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Background: Neurocognitive mechanisms underlying developmental dyslexia (dD)
remain poorly characterized apart from phonological and/or visual processing deficits.
Assuming such deficits, the process of learning complex tasks like reading requires the
learner to make decisions (i.e., word pronunciation) based on uncertain information (e.g.,
aberrant phonological percepts)—a cognitive process known as probabilistic decision
making, which has been linked to the striatum. We investigate (1) the relationship
between dD and probabilistic decision-making and (2) the association between the
volume of striatal structures and probabilistic decision-making in dD and typical readers.

Methods: Twenty four children diagnosed with dD underwent a comprehensive
evaluation and MRI scanning (3T). Children with dD were compared to age-matched
typical readers (n = 11) on a probabilistic, risk/reward fishing task that utilized a
Bayesian cognitive model with game parameters of risk propensity (γ+) and behavioral
consistency (β), as well as an overall adjusted score (average number of casts, excluding
forced-fail trials). Volumes of striatal structures (caudate, putamen, and nucleus
accumbens) were analyzed between groups and associated with game parameters.

Results: dD was associated with greater risk propensity and decreased behavioral
consistency estimates compared to typical readers. Cognitive model parameters
associated with timed pseudoword reading across groups. Risk propensity related to
caudate volumes, particularly in the dD group.

Conclusion: Decision-making processes differentiate dD, associate with the caudate,
and may impact learning mechanisms. This study suggests the need for further research
into domain-general probabilistic decision-making in dD, neurocognitive mechanisms,
and targeted interventions in dD.
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INTRODUCTION

Developmental dyslexia (dD) is a common neurodevelopmental
disorder characterized by difficulty in learning how to read
and/or spell. Putative cognitive mechanisms underlying dD
include aberrant phonological processing (International Dyslexia
Association; Bradley and Bryant, 1983; Lyon et al., 2003),
visual processing (Stein and Walsh, 1997; Gori and Facoetti,
2015), and/or integration of visual and phonological information
(Provazza et al., 2019). Clinical interventions predicated on these
mechanisms have demonstrated moderate success (Al Otaiba
and Fuchs, 2006; Snowling and Hulme, 2012; Stevens et al.,
2021). This has led researchers to wonder if heterogeneity of
pathogenic mechanisms exists within dD (Pennington, 2006;
Mascheretti et al., 2018; Stein, 2018; Giofrè et al., 2019; Peters and
Ansari, 2019; O’Brien and Yeatman, 2021). An under-explored,
yet unifying potential mechanism is inconsistent probabilistic
decision-making in the context of uncertain percepts, such as
phonological percepts.

Research in dD has primarily focused on learners with
reading difficulties that appear to be based in phonological
processing (Bradley and Bryant, 1983; Stein, 2018). Less is known
about individuals who perform poorly in reading but do not
evidence phonological processing difficulties or do not benefit
from phonologically oriented interventions. In a recent study by
Ring and Black (2018), no cognitive mechanism was identified
in more participants with reading deficits (28%) than was a
phonological mechanism (23%), although the percentages were
similar. Ways to better capture possible heterogeneity and/or
novel cognitive factors include subtyping samples based on
the presence or absence of phonological difficulties as well as
examining novel mechanisms. We assess performance on a
probabilistic risk/reward decision-making task, an understudied
cognitive process that may relate to how children respond
when presented with uncertain information, e.g., phonological
information if the child has phonological difficulties or visual
information if the child has visual processing difficulties, etc.

Decision-making is integral to the learning process. Most
models of learning incorporate decision-making and feedback
loops on the outcomes of decisions (see Lee et al., 2012;
O’Doherty et al., 2017, for reviews). We theorize that in
dyslexia, domain-general processes like decision-making may
mediate response selection in the setting of perceptual difficulties.
Consider that, generally speaking, differences in decision-making
become more apparent as uncertainty in the initial decision state
increases, and the amount of uncertainty in an initial decision
state changes the learning rate for a decision-maker (Lee et al.,
2012). Applying these principles to dyslexia, a student with
phonological impairments may experience greater uncertainty
when faced with “phonological decisions,” i.e., sounding out
syllables in unrecognized words. Moving past such uncertainty
requires engaging the complex cognitive process of decision-
making, the parameters of which vary across individuals. Such
differences in decision-making may influence an individual’s
ability to learn from phonological information for a variety
of reasons, e.g., limiting the individual’s ability to properly
build expected outcomes, accumulate enough information for a

decision, determine probabilistic contingencies, rank competing
choices, place value on the outcome after a decision, etc. Indeed,
two recent studies found inefficient evidence accumulation in
dyslexia (Stefanac et al., 2021; Manning et al., 2022); however, to
our knowledge, other components of decision-making in dyslexia
have yet to be explored.

Decision-making processes independent of perceptual
differences have been suggested to play a role in learning
disorders, including dD (Lum et al., 2013; Gabay et al., 2015a;
Krishnan et al., 2016; Elleman et al., 2019; O’Brien and
Yeatman, 2021). Cognitive neuroscience studies suggest that
the neuropsychological mechanisms involved in uncertainty
play a role in learning (Behrens et al., 2007; Massi et al., 2018).
Uncertainty is the state in which a decision-maker has imperfect
knowledge of what outcome will follow from a certain choice
(Platt and Huettel, 2008). Learning of probabilistic information
falls under the umbrella of uncertainty and some studies
have found specific difficulties in probabilistic learning in dD
(Gabay et al., 2015b; Elleman et al., 2019). Probability is an
inherent feature in the English language because of irregular
and inconsistent phoneme-grapheme relationships (Hsu and
Chater, 2010; Yang et al., 2017). Although the acquisition of
reading ability in the context of semi-regular phoneme-grapheme
relationships has generally been studied using statistical learning
paradigms (Arciuli, 2018), probabilistic learning can unify
statistical learning along with other types of learning such as
perceptual (Fiser and Lengyel, 2019) as a supraordinate element.
Understanding how children with dD approach probabilistic
learning for non-linguistic material will provide important
insights into the process of learning in the context of uncertainty.
Decision-making can also influence the effort exerted to resolve
uncertainty and internal motivational states impact valuations
during the decision-making process, e.g., outcome valuations
based on feedback if the answer was correct or incorrect
(O’Doherty et al., 2017). Furthermore, sensitivity to risk and
reward has been associated with adaptive learning (McCormick
and Telzer, 2017). Given the difficulty children with dD have
in reading, understanding how they approach risk/reward
situations could be helpful in designing interventions.

Risk/reward tasks are used frequently in decision-making
studies and can easily be assessed using probabilistic paradigms
and without symbolic representations (a frequent confound in
studies of dD) (Lejuez et al., 2002; Pleskac, 2008). When a
decision-maker is confronted with a task that has inherent
uncertainty they must choose whether or not, or how vigorously
to embark on such an endeavor. The decision will be influenced
by the anticipated reward and risk (Schultz, 2016). Uncertainty,
risk/reward assessments, and motivation-cognition interactions
are associated with fronto-striatal brain systems (motivation-
cognition interactions; Braver et al., 2014; uncertainty, Daw
et al., 2005; Pauli et al., 2016), which have also been posited
to develop differently in children with learning disorders but
have been less explored than regions associated with language
(Krishnan et al., 2016; Hancock et al., 2017; Massarwe et al.,
2021). Furthermore, the ventral and dorsal striatum have been
found to relate to knowledge acquisition (Pine et al., 2018), risk
and reward processing (Preuschoff et al., 2006), and language
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to a lesser extent (Chan et al., 2013). Activity in the ventral
striatum, in particular, has been shown to dynamically change
during reward and learning phases in relation to uncertainty
and influence motivational continuation of a behavior and
selective attention (Heekeren et al., 2007; Bourgeois et al.,
2016). Additionally, dopaminergic signals enhance perceptual
representation when paired with reward value to increase
salience and draw attention to stimuli (Berridge and Robinson,
1998). In particular, dopaminergic signals in the striatum are
associated with motivation and reward-based learning (Palmiter,
2008). Therefore, the striatum is a good first candidate for an
underexplored neural basis underlying differences that may exist
between children with dD and typical children on risk/reward
decision-making tasks.

We investigated how children with dD and age-matched
controls play a probabilistic risk-reward decision-making game
adapted for children with dD from the Angling Risk Task
(Pleskac, 2008; Zhou et al., 2021) and explored how cognitive
constructs measured by the game (risk propensity and behavioral
consistency) are associated with striatal brain structures.

We hypothesized that (1) children with dD would have
distinct risk/reward profiles from controls based in their
approach to confronting uncertain information, and (2) the
risk/reward parameters of the cognitive model of the game would
associate with striatal volumes given previous literature linking
risk/reward and uncertain decisions to the striatum.

