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Abstract

Background: Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D)
sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact
number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately
predicting these features is a critical step for 3D protein structure building.

Results: In this study, we present DeepSacon, a computational method that can effectively predict protein solvent
accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a
dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the
prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent
accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729
monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset,
DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively.

Conclusions: We have shown that DeepSacon can reliably predict solvent accessibility and contact number with
stacked sparse autoencoder and a dropout approach.
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Background
Protein 3D structures, determined largely by their amino
acid sequences, have been considered as an essential
factor for better understanding the function of proteins
[1–3]. However, it is exceedingly difficult to directly pre-
dict proteins 3D structures from amino acid sequences
[4]. Identifying structure properties, such as secondary
structure, solvent accessibility or contact number can pro-
vide useful insights into the 3D structures [5–7]. Accurate
prediction of structural characteristics from the primary
sequence is a crucial intermediate step in protein 3D
structure prediction [8, 9].
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The solvent accessibility (solvent accessible surface area)
is defined as the surface region of a residue that is acces-
sible to a rounded solvent while probing the surface of
that residue [10]. Solvent burial residues have a particu-
larly strong association with packed amino acids during
the folding process [11], and exposed residues give a use-
ful insight into protein-protein interactions and protein
stability [12–15]. Information about the degree of surface
exposure of an amino acid is commonly used to enhance
the understanding of the sequence-structure-function
relationship [16, 17]. Besides, it is also helpful to under-
stand a lot of biological problems such as active sites [18],
structural epitopes [19, 20], and associations between dis-
ease and single nucleotide polymorphisms [21, 22]. In
the past, several methods for predicting protein solvent
accessible surface area have been implemented mostly in a
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discrete fashion as the two-state or three-state classifica-
tion of the exposure rate of residues. Numerous machine
learning methods have been applied for solvent expo-
sure prediction based on protein amino acid sequences,
including neural networks [5, 23, 24], Bayesian statis-
tic [25], support vector machines [25–27], information
theory-based method [28], random forest [29] and near-
est neighbor methods [30]. These methods are focused
on multistate solvent accessibility prediction, while some
other methods attempt to predict the real values of solvent
exposure directly [31–33].

In analogous with solvent accessibility, the contact num-
ber is another important structural characteristic. The
contact number, or coordination number, of a given amino
acid, is defined as the number of neighbor residues around
the target amino acid within a certain distance. The dis-
tances are calculated based on the C-beta atoms. The
contact number is also essential for protein structure
prediction since the number of possible protein confor-
mations is very limited [34] within a certain number of
contacts along the protein chain. During the past few
years, there are numerous studies focused on develop-
ing computational methods to predict contact number in
the protein sequence. Fariselli et al. [35] employed a feed-
forward neural network approach with a local window
to discriminate between two different states of residue
contacts. Kinjo et al. [36] used a simple linear regression
scheme based on multiple sequence alignments. Yuan [37]
applied SVM to predict two-state and absolute values of
contact numbers.

Although the two structure characteristics (solvent
accessibility and contact number) are different, they are
closely associated with each other representing the struc-
tural atmosphere of each residue in the protein structure
[36]. Moreover, they may serve as useful restraints for pro-
tein folding and tertiary structure prediction. Therefore,
developing an integrated computational approach to pre-
dict both solvent accessibility and contact number is of
great importance.

In this paper, we develop a deep neural network
learning-based approach, termed DeepSacon, to signif-
icantly improve the prediction performance of both
contact number and solvent accessibility by incorporat-
ing predicted structure related features and amino acid
related features. We pre-train the data with stacked sparse
autoencoder, and to prevent units from co-adapting too
much. Then, we apply a dropout method in the process
of training. The main contributions are as follows: 1) We
apply deep learning to better fuse the learned high-level
characteristics from protein sequences. 2) Overfitting is
significantly reduced and the performance is noticeably
improved by combining stacked sparse autoencoder and
dropout together. 3) We fully employ specific biological
properties such as intrinsic disorder and local backbone

angles to further improve the prediction accuracy of con-
tact number and solvent accessibility. We demonstrate
that DeepSacon achieves higher performance both in
cross-validation and independent test when compared
with existing methods.

Methods
Datasets
We employ the same training and validation datasets gen-
erated in Ma et al.’s [38] for the prediction of solvent
accessibility and contact number. Briefly, a monomeric,
globular and nonmembrane protein structures of 5729
proteins were obtained from PISCES [39] by removing
redundancy (40% cutoff ) and length less than 50. This
set was randomly divided into a training dataset and a
validation dataset of 4583 and 1146 chains, respectively.

