REVIEW

Macrophage plasticity: signaling pathways, tissue repair, and regeneration

Lingfeng Yan^{1,2,#} Jue Wang^{1,2,#} Xin Cai^{1,2} Yih-Cherng Liou^{3,4} Han-Ming Shen⁵ Jianlei Hao^{6,7} Canhua Huang^{8,*} Gaoxing Luo^{1,2,*} Weifeng He^{1,2,*}

*Correspondence

Weifeng He and Gaoxing Luo, Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Damage Repair and Regeneration, Chongqing 400038, China. Email: whe761211@hotmail.com; logxw@yahoo.com

Canhua Huang, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China. Email: hcanhua@hotmail.com

Abstract

Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation,

MedComm. 2024;5:e658. wileyonlinelibrary.com/journal/mco2 1 of 42

¹Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, China

²Chongqing Key Laboratory for Wound Damage Repair and Regeneration, Chongqing, China

³Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore

⁴National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore

⁵Faculty of Health Sciences, University of Macau, Macau, China

⁶Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China

⁷The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China

⁸State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China

^{*}Lingfeng Yan and Jue Wang authors have contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

^{© 2024} The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

Funding information

National Natural Sciences Foundation of China, Grant/Award Numbers: 81630055, 81920108022, 82172232, 31872742; Military Medical Science and Technology Youth Training Program of the Army Military Medical University, Grant/Award Number: 20QNPY024; the Special Project for Enhancing Science and Technology Innovation Ability (frontier exploration) of the Army Military Medical University (Third Military Medical University) Innovation Ability, Grant/Award Number: 2019XQY12 angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.

KEYWORDS

epigenetic regulation, macrophages, plasticity, signaling pathways, tissue repair

1 | INTRODUCTION

Macrophages, the versatile sentinels of the innate immune system, play critical roles in host defense, tissue homeostasis, and disease pathogenesis. Macrophages exhibit extraordinary plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. This plasticity is exemplified by the ability of macrophages to polarize into distinct functional states in response to various stimuli, a process orchestrated by complex signaling pathways and transcriptional networks. In the past decade, there has been a surge of interest in elucidating the molecular mechanisms governing macrophage plasticity and their implications for tissue repair and regeneration. Macrophages play pivotal roles in all stages of the tissue repair process, from the initial inflammatory response to the resolution of inflammation and tissue remodeling.¹⁻³ Dysregulation of macrophage function can lead to impaired wound healing, fibrosis, and chronic inflammation, underscoring the importance of understanding the signaling pathways that control macrophage activation states. Recent studies have shed light on the complex network of transcription factors, epigenetic regulators, and metabolic pathways that shape the macrophage transcriptional landscape and functional properties.^{4–8}

At present, the classification of macrophages into M1 and M2 types has been widely adopted in scientific research. Through this extreme classification, macrophages are divided according to the functional differences of proinflammatory bactericidal and anti-inflammatory and anti-inflammatory prorepair. While this dichotomy provided a valuable framework for understanding macrophage heterogeneity, recent advances in single-cell technologies and systems biology approaches have revealed a spectrum of activation states that extend beyond the M1/M2 paradigm. Therefore, further research is necessary to reconcile these findings and provide a more comprehensive understanding of macrophage

phenotypes and functions. Despite this ongoing debate, the M1 and M2 classification continues to describe the different polarization states of macrophages in the study of tissue healing. During tissue repair, M1 and M2 macrophages fulfill distinct functions, and the timely transition of macrophages from an M1 to an M2 phenotype plays a critical role in wound healing and tissue regeneration.²²

Through this review, we aim to clarify the key pathways and epigenetic regulation that regulate the polarization of macrophages and discuss their roles in the repair and regeneration of various tissue damage to provide ideas and approaches for clinically diagnosing and treating macrophages as targets. The review is structured into four main sections. In the first section, we provide an overview of the historical perspective on macrophage plasticity and the evolution of the M1/M2 paradigm. We then delve into the spectrum of macrophage activation states revealed by recent single-cell studies and discuss the limitations of the traditional classification system. The second section focuses on the signaling pathways that control macrophage polarization, emphasizing the roles of TLRs, signal transducer and activator of transcription (STAT) proteins, nuclear receptors, and microRNAs (miRNAs). We also discuss the emerging concepts of macrophage metabolic reprogramming and epigenetic regulation, highlighting their importance in shaping macrophage functional properties. The third section explores the functional significance of macrophage plasticity in tissue repair and regeneration, providing examples from cutaneous wound healing, skeletal muscle regeneration, and liver repair. We discuss macrophages' dynamic roles in the repair process's different stages and the consequences of macrophage dysfunction in pathological conditions. The final section addresses the therapeutic potential of targeting macrophage polarization pathways, discussing the current strategies and future directions for modulating macrophage function in chronic wounds, fibrotic diseases, and inflammatory disorders.

2 | MACROPHAGE PLASTICITY: FROM HISTORICAL ORIGINS TO CONTEMPORARY INSIGHTS

Macrophages, the versatile sentinels of the immune system, exhibit remarkable plasticity that enables them to adapt to diverse tissue microenvironments and perform a wide array of functions.²³ First discovered by Élie Metchnikoff in 1882, these phagocytic cells were recognized for their roles in immunity and inflammation.^{24,25} Over the past century, our understanding of macrophage heterogeneity and plasticity has dramatically expanded, revealing their critical involvement in tissue homeostasis, wound healing, and disease pathogenesis. The traditional M1/M2 classification system, proposed by Mills et al. 15 in 2000, provided a valuable framework for understanding macrophage polarization. M1 macrophages, activated by interferon- γ (IFN- γ) and lipopolysaccharide (LPS), exhibit proinflammatory properties and potent microbicidal activity. In contrast, M2 macrophages, induced by interleukin-4 (IL-4) and IL-13, display anti-inflammatory and tissue-repair functions. While this dichotomy captures the extremes of macrophage activation, recent advances have revealed a spectrum of activation states that extend beyond the M1/M2 paradigm. This section discusses the historical origins of macrophage plasticity research and highlights the latest discoveries that have reshaped our understanding of this phenomenon. We explore the molecular mechanisms underlying macrophage plasticity, including transcriptional regulation, epigenetic modifications, and metabolic reprogramming. Furthermore, we discuss the functional significance of macrophage plasticity in health and disease, focusing on tissue-specific adaptations and the role of trained immunity. Finally, we outline this rapidly evolving field's challenges and future directions.