MATERIALS AND METHODS

Participants/Recruitment
Individuals were selected from the recruitment base at University
of California, San Francisco (UCSF) Dyslexia Center, a
multidisciplinary research program that performs neurological,
psychiatric, cognitive and neuroimaging evaluations of children
with language-based neurodevelopmental disorders. A diagnosis
of dD based on IDA criteria, an age between 7 and 15
years, and fluency in English were necessary for inclusion
in the study. Exclusion criteria for the dD group in this
analysis included a diagnosis of attention deficit/hyperactivity
disorder (ADHD), all objective reading and spelling scores
at the time of study falling above the 25th percentile of
same aged peers and within 2SD of their estimated general
cognitive abilities, general cognitive scores that fell below the
9th percentile of same aged peers (indicative of borderline
or lower intellectual functioning), known history of perinatal
events such as born prematurely with very low birth weight,
an acquired brain injury or tumor, genetic, neurological, or
psychiatric disorder associated with seizures, strokes, impaired
sensory processing or communication. The 25th percentile
(the low end of average) was used as the cut-off for reading
scores to increase sensitivity because several children in the dD
cohort had received regular or intensive reading intervention or
tutoring and therefore may have remediated reading impairment.
The intelligence quotient (IQ) discrepancy was also added
due to the presence of some children with IQs in the
very superior range and the desire to be inclusive in the

definition of dD. 24 children with dD met criteria for inclusion
in the analysis.

Control participants (n = 11) were recruited through local
schools and parent networks. Exclusion criteria for controls were
any standardized single-word reading scores that fell below the
16th percentile (-1SD) of same aged peers, general cognitive
scores that fell below the 9th percentile of same aged peers,
and any history of developmental delays, or a known genetic,
neurological, or psychiatric disorder that impacts cognition
such as ADHD, autism spectrum disorders, or depression. In
order to improve control recruitment and retention, control
participants underwent an abbreviated study protocol. Table 1
outlines the demographic characteristics of the participants.
Guardians of the participants provided informed written consent

TABLE 1 | Demographic, questionnaire, and testing data.

Controls dD

N 11 24 Sig

Demographics and behavior

Age (cog testing), years 9.94 [1.3] 10.48 [1.5] 0.30

Age (MRI), years 9.50 [1.4] 9.96 [1.5] 0.40

Time between MRI and Cog tests, years 0.48 [0.3] 0.52 [0.3] 0.77

Sex 7 F, 4 M 11 F, 13 M 0.33

Handedness 11 R 21 R, 3 NR 0.22

DSIS (1 = lowest; 5 = highest)

Parent-reported impulsivity 2.36 [1.0] 2.57 [0.9] 0.58

Child-reported impulsivity 1.79 [0.7] 2.26 [0.7] 0.10

Parent-reported schoolwork 2.19 [1.1] 2.70 [1.2] 0.29

Child-reported schoolwork 1.78 [0.6] 2.60 [0.8] 0.008

Parent-reported interpersonal 2.53 [1.2] 2.44 [1.1] 0.85

Child-reported interpersonal 1.81 [1.0] 1.91 [1.0] 0.78

Vanderbilt inattention sum – 6.41 [4.3] N/A

Vanderbilt hyperactivity sum – 4.17 [3.1] N/A

(% ile)

BASC externalizing – 33.67 [26.2] N/A

BASC internalizing – 39.22 [35.0] N/A

BASC attention – 37.22 [26.9] N/A

Cognition and academics (% ile) (% ile)

Matrix reasoning 67.38 [16.8] 59.46 [26.2] 0.43

WJ oral vocabulary 72.25 [19.7] 48.80 [24.0] 0.002

WJ letter-word Identification – 22.19 [18.6] N/A

WJ word attack – 35.25 [25.0] N/A

TOWRE SWE 47.00 [25.1] 15.52 [20.2] 0.002

TOWRE PDE 53.20 [30.3] 15.13 [18.5] <0.001

GORT 5 accuracy 53.95 [34.6] 9.35 [11.3] <0.001

GORT 5 rate 62.45 [26.8] 16.27 [16.7] <0.001

GORT 5 comprehension 52.30 [21.8] 20.77 [15.9] <0.001

WJ sound blending – 54.83 [25.6] N/A

WJ sound awareness – 37.50 [25.5] N/A

WJ rapid picture naming 56.63 [23.5] 33.38 [19.7] 0.01

NEPSY II naming 65.00 [27.7] 36.13 [24.6] 0.01

WJ memory for words 73.13 [24.4] 32.00 [20.7] <0.001

WISC-IV integr. digit span fwd 64.22 [29.5] 25.63 [22.9] <0.001

WISC-IV integr. digit span bwd 60.44 [30.8] 26.00 [22.4] 0.001

Rey-O 3’ delay 46.67 [30.1] 38.78 [32.7] 0.60

Children’s colored trails 1 49.14 [24.4] 42.30 [28.1] 0.57

Children’s colored trails 2 45.00 [14.1] 22.80 [20.4] 0.01
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and participants provided assent. The study was approved by the
UCSF Committee on Human Research and complies with the
declaration of Helsinki.

Neuropsychological and Academic
Assessment
Neuropsychological and academic testing was administered by
research staff or neuropsychology fellows who were trained and
supervised by neuropsychologists. Neuropsychological testing
covered screening of non-verbal reasoning, processing speed,
attention and working memory, verbal and visual recall,
visuospatial abilities, and executive functioning (see Table 1 for
a full list of tests (Delis et al., 1994; Meyers and Meyers, 1995;
Llorente et al., 2003; Wechsler, 2004; Korkman et al., 2007).
Academic testing was done using the Woodcock-Johnson IV
(WJ-IV) (Schrank et al., 2014). In addition to some of the
untimed reading measures in the WJ-IV, participants were also
administered the Test of One-Word Reading Efficiency, version 2
(TOWRE-2) and the Gray Oral Reading Test, version 5 (Torgesen
et al., 2012; Wiederholt and Bryant, 2012). Impulsivity data were
collected via parent and child report on the (Domain-Specific
Impulsivity Scale; Tsukayama et al., 2013). Other child behaviors
relevant to psychiatric comorbidity were examined through
parent responses on the NICHQ Vanderbilt Assessment Scale
(NICH Q)1 and the Behavior Assessment System for Children-
Second Edition (BASC-2; Kamphaus et al., 2007).

Experimental Task
The angling risk task (ART) (Figure 1) was developed at
Ohio State University based on a paper by Pleskac (2008).
Instructions for the task were audio-recorded and transcribed. All
participants received the same instructions. Control participants
could choose audio-recorded, transcribed instructions, or both.
Dyslexia participants received the audio-recorded instructions
with matching text to ensure comprehension. All participants
were queried on their independent ability to comprehend the
main components of the task. In brief, participants were told
their goal was to earn as many points as possible and that
there were two types of fish in a pond. Catching a red fish
would earn them five points each; catching a yellow fish would
cause them to end their turn and lose the points accumulated
during that turn. They would be given 30 turns (rounds/trials)
of fishing. During each turn they were given the option to
continue fishing or to collect their points. They were warned
that they would never know in advance what kind of fish they
were going to catch.

For the ART, we pre-generated a sequence of maximum
number of casts for all 30 trials, meaning that a yellow fish
was going to be caught exactly at the maximum number of
casts. The maximum casts were generated by a probabilistic
process with a given probability of catching a yellow fish, and
the proportion of yellow fish on the screen is set to be equal
to this probability. In our task, the probability of catching a
yellow fish was set to be 0.05 at the beginning, with an increased
increment of 0.05 after every five trials. The corresponding

1https://www.nichq.org/

means of maximum casts were the reciprocal of the probabilities.
Three equivalent versions (A, B, C) of the task were created in
which the order of maximum number of casts was reorganized
within probability levels so that participants would have the
same maximum number of casts but in a different sequence.
We conducted a Bayesian ANOVA (Rouder and Morey, 2012)
to check the effect of version and the results indicated that the
versions are very unlikely to have affected the outcome measures
(BF10 = 0.309, 0.396, and 0.201 for the adjusted score, γ+, and
β, respectively). The adjusted score is the average number of
casts, excluding trials on which a yellow fish was caught. The
other outcome measures, γ+, and β are explained below in
computational modeling.

