device structure. Our device consists of self-assembled
InAs/GaAs QDs embedded in a micropillar Fabry–Perot cavity
grown by molecular beam epitaxy25 (see Supplementary Fig. 1
and Supplementary Note 1). The QD layer is embedded in a
P–I–N junction, separated by a 35 nm-thick tunnel barrier from
the electron reservoir, to enable tuning of the QD resonance
frequency by the quantum-confined Stark effect. For transverse
mode confinement and to achieve polarization degenerate
cavity modes, we first ion-etch micropillars of large diameter
(35 mm) and slightly elliptical shape, then we use wet-chemical
oxidation of an AlAs layer26 to prepare an intra-cavity lens
for transverse-mode confinement27, avoiding loss by surface
scattering at the side walls. Finally, we fine-tune the cavity modes
by laser induced surface defects28,29 to obtain a polarization mode
splitting much smaller than the cavity linewidth.

Device parameters and theoretical model. The system we study
here is tuned to contain a single neutral QD within the cavity
linewidth. The excitonic fine-structure splitting leads to 4.8 GHz
splitting between the orthogonally polarized QD transitions at 0�
ðoY

QDÞ and 90� ðoX
QDÞ. The fundamental cavity modes show a

residual polarization splitting of 4 GHz (f X
c ¼ 0 GHz, f Y

c ¼ � 4
GHz) and the cavity axes are rotated by 5� with respect to the
QD axes. To determine further system parameters, we model
our QD cavity system by a two-polarization JC Hamiltonian
coupled to the incident coherent field and take care of cavity and
QD dissipation by the quantum master equation formalism30,31.
We compare experiment and theory for six different input–output
polarizer settings to faithfully determine the model parameters,
these measurements were performed for an input power of
100 pW to avoid saturation effects32. We obtain (see
Supplementary Fig. 2 and Supplementary Note 2) a cavity decay
rate k¼ 105±3 ns� 1, QD relaxation rate g||¼ 1.0±0.4 ns� 1, QD
pure dephasing g*¼ 0.6±0.0 ns� 1 and QD cavity coupling
rate g¼ 14±0.1 ns� 1; from which we can calculate the
device cooperativity C ¼ g2

kg ¼ 1:7 � 0:4ðg ¼ g jj
2 þ g�Þ. As

4g2/(g2þk2)¼ 0.07, our system operates in the weak-coupling
bad-cavity regime of cavity QED.

Resonant photon correlation spectroscopy. We use a
narrowband (100 kHz) laser to probe the system and study the
transmitted light (Fig. 1a), as a function of laser frequency and
postselection polarizer angle behind the cavity. For each set of
parameters, we measure the resonantly transmitted light intensity
and its second-order photon correlation function g2(t) using a
Hanbury Brown Twiss setup. The discrete nature of the QD levels
leads to a strongly nonlinear response of the system depending on
the incident photon number distribution; we operate at low
intensities to avoid saturation effects. We show here only data for
an incident polarization yin¼ 45�, under which angle both QD
transitions are equally excited.

First, we compare experimental and theoretical resonant
transmission measurements in Fig. 2, where the coherent light
transmittivity as a function of the laser detuning and orientation
of the output polarizer angle yout is shown. For clarity, we have
normalized the traces for each polarization setting. The horizontal
lines indicate the QD fine structure split transitions ðoX

QD;o
Y
QDÞ,

the black circles indicate regions of low transmission and
the vertical dashed lines the special polarization angles
y�þout � � 14�, y��out � � 76�. From comparision of both panels

in Fig. 2, we find excellent agreement between experiment and
theory.