2.1 | Historical perspective on macrophage plasticity

Macrophage plasticity emerged in the 1960s when Mackaness et al. $^{26-31}$ reported two distinct macrophage activation states responding to cytokines. Type 1 macrophages, now known as M1, exhibited enhanced microbicidal activity against intracellular pathogens like Mycobacterium tuberculosis. Type 2 macrophages, now called M2, dampened inflammation and promoted extracellular matrix remodeling. In the 1980 and 1990s, the phenotypic and functional differences between M1 and M2 macrophages came into sharper focus. Stein et al. 32 found that M1 macrophages produced high levels of proinflammatory cytokines, such as tumor necrosis factor- α (TNF- α), IL-

1, IL-6, and IL-12. This enabled them to stimulate T-cell responses and potently unleash oxidative attacks against pathogens. Conversely, M2 macrophages secreted anti-inflammatory cytokines like IL-10 and expressed high arginase-1 (ARG-1) levels, allowing them to suppress immune responses and promote tissue repair. Based on arginine metabolism, the M1/M2 classification system was consolidated by Mills et al. In 2000, drawing parallels with T helper 1 (Th1) and Th2 lymphocyte polarization. While this dichotomy provided a helpful framework, it oversimplified the complex spectrum of macrophage activation states observed in vivo (Table 1).

2.1.1 | M1 macrophages

M1 macrophages, also referred to as classically activated or proinflammatory macrophages, are induced by exposure to bacterial products like LPS and inflammatory cytokines such as IFN- γ and TNF- α . This activation state is characterized by the expression of specific surface markers, including CD80, CD86, and major histocompatibility complex (MHC) class II molecules, and the production of proinflammatory cytokines and mediators. 48,49 Key markers and functions of M1 macrophages include (a) Cytokine production: M1 macrophages secrete high levels of proinflammatory cytokines such as TNF- α , IL-1 beta (IL-1 β), IL-6, IL-12, and IL-23. These cytokines orchestrate the inflammatory response, recruit and activate other immune cells, and promote tissue damage. 50-53 (b) Microbicidal activity: M1 macrophages are equipped with potent microbicidal mechanisms, including the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and the expression of inducible nitric oxide synthase (iNOS).^{54,55} These factors contribute to the killing of invading pathogens and tumor cells. (c) Antigen presentation: M1 macrophages upregulate the expression of 56 class II molecules, enabling them to effectively present antigens to T cells and initiate adaptive immune responses. 57,58 (d) Tissue remodeling: M1 macrophages secrete proteolytic enzymes, such as matrix metalloproteinases (MMPs), which contribute to the breakdown of extracellular matrix components, facilitating tissue remodeling and repair. 59-61 M1 macrophages play crucial roles in the initial stages of inflammation, pathogen clearance, and tissue injury, coordinating the innate immune response and initiating the repair process.62-64

2.1.2 | M2 macrophages

In contrast to the proinflammatory M1 phenotype, M2 macrophages, also known as alternatively activated or

TABLE 1 History of macrophage polarization studies.

Time	Finder	Conclusion	References
1863	Recklinghausen	Mononuclear amoeba cells were discovered and called connective tissue bodies, distinguishing them from pus bodies.	33
1882	Metchnikoff	He discovered a cell capable of engulfing particles and fragments of carmine dye. He named the cells macrophages and the process of phagocytosis.	24,34
1898	Kupffer & Browicz	Kupffer discovered the star-shaped cells in the liver, and Browicz identified the star-shaped cells as distinct macrophages of the liver.	35
1924	Aschoff	He classified the cells in the body capable of swallowing dyes as the reticuloendothelial system.	36
1967	Mackaness	He discovered that macrophages could attack bacteria indiscriminately after infection and defined "macrophage activation" for the first time.	26,31
1968	van Furth & Cohn	The mononuclear macrophage system is defined as a population whose life history is defined: promonocytes in the bone marrow, monocytes in the blood, and macrophages in the tissue.	37,38
1992	Stein	He was the first to discover that IL-4-activated M2 macrophages were distinct from the classical activation of macrophages.	32
2000	Mills	He further clarified the M1/M2 classification system of macrophages based on arginine metabolism.	15
2012	Quintin	He was the first to propose functional reprogramming of monocytes	39
2014	Lavin	He determined that macrophages from different tissues have tissue-specific enhancer landscapes, highlighting the importance of the microenvironment for the macrophage regulatory landscape.	40
2014	Xue	He used the scRNA-seq technique to identify 49 distinct subpopulations of macrophages through 28 different stimuli.	41
2014	Cheng	He proposed that training immunity relies on the aerobic glycolysis pathway induced by the Akt–mTOR–HIF- 1α pathway.	42
2016	Arts	He proposed an essential role for metabolic regulation in the functional reprogramming of macrophages and discovered that the transcription factor ATF plays a vital role in this process.	43
2017	Roussel	He used CyTOF to identify markers of mononuclear phagocytic system activation in response to various stimuli and found cells that could express both M1 and M2 markers.	44
2019	Zilionis	He discovered the presence of macrophages in the lungs of mice that express both the M1 and M2 markers.	45

 $Abbreviations: CyTOF, mass \ cytometry \ by \ time \ of \ flight; HIF, hypoxia-inducible \ factor.$

anti-inflammatory macrophages, are induced by exposure to cytokines such as IL-4 and IL-13 and immunomodulatory molecules like glucocorticoids and IL-10. $^{65-73}$ M2 macrophages are characterized by the expression of specific surface markers, including CD163 and CD206 (mannose receptor), and the production of anti-inflammatory cytokines and mediators involved in tissue repair and homeostasis. T4-77 Key markers and functions of M2 macrophages include (a) anti-inflammatory cytokine production: M2 macrophages secrete high levels of anti-inflammatory cytokines such as IL-10 and TGF- β , which help to dampen the inflammatory response and promote tissue repair. He inflammatory response and promote tissue repair. He inflammatory to synthesizing and remodeling extracellular matrix components, including

collagen, fibronectin, and proteoglycans, facilitating tissue repair and wound healing. S4-86 (c) Angiogenesis: M2 macrophages secrete proangiogenic factors, such as VEGF, which promote the formation of new blood vessels, ensuring adequate nutrient and oxygen supply to the injured tissue. The factor of the injured tissue of the injured tissue of the injured tissue of the injured tissue. The factor of the injured tissue of the injured tissue of the injured tissue of the injured tissue of the injured tissue. The factor of the injured tissue of the injured tissue of tissue

inflammation, angiogenesis, extracellular matrix remodeling, and restoring tissue homeostasis. 97–99

It is important to note that the M1/M2 polarization represents a continuum, and macrophages can exhibit a range of phenotypes between these two extremes, depending on the specific microenvironmental cues they encounter. 100-102 Additionally, recent research has revealed the existence of distinct subpopulations within the M1 and M2 categories, each with unique transcriptional profiles and functional characteristics. 68,103-105 The dynamic interplay between M1 and M2 macrophages is crucial for orchestrating an effective immune response, balancing inflammation and tissue repair, and maintaining homeostasis. Dysregulation of this balance can contribute to the development and progression of various pathological conditions, including chronic inflammatory diseases, autoimmune disorders, and impaired wound healing. 106-108 Understanding the molecular mechanisms governing macrophage polarization and the signaling pathways that regulate their phenotypic transformation is essential for developing targeted therapeutic strategies to modulate macrophage function and enhance tissue repair and regeneration.