In order to further compare with the existing meth-
ods, we also collect an independent evaluation dataset of
CASP11 proteins. After removing redundant sequences
by PISCES (less than 3.0 Å resolution, 0.3 of R-factor and
0.3 cutoff ), we obtain a set of 69 proteins out of original
CASP11 dataset. In addition, we include the dataset from
Yuan’s work [37] as the independent testing dataset to
compare with Kinjo’s [36] and Yuan’s methods for contact
number prediction.

Calculation of solvent accessibility
The solvent accessibility (ASA) are computed using the
DSSP program [40]. The relative solvent accessibility
(RSA) of a residue is calculated as the ratio between the
ASA and the maximum solvent accessibility [28]. Based
on the RSA value, the classification is classified into three
states, that is, buried (B), intermediate (I) and exposed
(E). In this study, we use the threshold of 10% for B/I and
40% for I/E for classification of the three-state based on
Ma et al.’s work [38].

Calculation of contact number
The contact number of a residue is defined as the num-
ber of other residues located within a sphere of radius
rd centered on the target residue based on the distance
between C-beta atoms (C-alpha for glycine). The contact
number of the i-th residue in a sequence of M residues is
calculated by

Ni
d =

M∑

j:|j−i|>2
σ(ri,j)

{
σ(ri,j) = 1 if ri,j < rd
σ(ri,j) = 1 if ri,j ≥ rd

(1)

where ri,j is the distance between the C-beta atoms of the
ith and jth residues. The cutoff radius rd is set to 7.5 Å in
this work. If the contact number of a residue is above 14,
the contact number is set to 14 since such cases are rare in
our training data. As a result, a total of 15 states of contact
number is calculated for each residue.
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Sequence encoding schemes
For a comprehensive examination, we utilize different
sequence-based encoding schemes based on global and
local sequence features, which can be grouped into three
categories: evolutionary information, predicted structures
and amino acid related features. A detailed description of
these feature schemes is as follows.

Evolutionary information
Previously, evolutionary information has been shown
to be useful in structural bioinformatics performance
[41, 42]. Position-specific scoring matrix (PSSM) has been
widely used for in computational biology [43–48]. In
this study, PSSM profiles are calculated with PSI-BLAST
against the NCBI nr database (iterations=3 and E-value
cutoff=0.001). Also, we compute 20 substitution prob-
abilities from the HMM-profiles produced by HHblits
with default parameters against the Uniprot20 database
[49]. We scale the values of PSSM and HHM profiles to
the range of [0,1] using the following standard logistic
function:

x′ = 1
1 + e−x (2)

where x is the raw value and x′ is the normalized value
of x. For a given residue, we have extracted 20+20=40
dimensional vector as evolution related features.

Structure related features
Lots of research has shown that local structural character-
istics play important roles in predicting solvent accessibil-
ity as well as contact number [50–52]. In this paper, we use
the predicted secondary structure, predicted natively dis-
ordered region and predicted local backbone angles as the
structure related features for each position. These three
structural features are predicted using the PSIPRED pro-
gram [53], DISOPRED server [54] and SPIDER2 program
[55], respectively. In our previous study, we have shown
that using the predicted secondary structure (3 features)
and predicted natively disordered region (2 features) could
significantly improve the prediction preformation [56].
Some works have also indicated local backbone angles
(4 features) have a strong relation with solvent accessibility
[55, 57]. We have extracted 3+2+4=9 dimensional vector
as structure related features.

Amino acid related features
With regard to the global sequence features, the seven
physicochemical properties (steric parameter, hydropho-
bicity, volume, polarizability, isoelectric point, helix prob-
ability, sheet probability) of the residues are employed.
Besides, we also use contact potential which have proven
to be important in the folding of proteins as position inde-
pendent features [58]. Contact potential has 20 values
for each residue. For a given residue, we have extracted

a vector of 27 (20+7) dimensions as amino acid related
features.