Now we perform photon correlation measurements; instead of
tuning the laser, we now tune the QD, the reference are the cavity
modes. As the cavity linewidth is large compared with the QD
tuning range in Fig. 3, there is nearly no difference compared
with tuning the laser. Experimentally, using an external electric
field to tune the QD via the quantum confined Stark effect is
much more robust than laser frequency tuning. Figure 3 shows
the false-colour map of g2(0) as function of output polarization
yout and QD detuning. We see clearly that the enhanced
bunching occurs under the special polarization condition in the
low-transmittivity regions indicated in Fig. 2. This is expected as
in weak coherent light beams, the P1 single-photon component is
dominating and removal thereof should lead to enhanced
bunching. The theoretical simulation (Fig. 3b) shows a maximal
photon bunching of g2(0)E40. Compared with this, the
experimentally observed photon correlations are less (g2(0)E6),
which is due to the detector response: Fig. 3a was recorded
with a 500 ps timing-jitter detector, if we repeat the measurement
at the special polarization angle with a 50 ps timing-jitter detector
(the corresponding g2(t) measurements are compared in Fig. 1c),
we obtain g2(0)¼ 25.7±0.9. Both results agree very well to
the convolution of the theoretically expected g2(t) with the
detector responses (Fig. 1c; see also Supplementary Fig. 3 and
Supplementary Note 3).

Discussion
We have shown by experiment and theory that the reduced
fidelity of a QD nonlinearity, caused by imperfect QD-cavity
coupling, can be strongly enhanced by pre- and post-selection of
specific polarization states. This enables transformation of a weak
coherent input beam into highly bunched light with g2(0)\40, a
value that has not been reached before, not even in the strong
coupling regime. How is it possible to reach such high photon
correlations, how does the polarization-based purification
technique work?

We consider incident light with a frequency in the vicinity of
one of the QD resonances, say oX

QD, and let us decompose the
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Figure 2 | Coherent probing of the QD cavity system. Experimental

(a) and theoretical (b) false colour plot of the columnwise normalized optical

transmission as a function of the laser detuning DfLaser and the polarization

yout (yin¼45�). The fine-split QD transition frequencies are at

fX
QD ¼ � 2:4 GHz and fY

QD ¼ 2:4 GHz. The red circles indicate the special

polarization conditions; the white square indicates the area explored in Fig. 3.
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electromagnetic field transmitted through the cavity in two
orthogonally polarized components: the signal Field ES polarized
along the QD resonance polarization yX

QD ¼ 0� and the local
oscillator ELO, which has interacted with an empty cavity, because
it is polarized orthogonally to yX

QD. Now, we consider three
cases: (i) efficient interaction of the QD with incident light
(cooperativity C41), (ii) intermediate interaction (CE1) and (iii)
weak interaction (C-0). The special polarization angles for
various cooperativities are shown in Fig. 4.

In case (i), the QD leads to a nearly complete removal of the
single-photon component from the incident coherent light
polarized along the QD polarization: these photons are in
principle perfectly reflected from the cavity and we simply have
to detect along the same axis (y�out ¼ yX

QD ¼ 0�, see Fig. 4) to
observe strong photon correlations. A significant proportion
of higher photon number states are transmitted. As the
second-order correlation function can be expressed in terms
of the photon number distribution as g2ð0Þ / 2P2=P2

1
(ignoring N42 photon number states), which for P2ooP1

and PN42ooP2, this leads to diverging photon correlations
such as g2ð0Þ / 1=a2 if the single-photon component is
attenuated as P1-aP1.

Now in case (ii), for realistic systems, the finite lifetime of the
QD transition and/or limited QD-cavity coupling g leads to a
reduced cooperativity: even in the low-excitation limit, not every
single-photon state is filtered out. Therefore, the signal field ES

contains a fraction of coherent light reducing the photon
bunching along the QD polarization yX

QD, compare Fig. 3. This
effect has been called ‘self-homodyning’ in literature33,34. With
the purification technique, we now rotate the postselection
polarizer to interfere a portion of the local oscillator field ELO

with the signal field, leading to the superimposed field
ESL ¼ eijS ESþ eijLO ELO

35. The polarizer angle controls the
relative intensity of the two components and we can control
the transmission phases fs and fLO by adjusting the laser
frequency, because the phases vary strongly in the vicinity of the
QD and cavity resonances. We simply have to choose the local
oscillator intensity that it matches the intensity of the portion of
ES and adjust the phases for destructive interference. The result is
that we detect in transmission mainly the single-photon filtered

portion of ES, which leads to very high photon correlations in the
transmitted light despite limited cooperativity.