2.2 | The spectrum of macrophage activation states: beyond M1/M2 dichotomy

The advent of single-cell technologies, such as singlecell RNA sequencing (scRNA-seq) and mass cytometry (CyTOF), has revolutionized our understanding of macrophage heterogeneity. 109-111 These high-resolution techniques have allowed researchers to profile the transcriptomes and proteomes of individual macrophages, uncovering a continuum of activation states that extend beyond the M1/M2 dichotomy. 112 A seminal study by Xue et al.⁴¹ used scRNA-seg to analyze human macrophages stimulated with 28 different activation conditions. They identified 49 distinct macrophage subsets, each with a unique transcriptional signature, highlighting the incredible diversity of macrophage responses to environmental cues. Similarly, a CyTOF study by Roussel et al.44 demonstrated that human macrophages exhibit a spectrum of activation states in response to various stimuli, with some cells coexpressing both M1 and M2 markers. Recent studies have also revealed novel macrophage subsets with unique functions. For example, Angel et al. 113 identified a population of antigen-presenting macrophages in human lymph nodes that express high levels of MHC class II and costimulatory molecules, suggesting a role in adaptive immunity. Another study by Zilionis et al. 45 discovered a subset of mouse lung macrophages expressing M1 and M2 markers that play a critical role in maintaining lung homeostasis. These findings underscore the limitations of the M1/M2 classification system and emphasize the need for a more nuanced understanding of macrophage plasticity. The spectrum of activation states revealed by single-cell technologies highlights the remarkable adaptability of macrophages to diverse environmental cues and their multifaceted roles in health and disease. 8,114,115

2.3 | Tissue-specific imprinting of macrophage identity and function

One of the most significant advances in macrophage biology over the past decade has been recognizing the profound influence of tissue microenvironments on macrophage development, phenotype, and function. Macrophages are present in virtually all tissues, performing specialized functions tailored to the unique demands of their local niche. 116 Recent studies have shown that tissue-specific factors, such as cytokines, metabolites, and cell-cell interactions, can imprint distinct transcriptional and epigenetic signatures on resident macrophages, giving rise to specialized subsets with unique functions. 117,118 For example, Lavin et al. 40 demonstrated that macrophages from different tissues, such as the lung, liver, and spleen, possess distinct enhancer landscapes shaped by tissuespecific transcription factors. The gut microbiome has also emerged as a critical regulator of intestinal macrophage function. 119,120 Studies have shown that microbial metabolites, such as short-chain fatty acids and taurine, can modulate the phenotype and activity of intestinal macrophages, promoting homeostasis and protecting against enteric infections. 121-123 These findings highlight the importance of studying macrophages in their native tissue context and underscore the limitations of extrapolating conclusions from in vitro studies to in vivo settings. The tissuespecific imprinting of macrophage identity and function has important implications for our understanding of immune regulation and disease pathogenesis, as dysregulation of these processes may contribute to developing inflammatory and metabolic disorders. 116,124,125

2.4 Ontogenetic diversity of tissue-resident macrophages

Another significant paradigm shift in macrophage biology has been the discovery of the ontogenetic diversity of tissue-resident macrophages ($\text{TrM}\Phi$). Contrary to the traditional view that all tissue macrophages are derived from circulating monocytes, recent fate mapping studies have revealed that many $\text{TrM}\Phi$ are established during embryonic development and maintain themselves

through local proliferation, independent of adult monocyte input. 128,129 For example, microglia, the resident macrophages of the central nervous system, have been shown to originate from volk sac-derived progenitors that seed the brain early in embryonic development.¹³⁰ Similarly, Kupffer cells, the resident macrophages of the liver, are derived from a combination of yolk sac and fetal liver progenitors. 131 The ontogenetic origin of TrMΦ has important implications for their function and response to environmental challenges. Embryonically derived macrophages have been shown to possess unique transcriptional and epigenetic profiles compared with their monocyte-derived counterparts, which may confer distinct functional properties. 132,133 The discovery of the ontogenetic diversity of $TrM\Phi$ has also prompted a reevaluation of the contribution of monocyte-derived macrophages to tissue homeostasis and inflammation. While monocyte-derived macrophages play a crucial role in the response to injury and infection, their contribution to the maintenance of $TrM\Phi$ populations appears context dependent. It may vary across different organs and disease states. 134,135

2.5 | Trained immunity: long-term reprogramming of macrophages

In addition to short-term plasticity, macrophages can undergo long-term functional reprogramming in response to microbial stimuli, known as trained innate immunity. 136,137 This process involves epigenetic and metabolic changes that enhance the responsiveness of macrophages to subsequent challenges, providing a form of innate immune memory. 138,139 A landmark study by Ouintin et al.³⁹ demonstrated that exposure to the fungal cell wall component β -glucan induces epigenetic modifications in human monocytes, leading to increased production of proinflammatory cytokines upon restimulation. This trained immunity is mediated by changes in histone methylation, acetylation, and a metabolic shift toward glycolysis. 140,141 Subsequent studies have shown that other microbial stimuli, such as the bacillus Calmette-Guérin (BCG) vaccine and the bacterial component muramyl dipeptide, can also induce trained immunity in macrophages. 139,142-144 Arts et al. 43 identified a critical role for ATF7 in mediating the epigenetic reprogramming of macrophages during β -glucan-induced training. Another study by Cheng et al.⁴² demonstrated that the metabolic enzyme glutamine synthetase is essential for the induction of trained immunity by β -glucan, highlighting the link between metabolism and epigenetic reprogramming. The discovery of trained immunity has important implications for developing novel immunotherapies. For example, Moorlag et al. 145 showed that BCG vaccination induces trained immunity in human monocytes, enhancing their ability to eliminate the respiratory syncytial virus. Harnessing trained immunity could be a promising strategy for boosting host defense against infectious diseases.