Prediction method
Stacked sparse auto-encoder (SSAE)
Stacked auto-encoder (SAE) applies auto-encoder in each
layer of a stacked network [59]. We calculate the proba-
bility of each label corresponding to each residue based
on the given features. Formally, for a target protein with
length L, we denote the input features as L × N matrix
X = {x1, x2, · · · , xi, · · · , xL} , xi ∈ RN , where N is the num-
ber of features for the i-th amino acid. The input to the
stacked sparse autoencoder (SSAE) is the feature matrix
of a protein. Then three hidden SSAE networks are built
as shown in Fig. 1, where the sigmoid function is utilized
as the activation function. For the input matrix X, the
goal is to learn and get a feature representation hW ,b =
f (W T x) = f

(∑N
i=1 Wixi + b

)
at the hidden layer. A con-

ventional auto-encoder would attempt to learn a function
hW ,b ≈ x, which means it is detecting an approximation to
the identity function. Here, we add a sparse penalty term
to the objective function in the hidden layer to constrain
the number of “active” neurons. The mean output value of
the hidden layer is kept to 0, which suggests most neurons
are supposed to be inactive. The overall cost function of
SSAE is defined as:

Jsparse(W , b) =
[

1
N

N∑

i=1

1
2

∥∥hW ,b(x(i)) − y(i)
∥∥2

]

+λ

2

nl−1∑

l=1

sl∑

i=1

sl+1∑

j=1

(
W (l)

ji

)2 + β

s2∑

j=1
KL(ρ || ρ̂j)

(3)

where the first part is the term of average sum-of-squares
error; N is the number of examples in the training set;
λ is assumed to control the relative weight of the regu-
larization term; s2 is the number of the hidden neurons;
β is the weight of the sparsity penalty term; KL(·) is the
Kullback−Leibler divergence [60], which is defined as:

KL(ρ || ρj) = ρlog
ρ

ρj
+ (1 − ρ)log

1 − ρ

1 − ρj
(4)

The optimal values of the parameter W and b need to
be determined. The two parameters can be computed by
minimizing Jsparse(W , b) since the sparse cost function in
Eq. (3) is directly associated with the two parameters. This
can be implemented using the back-propagation algo-
rithm [61], where the stochastic gradient descent method
is applied for training, and the parameters W and b in each
iteration can be updated as:

Wij(l) = Wij(l) − ε
∂

∂Wij(l)
Jsparse(W , b) (5)
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Fig. 1 Illustration of Stacked Sparse Autoen-coder (SSAE) by three hidden layers

bi(l) = bi(l) − ε
∂

∂bi(l)
Jsparse(W , b) (6)

where ε is the learning rate. The back-propagation algo-
rithm works to update the parameters. Finally, for a
given amino acid residue x, we denote its predicted labels
(3-state solvent accessibility or 15-state contact number)
as y, where y ∈ {1, 2, · · · , M}, M = 3 for solvent acces-
sibility and M = 15 for contact number prediction,
the probability of the predicted label y is p(y|x; W , b) =
sigmoid(Wx + b).

Dropout method
The dropout method can help to reduce “overfitting”
when training a neural network with limited data [62]. In
this study, we use the dropout approach to build the SSAE
to prevent complex co-adaptations and avoid extracting
the same features repeatedly. Technically, we can set the
output of some hidden neurons to 0 to implement the
dropout, since these neurons will not propagate forward
in the training process. Note that the dropout in the train-
ing and testing process is different, where the dropout is
turned off during testing. This will help to promote the
feature extraction and prediction performance. Usually,
the dropout rate p is set to the range from 0.5 to 0.8. We
set p=0.5 in our experiment.

The architecture of our method
Figure 2 illustrates the flowchart of the DeepSacon
approach which uses a sparse autoencoder-based deep

neural network for probing solvent accessibility and con-
tact number from protein primary sequences. In this
study, a sliding window method is used to capture the
sequence environment. We test a spectrum of window
sizes range from 7 to 15 with a step size of 2, and observe
that the optimal window size is 11. In our method, a
three-layer sparse auot-encoder (SAE) consists of the hid-
den layers of the deep learning network, and one layer of
softmax classifier is added at the top to the output of a
3-state solvent accessibility and a 15-state contact number.
The pre-train process with hidden layer sizes of 500, 300,
and 150 is implemented by the stochastic gradient descent
(SGD) method to tune the weight in the SAE networks.
The final deep learning architecture is optimized using
the Broyden-Fletcher-Goldfarh-Shanno (BFGS) optimiza-
tion. Several parameters are fine-tuned using grid search
and manual search strategies (sparsity parameter ρ = 0.2,
weight decay λ = 0.003, and weight of the sparsity penalty
score β = 3).