Computational Modeling of Decision
Making Processes
The 2-parameter model proposed by Pleskac (2008) and van
Ravenzwaaij et al. (2011) was designed to model the cognitive
process underlying the Balloon Analog Risk Task (BART; Lejuez
et al., 2002), on which the ART is based. The two parameters
in this model, γ+and β, represent risk-taking propensity and
behavioral consistency, respectively. According to this model,
before the start of each trial k, the participant has in mind
a number of casts (or the points equivalent to a number of
casts, e.g., 50 points = 10 casts) deemed as optimal in terms of
maximizing the final score in the task, which, denoted as ωk, is
calculated based on this participant’s propensity for risk-taking,
γ+, and the probability that a yellow fish, which causes the loss of
accumulated points on a respective trial, will be caught, pyellow

k :

ωk =
−γ+

ln(1− pyellow
k )

(γ+ ≥ 0) (1)

In the ART task, pyellow
k was represented by the proportion

of yellow fish on the screen, which is equal to the underlying
probability of catching a yellow fish. Given the pyellow

k ,
participants with a higher risk-taking propensity γ+ will have a
higher ωk in mind compared to less risk-taking participants. On
the other hand, given a fixed γ+, as the probability of catching
a yellow fish increases, the optimal number of casts decreases,
i.e., it becomes less likely to obtain a high number of casts before
incurring a loss.

The model also takes account of the fact that human behavior
can be random to some extent by incorporating a logistic
response function that calculates the probability that a participant
is going to cast given opportunity l (= 1,2,. . .) during trial k,
denoted as pcast

kl :

pcast
kl =

1
1+ eβ(l−ωk)

(β ≥ 0) (2)

Therefore, with each opportunity to cast, the participant’s
decision (to cast or collect) follows a Bernoulli distribution (a
binomial probability distribution when choices are binary) with
the probability of casting equal to pcast

kl . With a given ωk in mind,
the probability of casting decreases as l increases, indicating that
with each cast, the probability of making another cast decreases.
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FIGURE 1 | A snapshot of a participant’s view of the task. The participant is asked on every trial to decide to collect the current points (“Collect” button) or go fishing
for more points (“Get Fish” button). They can explicitly determine the risk based on three representations: the ratio of yellow to red fish in the pond, the ratio
represented in digit form in the legend on the right, and the ratio in the pie chart on the right. Caught red fish earn the player five points. Caught yellow fish result in
the subtraction of the current points at the top right.

When l is equal to ωk, the probability of casting is 0.5 (i.e.,
chance level), indicating that before l reaches ωk, the probability
of casting is larger than chance, and when l has passed ωk,
the probability of casting is smaller than chance. Behavioral
consistency, β, characterizes the extent to which the participant
makes casting decision based on ωk. A lower β value indicates
that the participant’s casting decision is more random. In an
extreme scenario in which β is equal to zero, the probability of
casting is equal to 0.5, regardless of the opportunity l value and
the optimal number of casts ωk,. As β gets larger, the decision of
whether to cast or not becomes more deterministic. For example,
for β = 0.5, if a participant wanted to cast 10 times to obtain
50 points for the first trial (k = 1), ω1 = 10, then for the
first opportunity (l = 1), the probability that the participant
will cast. pcast

k = 1,l = 1 = 1
1+e(0.5)(1−10) would be equal to 0.989 or

close to a 100% probability that the participant will cast. When
opportunity increases (i.e., the participant makes more casts), this
probability decreases, until a yellow fish is caught or a decision to
collect is made.

Striatal Volume Segmentation
All but two subjects underwent a brain MRI acquisition on a 3T
Siemens Prisma scanner (Siemens, Erlangen, Germany) equipped
with a 64-channel head/neck coil. A high resolution T1-weighted
three-dimensional was acquired for each participant within 6
months of cognitive evaluation. The Magnetization Prepared
Rapid Acquisition Gradient Echo (MPRAGE) sequence consists
of the following parameters: 160 sagittal slices, an isotropic voxel

of 1 mm size, TR/TE/TI = 2,300/2.9/900 ms, Field of view (FOV):
256 × 256, flip angle = 9 deg, parallel imaging acceleration
factor (iPAT) = 2. Images were visually inspected for quality
check purposes and to exclude the presence of artifacts and brain
abnormalities, which includes visual review for ghosting, ringing,
aliasing, and excessive head movement. In the presence of visible
motion artifacts at data collection, the sequence is repeated
to obtain better quality. Mild motion not visually detected at
data collection is corrected through the Freesurfer (version 5.3)2

recon-all package.3 All of the images included in this study passed
the quality checks.

Automatic segmentation of the caudate, putamen and
nucleus accumbens bilaterally was obtained with FreeSurfer.
The T1-weighted images were processed through the
standard processing, which involved non-uniform intensity
normalization, removal of non-brain tissue, affine registration to
the Montreal Neurological Institute (MNI) space and Talairach
transformation, and segmentation of gray/white matter tissue.
Segmented images are visually inspected when there are
anomalous values reported for the volume metrics, e.g., the
scale is different from all other subjects. None of the segmented
images in this analysis required manual inspection. Subcortical
parcellation was performed by using the Desikan-Kyliany Atlas
(Desikan et al., 2006) and, the results were visually inspected
by a trained neuroradiologist. Volumes of interest (VOI) were
calculated through voxel count within the region of interest and

2http://surfer.nmr.mgh.harvard.edu/
3https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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then multiplied by voxel size to obtain the volume. The VOI was
corrected by the total intracranial volume (TIV) for the following
statistical analysis.

Statistics
Demographic, cognitive and gray matter region of interest data
were analyzed using Stata 15 (StatCorp, College Station, TX).
Independent group Student’s t-tests and chi-squared analyses
were used for parametric and non-parametric data, respectively,
using tests for unequal variances as appropriate. All pairwise and
multiple comparisons used a Bonferroni correction. Pearson’s
correlations were used for associations between parameter
estimates and raw reading scores and striatal TIV-corrected
volumes. Permutation tests were completed to examine sample
effects when appropriate (Proschan et al., 2014).

We used Bayesian estimation to obtain the posterior
probability distributions of the parameters and used the means
as point estimates in statistical analyses. The Bayes factor (BF)
characterizes the strength of the evidence for the alternative
hypothesis over the null hypothesis. Values smaller than one
suggest that the observed data favor the null hypothesis, and
values larger than one favor the alternative hypothesis. An
approximate classification scheme of how to interpret BFs can be
found in Supplementary Material. Values between 1 and 3 are
considered anecdotal evidence in favor of the alternative. Values
between 3 and 10 are moderate evidence, and greater than 10
provide strong evidence.

Bayesian analyses were conducted using JASP statistical
software [JASP Team, 2020, JASP (Version 0.14.1) (Computer
software)]. Bayesian independent samples t-tests were conducted
to compare the adjusted game scores in the Control group and
the dD group. In order to estimate and compare the two model
parameters (γ+, β) in Eqs (1) and (2) on a group level, Bayesian
analysis was extended to create a hierarchical Bayesian model
(Gelman et al., 2014). This method allows for the estimation
of individual-level parameter distributions as well as group-
level model parameter distributions (Lee, 2011). The hierarchical
Bayesian model was implemented using the RStan R package
(Stan Development Team, 2020). The model code can be found
in Supplementary Material.

RESULTS

Demographics
There were no group (dD vs. controls) differences based on age,
sex, or handedness. The average age (±SD) of participants was
10.31± 1.40 years with a range from 7.99 to 12.63 years. The age
range was 8.30–11.61 years for controls and 7.99–12.63 years for
dD. There were 18 females and 17 males included in the analysis.
All but three participants were right-handed. More demographics
are reported in Table 1.

Parent and Self-Report Measures
No group differences were found in overall impulsivity
in either parent-report or self-report (Domain-Specific
Impulsivity Scale) (Table 1). There were also no significant

differences between the parent and child report on overall
impulsivity. Average parent report of overall impulsivity was
2.51 ± 0.94 (max = 5) and average child report of overall
impulsivity was 2.13 ± 0.72. Parent-report of schoolwork-
related impulsivity was similar across groups (Average = 2.54
± 1.18). There were no parent-child differences in reported
levels of schoolwork impulsivity, i.e., parents and children
had similar perceptions of their schoolwork impulsivity. There
were no group differences in parent (Average = 2.47 ± 1.11)
or child-reported (Average = 1.88 ± 0.97) interpersonal
impulsivity. Parent and child-report of interpersonal
impulsivity were similar.

Parents of control children were not asked to complete the
Vanderbilt or BASC-2 questionnaires given that these are clinical
questionnaires, so we do not have data for between group
comparisons. Also, no children in this sample met the symptom
thresholds for ADHD inattentive, hyperactive, or combined type
on the Vanderbilt.