In summary, the study of macrophage plasticity has come a long way since the initial discovery of these versatile immune cells by Élie Metchnikoff in 1882. The traditional M1/M2 classification system provided a valuable framework for understanding macrophage polarization, but recent advances have revealed a spectrum of activation states that extend beyond this dichotomy. Single-cell technologies have uncovered macrophages' remarkable heterogeneity and ability to adapt to diverse tissue microenvironments. The functional significance of macrophage plasticity is evident in their roles in maintaining tissue homeostasis, orchestrating immune responses, and contributing to disease pathogenesis. Tissue-specific imprinting and trained immunity further highlight the adaptability of macrophages to their local environment and their capacity for long-term functional reprogramming.

3 | SIGNALING PATHWAYS ORCHESTRATING MACROPHAGE POLARIZATION: AN INTRICATE REGULATORY NETWORK

Macrophages are versatile innate immune cells that play critical roles in host defense, tissue homeostasis, and disease pathogenesis. These cells exhibit remarkable plasticity, adapting their phenotype and function in response to diverse microenvironmental signals. Macrophage polarization refers to the process by which macrophages acquire distinct functional programs, classically categorized into two main subsets: classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages are induced by Th1 cytokines, such as IFN- γ , and microbial products, including LPS. They exhibit potent proinflammatory and microbicidal activities, secreting high levels of proinflammatory cytokines (e.g., IL-1β, IL-6, IL-12, and TNF- α) and producing reactive oxygen and nitrogen species. In contrast, M2 macrophages are polarized by Th2 cytokines, such as IL-4 and IL-13, associated with anti-inflammatory responses, tissue repair, and tumor progression. M2 macrophages produce anti-inflammatory cytokines (e.g., IL-10 and TGF- β) and express scavenger receptors, mannose receptors, and ARG-1. Recent studies have revealed that macrophage polarization is a highly dynamic and complex process involving the integration of multiple signaling pathways. These pathways are

triggered by the engagement of PRRs, cytokine receptors, and other surface molecules, activating transcription factors and epigenetic regulators that shape the macrophage transcriptional landscape. Understanding the molecular mechanisms governing macrophage polarization is crucial for developing targeted therapies to modulate macrophage function in various pathological conditions, such as inflammatory diseases and cancer. This section provides an in-depth discussion of the critical signaling pathways that orchestrate macrophage polarization, focusing on recent findings and their implications for therapeutic interventions. We will explore the roles of toll-like receptors (TLRs), STAT proteins, nuclear receptors, miRNAs, metabolic reprogramming, and epigenetic modifications in shaping macrophage activation states. Furthermore, we will highlight the crosstalk between these signaling cascades and their potential as therapeutic targets for modulating macrophage function in disease contexts.

3.1 | Toll-like receptors: sentinels of macrophage polarization

TLRs are a family of pattern recognition receptors (PRRs) that play a pivotal role in the innate immune response by recognizing conserved molecular patterns associated with pathogens (PAMPs) and endogenous danger signals (DAMPs). 146,147 TLR signaling is a crucial driver of macrophage polarization, particularly in M1 activation. 148-150 Engagement of TLRs by their respective ligands triggers the recruitment of adaptor proteins, such as myeloid differentiation primary response 88 (MyD88) and TIR-domain-containing adapter-inducing IFN- β (TRIF), which initiate downstream signaling cascades. 151-154 These cascades lead to the activation of transcription factors, including nuclear factor- κB (NF- κB), activator protein-1 (AP-1), and IFN regulatory factors (IRFs), which drive the expression of proinflammatory genes and shape the M1 macrophage phenotype. 155-160 TLR4, the receptor for bacterial LPS, is a potent inducer of M1 polarization. 159,161 Upon LPS recognition, TLR4 activates both MyD88-dependent and TRIF-dependent pathways, producing proinflammatory cytokines and type I IFNs, respectively. 162,163 The MyD88-dependent pathway involves the activation of NF-κB and mitogenactivated protein kinases (MAPKs), such as p38, JNK, and ERK, which promote the expression of proinflammatory genes. 164-166 The TRIF-dependent pathway, on the other hand, activates IRF3 and IRF7, leading to the production of type I IFNs and the induction of IFN-stimulated genes. 167-169 Other TLRs, such as TLR2 (which recognizes bacterial lipoproteins) and TLR3 (which detects viral

double-stranded RNA), also contribute to macrophage polarization. TLR2 signaling predominantly activates NF-κB and MAPKs, driving M1 polarization, while TLR3 activation leads to the production of type I IFNs and proinflammatory cytokines via the TRIF-dependent pathway. 170-172 Recent studies have revealed that TLR signaling can also modulate M2 polarization. For instance, activation of TLR2 and TLR4 has been shown to enhance the expression of M2 markers, such as ARG-1 and Ym1, in the presence of IL-4. 150,173 This suggests that TLR signaling can fine-tune macrophage polarization depending on the microenvironmental context and the presence of other polarizing stimuli. Targeting TLR signaling pathways has emerged as a promising therapeutic strategy for modulating macrophage polarization in various disease settings. For example, inhibition of TLR4 signaling has been shown to attenuate M1 polarization and promote M2-like phenotypes in models of inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease. 174-176 Conversely, activation of TLR3 signaling has been explored to boost antitumor immunity by promoting M1 polarization in tumor-associated macrophages (TAMs).177,178

3.2 | STAT signaling: a key regulator of macrophage polarization

STAT proteins are transcription factors that play critical roles in cytokine signaling and macrophage polarization.¹⁷⁹ Different STAT proteins are activated by specific cytokines and regulate distinct aspects of macrophage function, with STAT1 and STAT6 being particularly important for M1 and M2 polarization, respectively. 180 STAT1 is activated by IFN-γ, a potent inducer of M1 polarization. 181,182 Upon IFN-γ binding to its receptor, Janus kinases (JAKs) are activated, leading to the phosphorylation and dimerization of STAT1. Activated STAT1 dimers translocate to the nucleus, where they bind to gamma-activated sequences in the promoters of target genes, driving the expression of proinflammatory and microbicidal factors, such as inducible iNOS and IL-12. 182,183 In contrast, STAT6 is activated by the Th2 cytokines IL-4 and IL-13, critical drivers of M2 polarization. 184,185 Engagement of IL-4 or IL-13 with their respective receptors leads to the activation of JAKs and the phosphorylation of STAT6. Phosphorylated STAT6 dimers translocate to the nucleus and bind to specific DNA sequences, promoting the expression of M2-associated genes, such as ARG-1, mannose receptor (CD206), and resistin-like molecule- α (FIZZ1). 185,186 The balance between STAT1 and STAT6 activation is a critical determinant of macrophage polarization, with the relative

abundance of IFN-y and IL-4/IL-13 in the microenvironment playing a key role. 187,188 Interestingly, STAT1 and STAT6 have been shown to antagonize each other's functions, with STAT1 activation suppressing M2 polarization and STAT6 activation inhibiting M1 responses. 189,190 This antagonism highlights the complex interplay between signaling pathways in shaping macrophage activation states. Targeting STAT signaling pathways has emerged as a potential therapeutic strategy for modulating macrophage polarization in various disease contexts. For example, inhibition of STAT1 signaling has been explored to attenuate M1 polarization and promote tissue repair in models of inflammatory diseases, such as multiple sclerosis and inflammatory bowel disease. 189,191 Conversely, activation of STAT6 signaling has been investigated as a potential approach to promote M2 polarization and resolve inflammation in conditions such as obesity and atherosclerosis. 192,193