Results and discussion
Performance measures
We calculate accuracy as the primary measure for sol-
vent accessibility as well as contact number. Besides, for
the performance evaluation of solvent accessibility, we use
precision, recall and F1-score, defined as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(7)
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Fig. 2 The framework of DeepSacon for residue solvent accessibility and contact number prediction. Three categories of features (evolution,
structure, and amino acid) are extracted to build the stacked sparse autoencoder-based deep neural network (SSAE-DNN) model

Precision = TP
TP + FP

(8)

Recall = TP
TP + FN

(9)

F1 − score = 2TP
2TP + FP + FN

(10)

where TP, TN, FP and FN are the number of the true
positive, true negative, false positive and false negative,
respectively. For the performance evaluation of contact
number, we also compute the Pearson’s correlation coeffi-
cient (PCC), defined as the covariance ratio between the
predicted and the observed scores.

Feature importance
As mentioned above, we extracted three categories of fea-
tures, including evolution information, structure features,
and amino acid related properties. To evaluate the impact
of each feature group on 3-state solvent accessibility

prediction, we individually utilize them to build the classi-
fier and perform the prediction. Figure 3 demonstrates the
accuracies of different feature groups. From this figure,
we can see that using evolution related feature alone
could reach 0.68 Q3 accuracy. Furthermore, we compare

Fig. 3 Results of different feature combinations for 3-state solvent
accessibility prediction
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Fig. 4 Results of different feature combinations for 15-state contact
number prediction

the three classes of features respectively with the most
recent method AcconPred [38]. We can observe that our
method performs significantly better over the AcconPred
method.

Similarly, we also analyze the relative importance of
the three feature groups for predicting contact number.
The prediction results of different feature groups and in
comparison with AcconPred for 15-state contact number
prediction are shown in Fig. 4. We further analyze the
variation between the prediction and the observed values.
Noted that if this difference is restricted to 2, we could
obtain the prediction accuracy of 0.81. We also investigate
the prediction performance of our DeepSacon method in
terms of PCC, which could reach 0.74.

We further estimate the prediction performance for
both solvent accessibility and contact number accord-
ing to four different feature combinations. We compare
the prediction performance on training data with 5-fold
cross-validation. As shown in Table 1, we can see that
combining all the three feature groups achieve the best
performance, which indicates that comprehensive feature
encoding schemes can boost the prediction performance.

We describe detailed results for each label (that is
buried, intermediate, and exposed) of solvent accessibil-
ity prediction. The three labels are defined with bound-
aries at 10% and 40% on relative solvent accessibility, and
there is an interpretation for such boundaries in Wang’s
work. Table 2 gives the all three sates analysis in terms of
precision, recall, and F1-score. From this table, we observe

Table 1 Prediction accuracy of 3-state solvent accessibility and
15-state contact number using DeepSacon method based on
different feature schemes

Model Feature Q3 Q15

1 Evolution+Structure 0.678 0.316

2 Evolution+Amino acid 0.687 0.304

3 Structure+Amino acid 0.641 0.286

4 Evolution+Structure+Amino acid 0.7 0.33

Table 2 Performance evaluation for the prediction of 3-state
solvent accessibility

Evaluation dataset Precision Recall F1-score

Buried 0.79 0.79 0.79

Intermediate 0.71 0.63 0.67

Exposed 0.48 0.65 0.55

that the prediction of the buried label is the best, and
exposed label is the poorest.

Comparison with other machine learning methods
We compare deep learning with other two broadly used
machine learning methods, Support Vector Machine
(SVM) and Neural Network, on the training set and
CASP11 with 5-fold cross-validation. We implement the
algorithms using MATLAB. For SVM, we use RBF as the
kernel function. The parameters of C and gamma are set
to 1 and 2 respectively based on 5-fold cross-validation.
We also evaluate other different kernels and find that
RBF performs best. For the neural network, the number
of hidden nodes in the first layer is tuned as 300, while
in the second layer is 200. The learning rate is set to
0.2. As shown in Table 3, DeepSacon achieves the best
performance both on the training set and CASP11. The
experiments suggest that deep learning can be success-
fully applied to the prediction of solvent accessibility and
contact number.