Cognitive Testing
Groups did not differ on a non-verbal reasoning measure
(Matrix Reasoning), which suggests a similar level of general
cognitive abilities. The mean Matrix Reasoning percentile score
was 61.44 ± 24.17, which falls in the average range. Similarly,
there were also no group differences in visuoconstructional
abilities (Rey-O Copy), visual memory (Rey-O delay), or
processing speed (Children’s Colored Trails 1); group averages
for these measures broadly fell in the average range. As
expected, there were significant group differences between
children with and without dD on reading measures (TOWRE
and GORT), and measures known to associate with dD such
as expressive vocabulary and verbal short-term and working
memory (WJ Oral Vocabulary and Memory for Words and
WISC Digit Span). Other cognitive testing data can be found in
Table 1.

Main Outcome Measures
The low Bayes Factor (BF = 0.347) suggests the two groups do
not differ on the overall performance measure of the decision-
making task, the adjusted score [Control: mean = 5.28, SD = 2.11,
(2.5%, 97.5%) quantiles = (2.17, 10.17); dD-phono: mean = 5.05,
SD = 2.24, (2.5, 97.5%) quantiles = (3.14, 10.10); dD-other:
mean = 5.31, SD = 2.42, (2.5%, 97.5%) quantiles = (1.91, 9.14)].
A Bayesian ANOVA on the control group and two sub-groups of
dD also indicated that there was no group effect in the adjusted
scores (BF10 = 0.355).

Cognitive Model Parameters
As described earlier, the model parameters (γ+, β) in Eqs (1)
and (2) on a group level were estimated by fitting a hierarchical
Bayesian model. The estimated parameter values all converged to
their target posterior distributions (see Supplementary Figure 1).
The 95% credible intervals (CIs) for γ+ were (0.78, 1.90)
for the control group and (2.49, 5.64) for the dD group;
the 95% credible intervals for β were (0.14, 0.33) for the
control group and (0.03, 0.12) for the dD group. The CIs
of both model parameters did not overlap between groups,
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FIGURE 2 | Posterior probability distributions of γ+ (A) and β (B) in the control group and the dD group. γ+ : Control mean = 1.39, CI: 0.78, 1.90; Dyslexia
mean = 3.65, CI: 2.49, 5.64. β : Control mean = 0.25, CI: 0.14, 0.33; Dyslexia mean = 0.07, CI: 0.03, 0.12.

FIGURE 3 | Significant correlations across groups of model parameters with reading and the right caudate volume (adjusted for total intracranial volume). Circles
represent controls and triangles represent dD participants. The shaded area around the linear fit represents the 95% confidence interval.

suggesting that the distributions for the two groups were
distinctly different in both γ+and β. Figure 2 displays the
posterior probability distributions of γ+and β in the control
and dD groups, with the posterior means indicated by vertical
lines. As suggested by the CIs, the dD group had higher risk-
taking propensity (γ+) and lower behavioral consistency (β) than
the control group.

Associations Between Cognitive
Parameters and Cognitive Variables
Given that the groups differed on the cognitive parameters
and cognitive variables related to dD (verbal short-term and
working memory), we investigated the relationship between the

cognitive parameters and digit span forward and backward.
First, we investigated across participants to determine if there
was a relationship across diagnostic groups. There were no
significant relationships across groups (γ+ (risk-taking) and β log
transformed, n.b. β was log-transformed due to positive skew,
n = 33, all p’s > 0.16) or within the control group (n = 10,
all p’s > 0.5). Within the dD group, there was a trend for a
significant relationship between verbal short-term memory (Digit
Span Fwd) and both cognitive parameters [n = 23, γ+ (risk-
taking): r = 0.37, p = 0.08 and β log transformed (consistency):
r = −0.36, p = 0.09]. No relationship was found with verbal
working memory (Digit Span Backward) and the cognitive
parameters within the dD group (all p’s > 0.2).
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Associations With Reading
Both controls and dD participants received timed single-
word reading measures. There was a significant relationship
in timed single-word pseudoword reading with both the risk-
taking parameter and the behavioral consistency parameter when
examined across all participants (TOWRE Pseudoword Decoding
Efficiency Raw Score (n = 34), γ+: r = −0.33, p = 0.05; β

log transformed: r = 0.38, p = 0.03, n.b.β was log-transformed
due to positive skew). No significant relationships were found
in timed single-word sight word reading across all participants
(p’s > 0.2) or when relationships were studied within groups for
either timed single word reading measures (control p’s > 0.5; dD
p’s > 0.3).

Only dD participants received the untimed single word
reading measures, WJ Letter-Word Identification and Word
Attack; there was no overall significant relationship between
either model parameter and the WJ reading measures [γ+ (risk-
taking) and Letter-Word: r = −0.18, p = 0.39; γ+ and Word
Attack: r =−0.09, p = 0.68]; β (behavioral consistency, n.b. β was
log-transformed due to positive skew) and Letter-Word: r = 0.20,
p = 0.34; β log transformed and Word Attack: r = 0.15, p = 0.49).

Associations With Striatal Volumes
Overall, there were no group or subgroup differences in
striatal volumes. Across all participants, there was a significant
relationship between the risk-taking model parameter, γ+, and
the right caudate (n = 34: r = −0.40, p = 0.02). There was also
trending relationships between γ+ and the left caudate (n = 34:
r =−0.31, p = 0.08), γ+ and the right nucleus accumbens (n = 34:
r = −0.33, p = 0.06), and β (behavioral consistency) and the
right caudate (n = 34: r = 0.32, p = 0.07). There were no other
significant associations between striatal volumes and the model
parameters across all participants (p’s > 0.1) or in only control
participants (all p’s > 0.4).

However, striatal associations were found within the dD
group. γ+ (risk-taking) was negatively associated with the
caudate (left: r = −0.42, p = 0.04; right: r = −0.46, p = 0.03)
and the accumbens trended toward a negative association (left:
r = −0.34, p = 0.10; right: r = −0.37, p = 0.07). The putamen was
not associated with γ+(all p’s > 0.3). There were no significant
striatal relationships found with β (behavioral consistency) in the
dD group (all p’s > 0.1).

DISCUSSION

Children with developmental dyslexia (dD), in the absence
of ADHD, demonstrated similar overall task performance but
increased risk-taking tendencies and less behavioral consistency
than typically developing children on a risk/reward decision-
making task that did not involve linguistic materials. Striatal
volumes per se did not differentiate groups. However, there
were clear differences in associations between striatal volumes
and game model parameters between dD and controls. These
results suggest that differences in probabilistic decision-making
separate children with dD from those without. Decision-making
profiles and brain-behavior relationships could potentially be

cognitive and biological markers for different instructional or
psychopharmacological interventions in dD.

The cognitive model parameter estimates (risk propensity
and behavior consistency) differed between control and dyslexic
children in interpretable ways, while the overall performance
measure, i.e., the adjusted score, yielded no differences. A possible
reason for the insensitivity of the adjusted score in our case
could be that the maximum numbers of casts in the ART
were adjusted to be lower (M = 8.16) than the traditional
design of this task (M = 64) to avoid fatigue (Pleskac, 2008).
With this smaller range, the distributions of the adjusted
scores could have been compacted, obscuring group differences.
Despite this restriction, groups differed in other cognitive model
parameters, which the model was sensitive to, including the
mean of the maximum number of casts, which is equal to
the reciprocal of pyellow

k . In our task, the pyellow
k is larger than

the tasks using a traditional design, and the estimation of γ+

is adjusted accordingly. Therefore, a potential advantage of
using computational modeling is that the parameter estimates
can be comparable even with different task designs, and are
less influenced by the task designs, given that the design
variable is taken into account by the model, compared to the
behavioral measures.

Another advantage of using the modeling approach is that it
is more sensitive to information about the cognitive processes
during the ART than the overall performance measure. The
two parameters, risk-taking propensity (γ+) and behavioral
consistency (β) characterize both the underlying psychological
variable of interest (risk), and the fact that human behavior can
be random to some extent (behavioral consistency). Therefore, it
is also possible that the groups did not differ on the adjusted score
because of their differences in style of play. For example, one
player could consistently collect points around the average for
the game (5 casts). A different player could behave inconsistently
such that his/her performance could vary greatly from as many
as 44 casts on one trial to as little as 0 casts on another trial but
average out to five casts as well.

The group differences we found in these two parameters better
inform our understanding of probabilistic risk/reward decision-
making in children with and without dD. This finding suggests
that cognitive modeling can provide a deeper understanding
of alternative cognitive processes than tasks designed to only
examine impairments. This type of sensitivity can be particularly
useful in learning disorders when impairments tend to be focal
and global cognition is normal. It also provides more specific
information on individuals and how they approach a task
such that interventions can be more precise, e.g., if a child
has perceptual difficulties and has a high degree of behavioral
inconsistency in a probabilistic task like this then it is possible
that this student may appear to not benefit from interventions
simply because he/she is applying random strategies to deal with
the uncertainty of the perceptual information. Indeed, a frequent
observation from educational interventionists is that dD students
seem to learn how to correctly read a certain word on one
page and then read it differently on the next page. It is possible
then that future interventions for dD could incorporate teaching
children how to identify when they feel uncertain and then
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routinely, systematically approach the uncertain information
until this process becomes habitual.