3.3 Nuclear receptors: transcriptional regulators of macrophage polarization

Nuclear receptors are a family of ligand-activated transcription factors that regulate macrophage polarization and function. 194 Two nuclear receptors, peroxisome proliferator-activated receptor-y (PPARy) and liver X receptors (LXRs), have been particularly implicated in modulating macrophage activation states. PPARy is a master regulator of M2 polarization, promoting the expression of anti-inflammatory and tissue repair genes. 195 Activation of PPARy by endogenous ligands, such as polyunsaturated fatty acids and eicosanoids, or synthetic agonists, such as thiazolidinediones, leads to the formation of heterodimers with retinoid X receptors. 196 These heterodimers bind to specific DNA sequences called PPAR response elements in the promoters of target genes, driving the expression of M2-associated factors, such as ARG-1, CD206, and IL-10.¹⁹⁷ PPARγ activation has been shown to antagonize M1 polarization by inhibiting the activity of proinflammatory transcription factors, such as NF-κB and AP-1.¹⁹⁸ This antagonism is mediated through various mechanisms, including direct protein-protein interactions, competition for coactivators, and induction of anti-inflammatory genes. Consequently, PPARy agonists have been explored as potential therapeutic agents for modulating macrophage polarization in inflammatory diseases, such as atherosclerosis, obesity, and insulin resistance. 198-200 LXRs, including LXR α and LXR β , are another nuclear receptor class regulating macrophage polarization and function. LXRs are activated by oxysterols and oxidized cholesterol derivatives and play critical roles in lipid metabolism and inflammation. Activation of LXRs has been shown to promote an anti-inflammatory M2-like phenotype in macrophages, characterized by increased expression of genes involved in lipid efflux, such as ATP-binding cassette transporters A1 and G1, and reduced production of proinflammatory cytokines. 201,202 LXR agonists have demonstrated anti-inflammatory and immunomodulatory effects in various disease models, including atherosclerosis, Alzheimer's, and autoimmune disorders. 203,204 These effects are mediated, in part, by the ability of LXRs to inhibit NF- κ B signaling and promote the resolution of inflammation. 205 As such, targeting LXR signaling has emerged as a potential therapeutic strategy for modulating macrophage polarization and function in inflammatory diseases. 206

3.4 | MicroRNAs: posttranscriptional regulators of macrophage polarization

miRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to complementary sequences in the 3' untranslated regions of target mRNAs, leading to their degradation or translational repression.²⁰⁷⁻²⁰⁹ Evidence suggests that miRNAs play crucial roles in regulating macrophage polarization and function. Several miRNAs have been identified as key regulators of M1 polarization, including miR-155, miR-125b, and miR-146a.²¹⁰⁻²¹² miR-155 is upregulated in M1 macrophages and promotes the expression of proinflammatory genes by targeting negative regulators of NF-κB signaling, such as suppressor of cytokine signaling 1 (SOCS1) and Src homology 2 domain-containing inositol-5-phosphatase 1.213,214 miR-125b, on the other hand, inhibits M1 polarization by targeting the transcription factor IRF4, which is involved in the induction of proinflammatory cytokines.²¹⁵ miR-146a acts as a negative feedback regulator of M1 responses by targeting key components of the NF-κB signaling pathway, such as IL-1 receptor-associated kinase 1 and TNF receptorassociated factor 6.216 Similarly, several miRNAs have been implicated in regulating M2 polarization, including miR-21, miR-124, and miR-223.217 miR-21 promotes M2 polarization by targeting programmed cell death 4 (PDCD4), a negative regulator of IL-10 production. miR-124 is upregulated in M2 macrophages and promotes the expression of M2-associated genes, such as ARG-1 and FIZZ1, by targeting the transcription factor CCAAT/enhancer-binding protein-α.²¹⁸ miR-223 has been shown to promote M2 polarization by targeting Pknox1, a transcription factor that suppresses the expression of M2-associated genes. 219,220 The therapeutic potential of targeting miRNAs to modulate macrophage polarization has been explored in various disease models.

For example, inhibition of miR-155 has been shown to attenuate M1 polarization and promote M2-like phenotypes in models of inflammatory diseases, such as rheumatoid arthritis and. ^{221,222} Conversely, overexpression of miR-21 or miR-124 has been investigated to promote M2 polarization and resolve inflammation in conditions such as sepsis and spinal cord injury. ²²³

3.5 | Metabolic regulation of macrophage polarization

Macrophage polarization is closely linked to metabolic reprogramming, with distinct metabolic profiles associated with M1 and M2 phenotypes. 5,224,225 M1 macrophages rely on glycolysis and the pentose phosphate pathway to meet their energy demands and support their proinflammatory functions.²²⁶ In contrast, M2 macrophages primarily utilize oxidative phosphorylation and fatty acid oxidation for energy production.²²⁷ The mechanistic target of the rapamycin (mTOR) pathway is a central regulator of macrophage metabolism and polarization. mTOR complex 1 (mTORC1) is activated in M1 macrophages and promotes glycolysis through the induction of hypoxia-inducible factor- 1α (HIF- 1α) and the expression of glycolytic enzymes.^{228–231} Inhibition of mTORC1 by rapamycin or genetic deletion of its component Raptor skews macrophages toward an M2 phenotype.²³² Adenosine monophosphate-activated protein kinase (AMPK), a key energy sensor, is crucial in regulating macrophage polarization.²³³ AMPK activation promotes M2 polarization by inhibiting mTORC1 and enhancing oxidative metabolism. 234,235 Metformin, an AMPK activator, has been shown to promote M2 polarization and alleviate inflammatory responses in various disease models. 236,237 Recent studies have also highlighted the role of lipid metabolism in macrophage polarization. Fatty acid synthesis is upregulated in M1 macrophages, while fatty acid oxidation is associated with M2 polarization. 238,239 PPARs, particularly PPAR γ and PPAR δ , are key regulators of lipid metabolism and have been implicated in promoting M2 polarization.²⁴⁰