Finally, in case (iii) for C-0, only a vanishing fraction of the
photons have interacted with the QD. We have to tune the
postselection polarizer to � 45� to destructively interfere nearly
equal amounts of ES and ELO to observe enhanced photon
correlations. This case is similar to that recently investigated in
ref. 36, where (weak) photon bunching is observed for a relative
phase of p (fs�fLO¼ p). We have a high-finesse (FE800)
cavity and significant cooperativity, which enables us to observe
much stronger photon correlations (Supplementary Fig. 4 and
Supplementary Note 4).

The special postselection angle y�out and laser frequency have to
be optimized numerically in principle, because pure
dephasing cannot be taken care of in a semiclassical model.
Despite this, we found that the special polarization angle shows
approximately a very simple dependency on the cooperativity:
y�out � � 45�expð�CÞ, see Fig. 4, which agrees well to our
intuitive explanation here.

As a last point, we analyse the strong photon bunching in
terms of the photon number distribution Pn. We use our
theoretical model to determine Pn, as direct experimental
determination thereof is strongly complicated by its sensitivity
to loss. However, also the simulation of narrow-band photon
number Fock input states is challenging in the quantum
master model37. Therefore, we use coherent input light and
analyse the intra-cavity light in terms of its polarized photon
number distribution, taking care of quantum interference at
the postselection polarizer acting on the intra-cavity field.
This is an approximation, because imperfect transmission
through the cavity reshapes Pn. We found that the photon
statistics Pn can be calculated best by projection on the required
Fock states using polarization-rotated Fock space ladder
operators bwx=y ¼ awx=ycosyout � awy=xsinyout and tracing out
the undesired polarization component afterwards. With the
numerically31 calculated steady-state density matrix operator r of
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our system (Supplementary Note 2), we obtain the photon
number distribution after the polarizer:

Pn ¼
XN

m¼0

1
n ! m !

h0x0y j bxð Þn by
� �mr byx

� �n
byy
� �m

j0x0yi ð1Þ

Figure 5 shows the four lowest photon number probabilities as
a function of the polarizer angle yout, for the case with and
without QD. In the empty-cavity case we see, as expected,
lowest transmission under the cross-polarization condition
(yout¼ � 45�). For the case with the QD, we observe a photon-
number-dependent shift of the transmission dip. At the special
polarization angle y�out, we see that the one-photon component
reaches a minimum, while the higher-photon number states do
not, which explains the enhanced photon bunching enabled by
the purification technique.

It is important to note that also the two-photon transmission
dip (P2) is not exactly at cross-polarization, which suggests the
following intuitive explanation: apparently, in the photon number
basis, the different Fock states pick up a different phase
during transmission through the QD cavity system. In the
weak-coupling regime, but often also in the strong coupling
regime, the individual JC dressed states cannot be resolved
spectrally, because gtk. However, the CQED system is still
photon-number sensitive, which implies lifetime-dependent JC
effects in the weak coupling regime: the decay rate of the CQED
system increases with the number of photons in the cavity20,38.
As consequence, higher photon-number states have a
modified interaction cross-section and experience a reduced
phase shift. The dip in P2 in Fig. 5 is already very close to
the cross-polarization angle yout¼ � 45�, whereas the dips for
higher photon number states Pn42 are indistinguishable from
yout¼ � 45�.

In conclusion, we found that the nonlinear response of a lossy
cavity QD system can be strongly enhanced by postselection of a
particular polarization state. This leads to interference between
Fock states that experienced different modifications by the QD
nonlinearity and results in strong photon correlations of the
transmitted light. As the underlying effect, interference of the two
polarizations modes leads to high-fidelity cancellation of the

single-photon transmission for the special polarization
postselection condition. By correlating the results with a
theoretical model, we found indications of photon-number
sensitive JC physics in the weak coupling regime of CQED.

Data availability. All relevant data are available on request.
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