Studies on decision-making in dD have inconsistent results,
most likely due to methodological differences (Banai and Ahissar,
2018; Elleman et al., 2019; Gabay et al., 2015a,b) and possibly
because they aim to find group differences in task performance
rather than different cognitive approaches, or some combination
of these factors. The two decision-making processes most studied
in relation to dD are statistical learning and category learning
(Sawi and Rueckl, 2019; van Witteloostuijn et al., 2019) and
most use linguistic or symbolic information which confounds
the interpretation because difficulties in linguistic and symbolic
translation are found in dD (Ziegler et al., 2010; Snowling and
Melby-Lervåg, 2016). Our study does not fall under the umbrella
of statistical learning because our probabilities changed every
five trials and we utilized Bayesian statistics in an adaptive
design to reach convergence within 30 trials. Additionally, our
study is not a category learning study because we did not offer
cues, only explicit probabilities, that could help a decision-maker
determine when a negative outcome was likely to be imposed.
On every trial in our task, the decision-maker has the possibility
to collect points within a certain range, so there is no correct
or incorrect categorization. We selected a probabilistic decision-
making paradigm because it could be done quickly and based
on our experience, it most closely represents how children make
decisions when they are uncertain. Therefore, we would not
expect our results to be interpreted in the same vein as statistical
or categorical learning studies. However, similar to Gabay et al.
(2015b) and Massarwe et al. (2021), we found that those with
dD differ in their responses to probabilistic outcomes. Therefore,
our study adds to the literature by demonstrating a spectrum of
performance and shows that there can be a general difference, but
not impairment, in probabilistic decision-making under certain
conditions, e.g., non-linguistic, that may extend to impairments
under other conditions, e.g., linguistic.

The relative contribution of probabilistic assessment vs. effects
of risk propensity and behavioral consistency per se is difficult to
assess, e.g., it is possible that ambiguous terms may modify the
distributions of risk-propensity and behavioral consistency. In
addition to the study on probabilistic learning in dD (Gabay et al.,
2015b), limited evidence supports a link between adolescent risk-
taking behaviors and learning disorders (McNamara et al., 2008;
Poon and Ho, 2016). However, risk-propensity in childhood
has not been widely studied (Bell et al., 2019) and to date no
studies have examined risk-propensity in children with dD in the
absence of ADHD. We propose that children with dD differ from
typical readers in approach on the present task because they make
different probabilistic assessments. However, it is also possible
that they have greater risk-propensity or lower behavioral
consistency, or a combination of these factors even when
probabilistic terms are modified. It is currently unclear whether
or not this behavioral profile is present before the introduction
of reading (i.e., could contribute to the development of a reading
disorder) or if it is a learned behavior in response to addressing
the uncertainty associated with reading. Our inclination is that
both perceptual and decision-making differences are present
early on and that it is a confluence of these factors that contribute
to persistent reading impairments. It will be important in future

work to elucidate the relative contribution of these factors,
both on group and individual levels. Such knowledge could be
of clinical utility in developing instructional interventions for
reading strategies.

Due to our small size, we only examined a few cognitive
relationships with the cognitive parameters. We did not find
any significant relationships across groups or within groups.
However, there was a trend for a relationship between the
parameters and verbal short-term memory. The relationship
was in the opposite direction of what we anticipated, which
suggests that it could be a spurious relationship, a heterogeneous
relationship that in our sample trended toward insignificance,
or that we do not yet have a full conceptualization of how
the cognitive model parameters might relate to standardized
cognitive variables. The trend was for a positive relationship
between risk-taking and verbal short-term memory and a
negative relationship with consistency and verbal short-term
memory in the dD group, which is to say that the dD children
with higher short-term memory were more likely to take risks in
the game and be less consistent in their play. One speculation is
that being able to hold information in their short-term memory
allowed the children to feel more comfortable taking risks at
certain times. However, we are hesitant to speculate further
given the weak signal and sample size. Larger studies that
examine the relationships between these cognitive parameters
and standardized cognitive measures would allow for more
substantive interpretation.

Timed pseudoword reading scores were positively correlated
with the consistency parameter and negatively correlated with
the risk parameter across groups. Timed sight word reading
was not associated with either cognitive parameter. One of the
main differences between these two lists of words is that one
can be decoded using consistent rules (pseudoword reading) and
the other cannot. It makes sense that if a child behaves more
inconsistently that they would have trouble consistently applying
a rule to reading. One of the most common frustrations we
hear from educators is that children with reading difficulties
will appear to learn a word, read it correctly, and then read it
incorrectly in the next paragraph. Another observation is that
the children with reading difficulties will not consistently read
a word incorrectly. They will make different types of errors
on the same word. Given that we only found this association
across groups it is possible that we were underpowered to find
significant associations within groups, that there is heterogeneity
within groups, or that this association relates to reading ability
and is not necessarily phenotypic of only children with dyslexia,
i.e., it is found on a continuum that spans ability levels.

We did not find any group differences in striatal volumes
corrected for total intracranial volume. Striatal differences in
dD have been inconsistently reported and tend to be small, so
these results are consistent with previous studies (Linkersdörfer
et al., 2012; Richlan et al., 2013; Hancock et al., 2017). However,
we found inverse striatal-cognitive relationships across groups
between the right caudate and the risk-taking parameter. There
were also trending relationships with the left caudate, the
right nucleus accumbens, and the risk taking parameter. These
were likely driven by the associations found within the dD
group only. We did not find any results with the putamen.
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The dissociation between striatal regions was unexpected and
is intriguing because there are several studies that describe
functional differences between these striatal regions (Grahn
et al., 2009; Brovelli et al., 2011). In brief, the nucleus
accumbens is involved in reward processing; the caudate is
involved in the cognitive planning for goal-directed behaviors;
the putamen is involved in forming habits through instrumental
learning. Additionally, the putamen is a region that has
been associated with language processing and is differentially
functionally connected in dD (Booth et al., 2007; Viñas-Guasch
and Wu, 2017; Wang et al., 2019). The inverse associations
with the caudate and nucleus accumbens may point toward
a neurocognitive mechanism related to motivational factors
that influence a student’s academic behavior and/or a cognitive
approach to tasks that are challenging due to uncertainty related
to probabilities, e.g., selecting between competing choices on
exams. If this finding is replicated and further elucidated, it could
help to inform different approaches to reading interventions,
assessments, and individual differences within dD.

Additionally, our sample is small and unequal in group sizes,
therefore it would be helpful to replicate these findings in larger
studies and with reliability metrics for the cognitive task (Frey
et al., 2017; Hedge et al., 2018; Palminteri and Chevallier, 2018).
In the future, it would be informative to acquire functional
imaging during game play to determine if these cognitive
differences arise at different points throughout game play and if
there are distinct functional networks active during game play.

In summary, dD is associated with differences in probabilistic
decision making compared to typical readers. We demonstrate a
compelling dissociation between typical readers and those with
dD in cognitive model parameters, which provides an initial step
in examining the role that probabilistic decision-making and
learning play in dD. Finally, cognitive modeling paradigms may
prove to be powerful tools in precision assessment, identification
of brain-behavior relationships, and development of targeted
interventions for focal developmental disorders like dD.

AUTHOR’S NOTE

Developmental dyslexia (dD) is a neurodevelopmental disorder
that remains a conundrum for researchers and practitioners
notwithstanding a canonical mechanism related to phonological
processing. Questions of other mechanisms, including domain-
general vs. specific mechanisms, persist. The present study
addresses these quandaries by using the robust design of a
Bayesian cognitive modeling paradigm of probabilistic decision-
making to better understand if anomalous decision-making
(domain-general) exists in dD. The dD group performed the
task at the same level as controls but was more likely to

take risks and behave inconsistently. Furthermore, the cognitive
model parameters associated with reading and the caudate.
This suggests domain-general neurocognitive differences could
influence learning in dD. This study exemplifies a precise
investigation of distinct, alternative neurocognitive processes that
likely contribute to dD.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of California, San Francisco Institutional
Review Board. Written informed consent to participate in this
study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

CP, MP, JM, and MG contributed to conceptualization of the
study. CP, RZ, MP, JM, and MG designed the study. CP, RZ,
MP, JM, ER, and MM were involved in the implementation of
the study. CP, RZ, MP, JM, EC, and IA analyzed the data. CP,
RZ, MP, JM, PR, EC, and IA wrote parts of the manuscript.
MLM, ZM, and MG edited the first draft of the manuscript. All
authors contributed to manuscript revision, read, and approved
the submitted version.