3.6 | Epigenetic regulation of macrophage polarization

Epigenetic modifications, such as DNA methylation and histone modifications, are crucial in regulating macrophage polarization by modulating the accessibility of polarization-associated genes. 4,240 M1 and M2 macrophages exhibit distinct epigenetic signatures contributing to their phenotypic stability and plasticity. His-

tone deacetylases (HDACs) have emerged as essential regulators of macrophage polarization. ^{241,242} HDAC3 has been shown to promote M1 polarization by deacetylating and activating NF-κB, while its inhibition skews macrophages toward an M2 phenotype. 243-245 In contrast, HDAC4 and HDAC5 have been implicated in promoting M2 polarization through the deacetylation of STAT6.²⁴⁶⁻²⁴⁹ DNA methylation also plays a role in macrophage polarization. The DNA methyltransferase DNMT3b is upregulated in M1 macrophages and mediates the silencing of M2associated genes.^{250,251} Conversely, the demethylase TET2 promotes M2 polarization by demethylating and activating M2-associated genes.²⁵² Noncoding RNAs, such as miRNAs and long noncoding RNAs (lncRNAs), have also emerged as critical epigenetic regulators of macrophage polarization.²⁵³ For example, miR-21 promotes M1 polarization by targeting the anti-inflammatory cytokine IL-10, while miR-146a promotes M2 polarization by inhibiting NF-kB signaling. 216,254 LncRNAs, such as lncRNA-Cox2 and lncRNA-Mirt2, have been shown to regulate macrophage polarization by modulating the expression of polarization-associated genes^{255,256} (Table 2).

3.7 | Polarization of macrophages in some pathological processes

Macrophage polarization is crucial in various physiological and pathological processes, including host defense, tissue homeostasis, inflammatory diseases, and cancer. Understanding the signaling pathways that govern macrophage polarization can provide valuable insights into disease pathogenesis and guide the development of targeted therapies. In inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease, an imbalance between M1 and M2 macrophages contributes to chronic inflammation and tissue damage. 295-298 Targeting the signaling pathways that promote M1 polarization, such as TLR and NF-κB signaling, has shown promise in alleviating inflammatory responses in preclinical models. Conversely, promoting M2 polarization through activating STAT6 or PPARy has been explored as a strategy to resolve inflammation and promote tissue repair. In cancer, TAMs often exhibit an M2-like phenotype and contribute to tumor progression by promoting angiogenesis, immunosuppression, and metastasis.²⁹⁹ Targeting the signaling pathways that drive M2 polarization in TAMs, such as colony-stimulating factor (CSF)-1/CSF-1R and IL-4/IL-13 signaling, has emerged as a promising therapeutic approach.300,301 Reprogramming TAMs toward an M1-like phenotype through TLR or STING signaling activation has also shown potential in enhancing antitumor immunity.302,303 In tissue regeneration and wound

TABLE 2 Factors that regulate macrophage polarization.

Macrophage			transcription						Metabolic
polarization	Extracellular stimulation	nulation	factor	Epigenetic regulation	ation				regulation
M1 polarization	Stimulus	Receptors	NF-κB IRF1 ²⁵⁷ IRF5	DNA methylation	Histone acetylation	Histone deacetylation	Histone demethyla- tion	Noncoding RNA	Anaerobic glycolysis iNOS synthesis
	LPS IFN- <i>y</i> IFN- <i>β</i>	TLR4 IFN-yR IFN-αR IFN-βR	IRF8 STAT1 ²⁵⁸ AP-1 ²⁵⁹ ZHX2 ²⁶⁰	DNMT1 ^{262,263} DNMT3 ²⁵⁰	PCAF ²⁶⁴	HDAC3 ²⁶⁵ HDAC8 ²⁶⁶ HDAC5 ²⁴⁸ HDAC7 ²⁶⁷ HDAC7 ²⁶⁷	JMJD1C ²⁶⁹	miR-9-5p ²⁷⁰ miR-127 ²⁷¹ miR125b ²¹⁵ miR-155 ²⁷²	Iron supplement ²⁶¹
	$ ext{TNF-}lpha$	TNFR1/2				HDACS		miR-let-7a/f	
	PAMPs DAMPs	NLR						miR-378M1 miR-302a	
	GM-CSF	$ ext{CSF2R}lpha$							
M2 polarization	IL-4 IL-13	IL-4R α	STAT6 ²⁷³ STAT3 ²⁷⁴	I	H3Ac ²⁷⁶ MOF ²⁷⁷	HDAC1 ²⁷⁸ HDAC2 ²⁷⁹	$\begin{array}{c} \text{UTX}^{283} \\ \text{KDM3c}^{284} \end{array}$	miR-let-7c/e ²⁸⁵ miR-21-5p ²⁸⁶	Glucose aerobic oxidation ²⁹¹
	${ m TGF-}eta$	Teta RI Teta RII	c-Maf ²⁷⁵ IRF-3			HDAC6 ²⁸⁰ HDAC10 ²⁸¹		miR-27a ²⁸⁷ miR-181 ²⁸⁸	Fatty acid oxidation ²⁹²
	Glucocorticoid	IFN-αR IFN-βR	1RF-4			HDAC4202		miR-147 ²⁶⁹ miR-124-3p ²¹⁷ :n 132 ²⁹⁰	$\frac{ARG-1}{synthesis^{293}}$
	IL-10	IL-10R						$miR-146a^{216}$	deprivation ²⁹⁴

Abbreviations: DAMP, pathogen-associated molecular patterns; DNMT, DNA methyltransferase; GM-CSF, granulocyte-macrophage colony-stimulating factor; HDAC, histone deacetylase; INF, interferon; LPS, lipopolysaccharide; miRNA, microRNA; ARG-1, arginase-1; PAMPs, pathogen-associated molecular patterns; PCAF, P300/CBP-associated factor; TNF, tumor necrosis factor; TGF, transforming growth factor; UTX, ubiquitously transcribed tetratricopeptide repeat on chromosome X.

healing, M2 macrophages are crucial in promoting tissue repair and resolving inflammation. Harnessing the signaling pathways that promote M2 polarization, such as IL-4/STAT6 and IL-10/STAT3 signaling, has been explored to enhance tissue regeneration and limit fibrosis. 304–306

In summary, macrophage polarization is a dynamic and finely tuned process orchestrated by a complex network of signaling pathways. The integration of signals from TLRs, cytokines, and metabolic pathways shapes the functional phenotype of macrophages, allowing them to adapt to various microenvironmental cues. Recent advances in understanding the molecular mechanisms governing macrophage polarization have provided valuable insights into the role of these cells in health and disease. However, several challenges and opportunities remain in the field of macrophage polarization. The dichotomous M1/M2 classification, while applicable as a conceptual framework, oversimplifies the spectrum of macrophage activation states. Future studies should focus on delineating the complex heterogeneity of macrophage phenotypes and their functional implications in specific tissue contexts. Moreover, the crosstalk between signaling pathways and the influence of the tissue microenvironment on macrophage polarization warrants further investigation. Integrating multiomics approaches, such as transcriptomics, proteomics, and metabolomics, can provide a comprehensive understanding of the regulatory networks governing macrophage polarization. Translating the knowledge of macrophage polarization signaling into clinical applications remains a major challenge. Developing targeted therapies that modulate specific signaling pathways in macrophages while minimizing off-target effects is crucial. Nanoparticle-based drug delivery systems and engineered exosomes have shown promise in selectively targeting macrophages and modulating their polarization state.