Comparison with other state-of-the-art approaches in
independent test
In this section, we compare DeepSacon with other four
state-of-the-art solvent accessibility predictors, including
a multistep neural-network algorithm by guided weight-
ing scheme (SPINE-X) [63], a nearest neighbor method
by using sequence profiles (SANN) [64], an ensemble
of Bidirectional Recursive Neural Networks using both
sequence and structure similarity (ACCpro5) [65], and a
conditional neural fields model (AcconPred) [38]. For con-
tact number prediction, we compare our method with
Kinjo’s method which applied linear regression scheme
based on multiple sequence alignments [36] and Yuan’s

Table 3 The prediction accuracies of DeepSacon and other
machine learning methods in 3-state solvent accessibility and
15-state contact number prediction on the training set and
CASP11

Training set CASP11

Method Q3 Q15 Q3 Q15

SVM 0.64 0.29 0.61 0.27

NN 0.65 0.28 0.63 0.26

DeepSacon 0.70 0.33 0.68 0.31
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Table 4 Prediction results of DeepSacon in comparison with
other existing methods for 3-state solvent accessibility prediction
on CASP11

Method SPINE-X SANN ACCpro5 AcconPred DeepSacon

Q3 accuracy 0.57 0.61 0.58 0.64 0.68

method which employed support vector regression [37].
Table 4 shows the results of these existing methods as well
as our method for the 3-state solvent accessibility predic-
tion on the CASP11 dataset. It should be noted that the
3-state outputs of SPINE-X, SANN and Accpro5 are based
on different threshold. To objectively compare with our
method, we transform the output of these methods uni-
formly into 3-state at 10%/40% threshold. From Table 4,
we find that DeepSacon achieves a significantly better per-
formance over other predictors. It is worth pointing out
that the prediction performance improves 2% after using
the dropout approach.

We also estimate the probing accuracy and correlation
of DeepSacon for 15-state contact number on CASP11.
The prediction accuracy is 0.31 for Q15 and is 0.68 for
PCC, which agrees with the results on the training dataset
(0.33 for Q15 and 0.74 for PCC). Further, we compare
our method with Kinjo’s method and Yuan’s on the Yuan
dataset. We note that our DeepSacon method exceeds
the other approaches significantly. The Pearson correla-
tion coefficient of DeepSacon is 0.69, which exceeds the
results of Kinjo’s method (PCC is 0.63) and Yuan’s method
(PCC is 0.64).

Case study
To further demonstrate the prediction capability, we
perform a case study by applying DeepSacon to pre-
dict the contact number of the histidinol-phosphate
aminotransferase protein (HisC, PDBID: 4wbt) with

the sequence length of 376 residues from CASP11.
The prediction results are shown in Fig. 5. The pre-
dicted and observed contact numbers are colored in
blue and red, respectively. We can see there is a sim-
ilar trend between the observed and predicted con-
tact numbers. The predicted and observed values are
matched well across most of the protein regions. The
PCC value is 0.79, and the mean absolute error (MAE)
is 0.46. Figure 6 shows the difference between pre-
dicted and observed contact number of each residue
of the protein HisC in 3D visualization. We find that
the contact number of most residues are well predicted
(colored close to blue).

Conclusions
In this work, we have presented a computational method,
DeepSacon, for predicting both solvent accessibility and
contact number of proteins by using a deep learn-
ing network and employing sequence-derived features,
including evolution related features, structure related fea-
tures, and amino acid related features. The deep learn-
ing network is built based on stacked auto-encoder and
a dropout method to further improve the performance
and reduce the overfitting. DeepSacon provides current
state-of-the-art prediction accuracy for solvent accessi-
bility as well as contact number. For solvent accessibil-
ity, its Q3 accuracy reached 0.70 on the 5279 training
set and 0.68 on the CASP11 dataset. For contact
number, It achieved Q15 accuracy of 0.33 and 0.31,
PCC of 0.74 and 0.68 on training set and CASP11,
respectively.

We also compared DeepSacon with traditional machine
learning methods such as support vector machines and
neural networks. Experimental results indicated Deep-
Sacon has several obvious advantages such as the ability
of automatically learned high-level features and stronger
generalization capability.

Fig. 5 The observed and predicted residue contact number for the HisC protein (PDB entry: 4wbtA). The predicted and observed residue values are
colored as blue and red, respectively
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Fig. 6 3D visualization of the difference between predicted and
observed contact number of the HisC protein (PDB entry: 4wbtA).
Different colors represent different numbers of error predicted
contact number. The number of errors corresponding to a color is
displayed on the right. The closer the blue indicates the more
accurate the prediction; otherwise, if it is close to the red, the
prediction has more errors

Actually, accurate homology structure information is
of crucial importance to structural characteristics predic-
tion. Unfortunately, the number of proteins with com-
pletely homology structure information is far less than
that with unknown homology structure information.
Since DeepSacon can predict the solvent accessibility and
contact number from simple primary sequences in the
absence of protein structures, it has more extensive appli-
cations. Moreover, our work provides a complementary
and useful approach towards the more accurate prediction
of other structural properties.
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