FUNDING

This work was made possible by the Charles and Helen Schwab
Foundation and K24 DC015544.

ACKNOWLEDGMENTS

The first four authors would like to thank Gabriel Aranovich, MD
for introducing them and the idea of working together.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.782306/full#supplementary-material

REFERENCES
Al Otaiba, S., and Fuchs, D. (2006). Who are the young children for whom best

practices in reading are ineffective? An experimental and longitudinal study.
J. Learn. Disabil. 39, 414–431. doi: 10.1177/00222194060390050401

Arciuli, J. (2018). Reading as statistical learning. Lang. Speech Hear. Serv. Sch. 49,
634–643. doi: 10.1044/2018_LSHSS-STLT1-17-0135

Banai, K., and Ahissar, M. (2018). Poor sensitivity to sound statistics impairs the
acquisition of speech categories in dyslexia. Lang. Cogn. Neurosci. 33, 321–332.
doi: 10.1080/23273798.2017.1408851

Frontiers in Neuroscience | www.frontiersin.org 10 June 2022 | Volume 16 | Article 782306

https://www.frontiersin.org/articles/10.3389/fnins.2022.782306/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.782306/full#supplementary-material
https://doi.org/10.1177/00222194060390050401
https://doi.org/10.1044/2018_LSHSS-STLT1-17-0135
https://doi.org/10.1080/23273798.2017.1408851
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-782306 June 13, 2022 Time: 12:39 # 11

Pereira et al. Probabilistic Decision-Making in Dyslexia

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., and Rushworth, M. F. S. (2007).
Learning the value of information in an uncertain world. Nat. Neurosci. 10,
1214–1221. doi: 10.1038/nn1954

Bell, M. D., Imal, A. E., Pittman, B., Jin, G., and Wexler, B. E. (2019). The
development of adaptive risk taking and the role of executive functions in a
large sample of school-age boys and girls. Trends Neurosci. Educ. 17:100120.
doi: 10.1016/j.tine.2019.100120

Berridge, K. C., and Robinson, T. E. (1998). What is the role of dopamine in reward:
hedonic impact, reward learning, or incentive salience?. Brain Res. Brain Res.
Rev. 28, 309–369. doi: 10.1016/s0165-0173(98)00019-8

Booth, J. R., Wood, L., Lu, D., Houk, J. C., and Bitan, T. (2007). The role of the
Basal Ganglia and cerebellum in language processing. Brain Res. 1133, 136–144.
doi: 10.1016/j.brainres.2006.11.074

Bourgeois, A., Chelazzi, L., and Vuilleumier, P. (2016). How motivation and
reward learning modulate selective attention. Prog. Brain Res. 229, 325–342.
doi: 10.1016/bs.pbr.2016.06.004

Bradley, L., and Bryant, P. E. (1983). Categorizing sounds and learning to read—a
causal connection. Nature 301, 419–421. doi: 10.1038/301419a0

Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J.,
et al. (2014). Mechanisms of motivation-cognition interaction: challenges and
opportunities. Cogn. Affect. Behav. Neurosci. 14, 443–472. doi: 10.3758/s13415-
014-0300-0

Brovelli, A., Nazarian, B., Meunier, M., and Boussaoud, D. (2011). Differential roles
of caudate nucleus and putamen during instrumental learning. NeuroImage 57,
1580–1590. doi: 10.1016/j.neuroimage.2011.05.059

Chan, S.-H., Ryan, L., and Bever, T. G. (2013). Role of the striatum in language:
syntactic and conceptual sequencing. Brain Lang. 125, 283–294. doi: 10.1016/j.
bandl.2011.11.005

Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition
between prefrontal and dorsolateral striatal systems for behavioral control. Nat.
Neurosci. 8, 1704–1711. doi: 10.1038/nn1560

Delis, C. D., Kramer, J. H., Kaplan, E., and Ober, B. A. (1994). California
Verbal Learning Test—Children’s Version. San Antonio, TX: The Psychological
Corporation.

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,
D., et al. (2006). An automated labeling system for subdividing the human
cerebral cortex on MRI scans into Gyral based regions of interest. NeuroImage
31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Elleman, A. M., Steacy, L. M., and Compton, D. L. (2019). The role of
statistical learning in word reading and spelling development: more questions
than answers. Sci. Stud. Read. 23, 1–7. doi: 10.1080/10888438.2018.154
9045

Fiser, J., and Lengyel, G. (2019). A common probabilistic framework for perceptual
and statistical learning. Curr. Opin. Neurobiol. 58, 218–228. doi: 10.1016/j.conb.
2019.09.007

Frey, R., Pedroni, A., Mata, R., Rieskamp, J., and Hertwig, R. (2017). Risk
preference shares the psychometric structure of major psychological traits. Sci.
Adv. 3:e1701381. doi: 10.1126/sciadv.1701381

Gabay, Y., Thiessen, E. D., and Holt, L. L. (2015a). Impaired statistical learning in
developmental dyslexia. J. Speech Lang. Hear. Res. 58, 934–945. doi: 10.1044/
2015_JSLHR-L-14-0324

Gabay, Y., Vakil, E., Schiff, R., and Holt, L. L. (2015b). Probabilistic category
learning in developmental dyslexia: evidence from feedback and paired-
associate weather prediction tasks. Neuropsychology 29, 844–854. doi: 10.1037/
neu0000194

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.
(2014). Bayesian Data Analysis, 3rd Edn. Boca Raton, FL: CRC Press.

Giofrè, D., Toffalini, E., Provazza, S., Calcagnì, A., Altoè, G., and Roberts, D. J.
(2019). Are children with developmental dyslexia all the same? A cluster
analysis with more than 300 cases. Dyslexia (Chichester, England) 25, 284–295.
doi: 10.1002/dys.1629

Gori, S., and Facoetti, A. (2015). How the visual aspects can be crucial in reading
acquisition? The intriguing case of crowding and developmental dyslexia. J. Vis.
15:15.1.8. doi: 10.1167/15.1.8

Grahn, J. A., Parkinson, J. A., and Owen, A. M. (2009). The role of the Basal Ganglia
in learning and memory: neuropsychological studies. Behav. Brain Res. 199,
53–60. doi: 10.1016/j.bbr.2008.11.020

Hancock, R., Richlan, F., and Hoeft, F. (2017). Possible roles for fronto-striatal
circuits in reading disorder. Neurosci. Biobehav. Rev. 72, 243–260. doi: 10.1016/
j.neubiorev.2016.10.025

Hedge, C., Powell, G., and Sumner, P. (2018). The reliability paradox: why robust
cognitive tasks do not produce reliable individual differences. Behav. Res.
Methods 50, 1166–1186. doi: 10.3758/s13428-017-0935-1

Heekeren, H. R., Wartenburger, I., Marschner, A., Mell, T., Villringer, A., and
Reischies, F. M. (2007). Role of ventral striatum in reward-based decision
making. Neuroreport 18, 951–955. doi: 10.1097/WNR.0b013e3281532bd7

Hsu, A. S., and Chater, N. (2010). The logical problem of language acquisition:
a probabilistic perspective. Cogn. Sci. 34, 972–1016. doi: 10.1111/j.1551-6709.
2010.01117.x

Kamphaus, R. W., VanDeventer, M. C., Brueggemann, A., and Barry, M. (2007).
“Behavior assessment system for children,” in The Clinical Assessment of
Children and Adolescents: A Practitioner’s Handbook, 2nd Edn, eds S. R. Smith
and L. Handler (Mahwah, NJ: Lawrence Erlbaum Associates Publishers), 311–
326.

Korkman, M., Kirk, U., and Kemp, S. (2007). NEPSY–Second Edition (NEPSY-II).
San Antonio, TX: The Psychological Corporation.

Krishnan, S., Watkins, K. E., and Bishop, D. V. M. (2016). Neurobiological basis of
language learning difficulties. Trends Cogn. Sci. 20, 701–714. doi: 10.1016/j.tics.
2016.06.012

Lee, D., Seo, H., and Jung, M. W. (2012). Neural basis of reinforcement learning
and decision making. Annu. Rev. Neurosci. 35, 287–308. doi: 10.1146/annurev-
neuro-062111-150512

Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian
models. J. Math. Psychol. 55, 1–7. doi: 10.1016/j.jmp.2010.08.013

Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart,
G. L., et al. (2002). Evaluation of a behavioral measure of risk taking: the balloon
analogue risk task (BART). J. Exp. Psychol. Appl. 8, 75–84. doi: 10.1037//1076-
898x.8.2.75

Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., and Fiebach, C. J.
(2012). Grey matter alterations co-localize with functional abnormalities in
developmental dyslexia: an ALE meta-analysis. PLoS One 7:e43122. doi: 10.
1371/journal.pone.0043122

Llorente, A. M., Williams, J., Satz, P., and D’Elia, L. F. (2003). Children’s Color Trails
Test (CCTT). Odessa, FL: Psychological Assessment Resources.