4 | MACROPHAGES: ORCHESTRATORS OF TISSUE REPAIR AND REGENERATION

Tissue injury triggers a highly coordinated cascade of events aimed at restoring tissue integrity and function. At the forefront of this intricate process are macrophages, versatile immune cells that exhibit remarkable plasticity and functional diversity. These cells play pivotal roles throughout the distinct phases of tissue repair and regeneration, seamlessly transitioning between proinflammatory and anti-inflammatory phenotypes to facilitate the progression from initial injury to complete tissue restoration.

4.1 | The inflammatory phase: M1 macrophages as first responders

4.1.1 | Initiation of the inflammatory response

The inflammatory phase is initiated by recognizing DAMPs and PAMPs by PRRs on macrophages and other immune cells. 307,308 This recognition triggers a rapid phenotypic transformation of macrophages from a resting state to an activated, proinflammatory state, known as the M1 phenotype. The activation of M1 macrophages is mediated by a diverse array of PRRs, including TLRs, NLRs, and RLRs. 309,310 TLRs, such as TLR4 and TLR2, are particularly crucial in this process, initiating signaling cascades that converge on the activation of transcription factors like NFκB and AP-1, driving the expression of proinflammatory genes. 309,311 Upon activation, M1 macrophages rapidly produce and secrete various proinflammatory cytokines and chemokines, including IL-1\beta, IL-6, IL-12, IL-23, and TNF- α . 22,312,313 These mediators orchestrate the inflammatory response, recruiting additional immune cells to the injury site and amplifying the inflammatory cascade.

4.1.2 | Pathogen clearance and antimicrobial effector mechanisms

During the inflammatory phase, a primary function of M1 macrophages is the clearance of pathogens through various antimicrobial effector mechanisms. Phagocytosis, the process by which macrophages engulf and internalize pathogens or cellular debris, is a critical component of the innate immune response.^{314–316} M1 macrophages express receptors such as Fc and complement receptors, facilitating the recognition and binding of opsonized pathogens for efficient phagocytosis. 317,318 Once internalized, pathogens are subjected to a range of intracellular killing mechanisms within the phagolysosome, a specialized compartment formed by the fusion of the phagosome with lysosomes. These mechanisms include: (a) ROS production: M1 macrophages generate a potent oxidative burst through the activity of NADPH oxidase, producing superoxide radicals and other ROS that can directly damage and kill pathogens. 309,311 (b) NO production: iNOS in M1 macrophages catalyzes the production of NO, a highly reactive free radical that can directly kill or inhibit the growth of pathogens.319-321 (c) Antimicrobial peptides and enzymes: M1 macrophages produce antimicrobial peptides, such as defensins and cathelicidins, and lysosomal enzymes, like cathepsins and lysozymes, which can disrupt and degrade microbial cell walls and

membranes.^{322–324} (d) *Acidification*: The phagolysosome provides an acidic environment, with a pH ranging from 4.5 to 5, which can directly inhibit the growth and survival of many pathogens.^{325,326} In addition to intracellular killing mechanisms, M1 macrophages employ extracellular strategies to combat pathogens, such as neutrophil extracellular trap formation, antimicrobial peptide and enzyme secretion, and cytokine and chemokine production to recruit and activate additional immune cells.^{327–330}

4.1.3 | Debris removal and tissue remodeling

M1 macrophages are crucial in removing cellular debris and initiating tissue remodeling during the inflammatory phase.³³¹ They are essential for the clearance of apoptotic cells, a process known as efferocytosis, which prevents the release of potentially harmful intracellular contents and promotes the resolution of inflammation. 314,332 Furthermore, M1 macrophages initiate the remodeling of the extracellular matrix (ECM) by producing proteolytic enzymes, such as MMPs, and cytokines that regulate ECM turnover.333 This ECM degradation facilitates the removal of damaged or necrotic tissue and creates space for the subsequent influx of new cells and the deposition of a provisional ECM. 334,335 M1 macrophages also contribute to the initiation of angiogenesis, the formation of new blood vessels, by producing proangiogenic factors like VEGF, bFGF. and TNF- α . 336,337 These factors stimulate endothelial cell proliferation, migration, and the assembly of functional vascular structures (Figure 1).

4.2 □ The proliferation and remodeling phase: M2 macrophages facilitate tissue regeneration

4.2.1 | Anti-inflammatory signaling and resolution of inflammation

Following the initial inflammatory phase, the tissue repair process transitions into the proliferative and remodeling phases, characterized by the resolution of inflammation, angiogenesis, and ECM deposition and remodeling. 62,68 During this stage, M2 macrophages, also known as alternatively activated or anti-inflammatory macrophages, play a crucial role in orchestrating these processes and facilitating tissue regeneration. One of the critical functions of M2 macrophages is to promote the resolution of inflammation and create an environment conducive to tissue repair. They achieve this through the production of various anti-inflammatory mediators and the suppression of proinflammatory pathways. M2 macrophages secrete

anti-inflammatory cytokines that counteract the proinflammatory effects of M1 macrophages and other immune cells. The primary anti-inflammatory cytokine produced by M2 macrophages is IL-10, which has potent immunosuppressive properties. 338,339 IL-10 inhibits the production of proinflammatory cytokines, such as TNF- α , IL-1 β , and IL-6, by M1 macrophages and other immune cells and downregulates the expression of MHC class II molecules and costimulatory molecules on antigen-presenting cells, thereby suppressing the activation and proliferation of T cells.340-342 In addition to IL-10, M2 macrophages produce TGF- β , which has anti-inflammatory and immunosuppressive effects. 343 TGF- β inhibits the activation and proliferation of T cells, suppresses the production of proinflammatory cytokines, and promotes the differentiation of regulatory T cells, which play a crucial role in maintaining immune homeostasis and resolving inflammation.³⁴⁴ M2 macrophages employ various mechanisms to suppress proinflammatory signaling pathways and attenuate the inflammatory response. One key mechanism is the upregulation of negative regulators of inflammation, such as SOCS proteins and A20 (TNFAIP3). SOCS proteins inhibit the JAK-STAT signaling pathway, which produces proinflammatory cytokines, while A20 negatively regulates the NF-kB signaling pathway, a central regulator of inflammation.345-347 Additionally, M2 macrophages produce anti-inflammatory lipid mediators, such as lipoxins, resolvins, and protectins, which can actively suppress proinflammatory signaling pathways and promote the clearance of apoptotic cells and debris.³⁴⁸