Lum, J. A. G., Ullman, M. T., and Conti-Ramsden, G. (2013). Procedural learning
is impaired in dyslexia: evidence from a meta-analysis of serial reaction time
studies. Res. Dev. Disabil. 34, 3460–3476. doi: 10.1016/j.ridd.2013.07.017

Lyon, G. R., Shaywitz, S. E., and Shaywitz, B. A. (2003). A definition of dyslexia.
Ann. Dyslexia 53, 1–14. doi: 10.1007/s11881-003-0001-9

Manning, C., Hassall, C. D., Hunt, L. T., Norcia, A. M., Wagenmakers, E.-J.,
Snowling, M. J., et al. (2022). Visual motion and decision-making in dyslexia:
reduced accumulation of sensory evidence and related neural dynamics.
J. Neurosci. 42, 121–134. doi: 10.1523/JNEUROSCI.1232-21.2021

Mascheretti, S., Gori, S., Trezzi, V., Ruffino, M., Facoetti, A., and Marino, C. (2018).
Visual motion and rapid auditory processing are solid endophenotypes of
developmental dyslexia. Genes Brain Behav. 17, 70–81. doi: 10.1111/gbb.12409

Massarwe, A. O., Nissan, N., and Gabay, Y. (2021). Atypical reinforcement learning
in developmental dyslexia. J. Int. Neuropsychol. Soc. 28, 270–280. doi: 10.1017/
S1355617721000266

Massi, B., Donahue, C. H., and Lee, D. (2018). Volatility facilitates value updating
in the prefrontal cortex. Neuron 99, 598–608.e4. doi: 10.1016/j.neuron.2018.06.
033

McCormick, E. M., and Telzer, E. H. (2017). Adaptive adolescent flexibility:
neurodevelopment of decision-making and learning in a risky context. J. Cogn.
Neurosci. 29, 413–423. doi: 10.1162/jocn_a_01061

McNamara, J., Vervaeke, S.-L., and Willoughby, T. (2008). Learning disabilities
and risk-taking behavior in adolescents: a comparison of those with and
without comorbid attention-deficit/hyperactivity disorder. J. Learn. Disabil. 41,
561–574. doi: 10.1177/0022219408326096

Meyers, J. E., and Meyers, K. R. (1995). Rey Complex Figure Test and Recognition
Trial Professional Manual. Odessa, FL: Psychological Assessment Resources.

O’Brien, G., and Yeatman, J. D. (2021). Bridging sensory and language theories of
dyslexia: toward a multifactorial model. Dev. Sci. 24:e13039. doi: 10.1111/desc.
13039

Frontiers in Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 782306

https://doi.org/10.1038/nn1954
https://doi.org/10.1016/j.tine.2019.100120
https://doi.org/10.1016/s0165-0173(98)00019-8
https://doi.org/10.1016/j.brainres.2006.11.074
https://doi.org/10.1016/bs.pbr.2016.06.004
https://doi.org/10.1038/301419a0
https://doi.org/10.3758/s13415-014-0300-0
https://doi.org/10.3758/s13415-014-0300-0
https://doi.org/10.1016/j.neuroimage.2011.05.059
https://doi.org/10.1016/j.bandl.2011.11.005
https://doi.org/10.1016/j.bandl.2011.11.005
https://doi.org/10.1038/nn1560
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1080/10888438.2018.1549045
https://doi.org/10.1080/10888438.2018.1549045
https://doi.org/10.1016/j.conb.2019.09.007
https://doi.org/10.1016/j.conb.2019.09.007
https://doi.org/10.1126/sciadv.1701381
https://doi.org/10.1044/2015_JSLHR-L-14-0324
https://doi.org/10.1044/2015_JSLHR-L-14-0324
https://doi.org/10.1037/neu0000194
https://doi.org/10.1037/neu0000194
https://doi.org/10.1002/dys.1629
https://doi.org/10.1167/15.1.8
https://doi.org/10.1016/j.bbr.2008.11.020
https://doi.org/10.1016/j.neubiorev.2016.10.025
https://doi.org/10.1016/j.neubiorev.2016.10.025
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.1097/WNR.0b013e3281532bd7
https://doi.org/10.1111/j.1551-6709.2010.01117.x
https://doi.org/10.1111/j.1551-6709.2010.01117.x
https://doi.org/10.1016/j.tics.2016.06.012
https://doi.org/10.1016/j.tics.2016.06.012
https://doi.org/10.1146/annurev-neuro-062111-150512
https://doi.org/10.1146/annurev-neuro-062111-150512
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1037//1076-898x.8.2.75
https://doi.org/10.1037//1076-898x.8.2.75
https://doi.org/10.1371/journal.pone.0043122
https://doi.org/10.1371/journal.pone.0043122
https://doi.org/10.1016/j.ridd.2013.07.017
https://doi.org/10.1007/s11881-003-0001-9
https://doi.org/10.1523/JNEUROSCI.1232-21.2021
https://doi.org/10.1111/gbb.12409
https://doi.org/10.1017/S1355617721000266
https://doi.org/10.1017/S1355617721000266
https://doi.org/10.1016/j.neuron.2018.06.033
https://doi.org/10.1016/j.neuron.2018.06.033
https://doi.org/10.1162/jocn_a_01061
https://doi.org/10.1177/0022219408326096
https://doi.org/10.1111/desc.13039
https://doi.org/10.1111/desc.13039
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-782306 June 13, 2022 Time: 12:39 # 12

Pereira et al. Probabilistic Decision-Making in Dyslexia

O’Doherty, J. P., Cockburn, J., and Pauli, W. M. (2017). Learning, reward, and
decision making. Annu. Rev. Psychol. 68, 73–100. doi: 10.1146/annurev-psych-
010416-044216

Palminteri, S., and Chevallier, C. (2018). Can we infer inter-individual differences
in risk-taking from behavioral tasks?. Front. Psychol. 9:2307. doi: 10.3389/fpsyg.
2018.02307

Palmiter, R. D. (2008). Dopamine signaling in the dorsal striatum is essential for
motivated behaviors: lessons from dopamine-deficient mice. Ann. N. Y. Acad.
Sci. 1129, 35–46. doi: 10.1196/annals.1417.003

Pauli, W. M., O’Reilly, R. C., Yarkoni, T., and Wager, T. D. (2016). Regional
specialization within the human striatum for diverse psychological functions.
Proc. Natl. Acad. Sci. U.S.A. 113, 1907–1912. doi: 10.1073/pnas.1507610113

Pennington, B. F. (2006). From single to multiple deficit models of developmental
disorders. Cognition 101, 385–413. doi: 10.1016/j.cognition.2006.04.008

Peters, L., and Ansari, D. (2019). Are specific learning disorders truly specific, and
are they disorders?. Trends Neurosci. Educ. 17:100115. doi: 10.1016/j.tine.2019.
100115

Pine, A., Sadeh, N., Ben-Yakov, A., Dudai, Y., and Mendelsohn, A. (2018).
Knowledge acquisition is governed by striatal prediction errors. Nat. Commun.
9:1673. doi: 10.1038/s41467-018-03992-5

Platt, M. L., and Huettel, S. A. (2008). Risky business: the neuroeconomics of
decision making under uncertainty. Nat. Neurosci. 11, 398–403. doi: 10.1038/
nn2062

Pleskac, T. J. (2008). Decision making and learning while taking sequential risks.
J. Exp. Psychol. Learn. Mem. Cogn. 34, 167–185. doi: 10.1037/0278-7393.34.1.
167

Poon, K., and Ho, C. S.-H. (2016). Risk-taking propensity and sensitivity to
punishment in adolescents with attention deficit and hyperactivity disorder
symptoms and/or reading disability. Res. Dev. Disabil. 53–54, 296–304. doi:
10.1016/j.ridd.2016.02.017

Preuschoff, K., Bossaerts, P., and Quartz, S. R. (2006). Neural differentiation of
expected reward and risk in human subcortical structures. Neuron 51, 381–390.
doi: 10.1016/j.neuron.2006.06.024

Proschan, M., Glimm, E., and Posch, M. (2014). Connections between permutation
and T-tests: relevance to adaptive methods. Stat. Med. 33, 4734–4742. doi:
10.1002/sim.6288

Provazza, S., Adams, A.-M., Giofrè, D., and Roberts, D. J. (2019). Double trouble:
visual and phonological impairments in English dyslexic readers. Front. Psychol.
10:2725. doi: 10.3389/fpsyg.2019.02725

Richlan, F., Kronbichler, M., and Wimmer, H. (2013). Structural abnormalities in
the dyslexic brain: a meta-analysis of voxel-based Morphometry studies. Hum.
Brain Mapp. 34, 3055–3065. doi: 10.1002/hbm.22127

Ring, J., and Black, J. L. (2018). The multiple deficit model of dyslexia: what
does it mean for identification and intervention?. Ann. Dyslexia 68, 104–125.
doi: 10.1007/s11881-018-0157-y

Rouder, J. N., and Morey, R. D. (2012). Default Bayes factors for model selection
in regression. Multiv. Behav. Res. 47, 877–903. doi: 10.1080/00273171.2012.
734737

Sawi, O. M., and Rueckl, J. G. (2019). Reading and the neurocognitive bases of
statistical learning(1). Sci. Stud. Read. 23, 8–23. doi: 10.1080/10888438.2018.
1457681

Schrank, F. A., Mather, N., and McGrew, K. S. (2014). Woodcock-Johnson IV Tests
of Achievement. Rolling Meadows, IL: Riverside.

Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues Clin.
Neurosci. 18, 23–32.

Snowling, M. J., and Hulme, C. (2012). Interventions for children’s language and
literacy difficulties. Int. J. Lang. Commun. Disord. 47, 27–34. doi: 10.1111/j.
1460-6984.2011.00081.x

Snowling, M. J., and Melby-Lervåg, M. (2016). Oral language deficits in familial
dyslexia: a meta-analysis and review. Psychol. Bull. 142, 498–545. doi: 10.1037/
bul0000037

Stan Development Team (2020). RStan: The R Interface to Stan. R Package Version
2.19.3. (version version 2.19.3). Available online at: http://mc-stan.org/

Stefanac, N. R., Zhou, S.-H., Spencer-Smith, M. M., O’Connell, R., and Bellgrove,
M. A. (2021). A neural index of inefficient evidence accumulation in dyslexia
underlying slow perceptual decision making. Cortex 142, 122–137. doi: 10.1016/
j.cortex.2021.05.021

Stein, J. (2018). What is developmental dyslexia?. Brain Sci. 8:26. doi: 10.3390/
brainsci8020026

Stein, J., and Walsh, V. (1997). To see but not to read; the magnocellular theory of
dyslexia. Trends Neurosci. 20, 147–152. doi: 10.1016/s0166-2236(96)01005-3

Stevens, E. A., Austin, C., Moore, C., Scammacca, N., Boucher, A. N., and
Vaughn, S. (2021). Current state of the evidence: examining the effects of
Orton-Gillingham reading interventions for students with or at risk for
word-level reading disabilities. Except. Child. 87, 397–417. doi: 10.1177/
0014402921993406

Torgesen, J. K., Wagner, R. K., and Rashotte, C. A. (2012). TOWRE-2 Examiner’s
Manual. Austin, TX: Pro-Ed.

Tsukayama, E., Duckworth, A. L., and Kim, B. (2013). Domain-specific impulsivity
in school-age children. Dev. Sci. 16, 879–893. doi: 10.1111/desc.12067

van Ravenzwaaij, D., Dutilh, G., and Wagenmakers, E.-J. (2011). Cognitive model
decomposition of the BART: assessment and application. J. Math. Psychol. 55,
94–105. doi: 10.1016/j.jmp.2010.08.010

van Witteloostuijn, M., Boersma, P., Wijnen, F., and Rispens, J. (2019). Statistical
learning abilities of children with dyslexia across three experimental paradigms.
PLoS One 14:e0220041. doi: 10.1371/journal.pone.0220041

Viñas-Guasch, N., and Wu, Y. J. (2017). The role of the putamen in language:
a meta-analytic connectivity modeling study. Brain Struct. Funct. 222, 3991–
4004. doi: 10.1007/s00429-017-1450-y

Wang, Z., Yan, X., Liu, Y., Spray, G. J., Deng, Y., and Cao, F. (2019). Structural and
functional abnormality of the putamen in children with developmental dyslexia.
Neuropsychologia 130, 26–37. doi: 10.1016/j.neuropsychologia.2018.07.014

Wechsler, D. (2004). WISC-IV: Wechsler Intelligence Scale for Children, Integrated:
Technical and Interpretive Manual. San Antonio, TX: Harcourt Brace and
Company.

Wiederholt, J. L., and Bryant, B. R. (2012). Gray Oral Reading Tests—Fifth Edition.
(GORT-5). Austin, TX: Pro-Ed.

Yang, C., Crain, S., Berwick, R. C., Chomsky, N., and Bolhuis, J. J. (2017).
The growth of language: universal grammar, experience, and principles of
computation. Neurosci. Biobehav. Rev. 81(Pt. B), 103–119. doi: 10.1016/j.
neubiorev.2016.12.023

Zhou, R., Myung, J. I., Mathews, C. A., and Pitt, M. A. (2021). Assessing the validity
of three tasks of risk-taking propensity. J. Behav. Decis. Making 34, 555–567.

Ziegler, J. C., Pech-Georgel, C., Dufau, S., and Grainger, J. (2010). Rapid
processing of letters, digits and symbols: what purely visual-attentional deficit in
developmental dyslexia?. Dev. Sci. 13, F8–F14. doi: 10.1111/j.1467-7687.2010.
00983.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pereira, Zhou, Pitt, Myung, Rossi, Caverzasi, Rah, Allen, Mandelli,
Meyer, Miller and Gorno Tempini. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 June 2022 | Volume 16 | Article 782306

https://doi.org/10.1146/annurev-psych-010416-044216
https://doi.org/10.1146/annurev-psych-010416-044216
https://doi.org/10.3389/fpsyg.2018.02307
https://doi.org/10.3389/fpsyg.2018.02307
https://doi.org/10.1196/annals.1417.003
https://doi.org/10.1073/pnas.1507610113
https://doi.org/10.1016/j.cognition.2006.04.008
https://doi.org/10.1016/j.tine.2019.100115
https://doi.org/10.1016/j.tine.2019.100115
https://doi.org/10.1038/s41467-018-03992-5
https://doi.org/10.1038/nn2062
https://doi.org/10.1038/nn2062
https://doi.org/10.1037/0278-7393.34.1.167
https://doi.org/10.1037/0278-7393.34.1.167
https://doi.org/10.1016/j.ridd.2016.02.017
https://doi.org/10.1016/j.ridd.2016.02.017
https://doi.org/10.1016/j.neuron.2006.06.024
https://doi.org/10.1002/sim.6288
https://doi.org/10.1002/sim.6288
https://doi.org/10.3389/fpsyg.2019.02725
https://doi.org/10.1002/hbm.22127
https://doi.org/10.1007/s11881-018-0157-y
https://doi.org/10.1080/00273171.2012.734737
https://doi.org/10.1080/00273171.2012.734737
https://doi.org/10.1080/10888438.2018.1457681
https://doi.org/10.1080/10888438.2018.1457681
https://doi.org/10.1111/j.1460-6984.2011.00081.x
https://doi.org/10.1111/j.1460-6984.2011.00081.x
https://doi.org/10.1037/bul0000037
https://doi.org/10.1037/bul0000037
http://mc-stan.org/
https://doi.org/10.1016/j.cortex.2021.05.021
https://doi.org/10.1016/j.cortex.2021.05.021
https://doi.org/10.3390/brainsci8020026
https://doi.org/10.3390/brainsci8020026
https://doi.org/10.1016/s0166-2236(96)01005-3
https://doi.org/10.1177/0014402921993406
https://doi.org/10.1177/0014402921993406
https://doi.org/10.1111/desc.12067
https://doi.org/10.1016/j.jmp.2010.08.010
https://doi.org/10.1371/journal.pone.0220041
https://doi.org/10.1007/s00429-017-1450-y
https://doi.org/10.1016/j.neuropsychologia.2018.07.014
https://doi.org/10.1016/j.neubiorev.2016.12.023
https://doi.org/10.1016/j.neubiorev.2016.12.023
https://doi.org/10.1111/j.1467-7687.2010.00983.x
https://doi.org/10.1111/j.1467-7687.2010.00983.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Probabilistic Decision-Making in Children With Dyslexia
	Introduction
	Materials and Methods
	Participants/Recruitment
	Neuropsychological and Academic Assessment
	Experimental Task
	Computational Modeling of Decision Making Processes
	Striatal Volume Segmentation
	Statistics

	Results
	Demographics
	Parent and Self-Report Measures
	Cognitive Testing
	Main Outcome Measures
	Cognitive Model Parameters

	Associations Between Cognitive Parameters and Cognitive Variables
	Associations With Reading
	Associations With Striatal Volumes

	Discussion
	Author's Note
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