4.2.2 | Angiogenesis and vascular remodeling

M2 macrophages promote angiogenesis and vascular remodeling during tissue repair. 349,350 They secrete various proangiogenic factors that stimulate endothelial cell proliferation, migration, and differentiation, facilitating the formation of new blood vessels. These factors include: (a) VEGF: a potent proangiogenic factor that induces endothelial cell proliferation, migration, and tube formation. 351,352,87 (b) bFGF: stimulates endothelial cell proliferation and migration, as well as the production of proteolytic enzymes that facilitate cell invasion and ECM remodeling, essential processes for angiogenesis. 353,354 (c) Placental growth factor: a member of the VEGF family that is crucial in promoting the recruitment and differentiation of endothelial progenitor cells, contributing to the formation of new blood vessels. 355,356 (d) Angiopoietins: M2 macrophages produce angiopoietins, such as Ang-1 and Ang-2, which regulate the maturation, stabilization, and remodeling of newly formed blood vessels.³⁵⁷ In addition to producing proangiogenic factors, M2 macrophages can

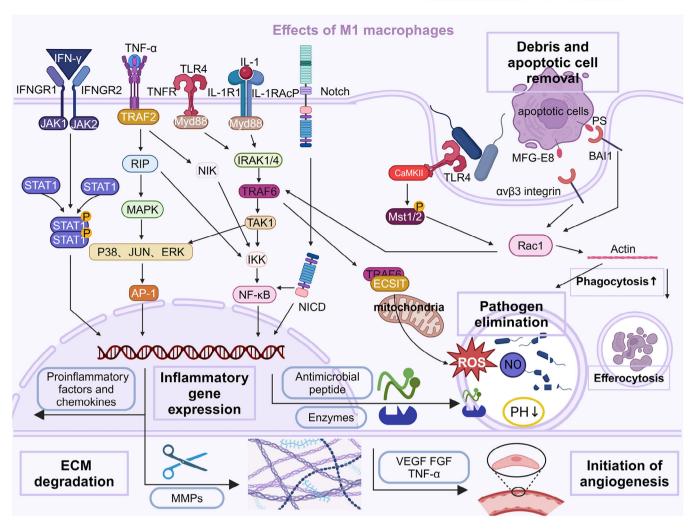


FIGURE 1 The effects of M1 macrophages in wound healing. While early in the repair process, their inflammatory actions are essential. Different PRRs form a complex network after being activated by corresponding signals, precisely coordinate the secretion of inflammatory factors, and induce the phenotype of M1 macrophages, such as stimulating microbicidal, inflammatory activation, phagocytosis, cellular burial, and other biological effects. In addition, M1 macrophages can regulate ECM degradation and initiate angiogenesis. Prolonged M1 response can lead to chronic inflammation and impaired healing. Created with BioRender.com.

directly interact with endothelial cells and facilitate the formation of new blood vessels through a process known as vascular mimicry. This involves the physical association of M2 macrophages with endothelial cells, forming multicellular structures resembling vascular networks. 358,359 M2 macrophages express adhesion molecules and receptors, such as integrin $\alpha v\beta 3$ and the Tie2 receptor, mediating their interaction with endothelial cells and enabling the exchange of proangiogenic signals and the coordination of cellular processes involved in angiogenesis. Furthermore, M2 macrophages can transdifferentiate into endotheliallike cells, directly contributing to forming new blood vessels. This transdifferentiation is mediated by various transcription factors, such as Prox1 and Coup-TFII, which are involved in endothelial cell differentiation and vascular development.360,361

4.2.3 | Extracellular matrix remodeling and tissue regeneration

The proliferation and remodeling phase is characterized by the deposition and remodeling of the ECM, a complex network of proteins and polysaccharides that provide structural support and signaling cues for cell migration, proliferation, and differentiation. M2 macrophages play a crucial role in regulating ECM remodeling and promoting tissue regeneration through the production of ECM components, regulation of ECM-remodeling enzymes, and modulation of fibroblast and stem cell behavior. M367–370

M2 macrophages contribute to the deposition and remodeling of the ECM by producing various ECM components, including: (a) *Collagens*: M2 macrophages secrete different types of collagens, such as collagen I, III, and IV,

which are essential for the formation of the provisional ECM and the subsequent deposition of the mature ECM during tissue repair.³⁷¹ (b) Fibronectin: a glycoprotein that plays a crucial role in cell adhesion, migration, and ECM assembly. M2 macrophages produce fibronectin, which helps create a provisional matrix for cell migration and proliferation during tissue repair.³⁷¹ (c) Tenascin-C: an ECM glycoprotein highly expressed during tissue repair that promotes cell migration, proliferation, and angiogenesis. M2 macrophages secrete tenascin-C, which modulates the activity of various growth factors and cytokines, thereby regulating cellular processes in tissue regeneration. 372,373 (d) GAGs: M2 macrophages produce various GAGs, such as hyaluronic acid, heparan sulfate, and chondroitin sulfate, essential ECM components. GAGs interact with growth factors, cytokines, and ECM proteins, modulating their activity and regulating cellular processes in tissue repair and regeneration.^{97,374} The deposition of a provisional ECM provides a scaffold for the recruitment and organization of various cell types, including endothelial cells, fibroblasts, and stem cells, enabling the formation of new tissue and restoring tissue integrity.375-377 Furthermore, the ECM components produced by M2 macrophages play a crucial role in modulating the behavior of other cells involved in tissue repair, such as cell migration, proliferation, and differentiation, through interactions with integrin receptors and the modulation of growth factor and cytokine activity.

M2 macrophages modulate the activity of various ECMremodeling enzymes, such as MMPs and tissue TIMPs, essential for ECM turnover and remodeling.³⁷⁸ During the proliferation and remodeling phase, M2 macrophages produce specific MMPs, such as MMP-2 and MMP-9, which facilitate the breakdown of existing ECM components, creating space for the deposition of new ECM and the migration of cells involved in tissue regeneration. 379,380 However, excessive and uncontrolled MMP activity can lead to excessive ECM degradation and impair tissue repair. To maintain a balance between ECM degradation and deposition, M2 macrophages also produce TIMPs, which are endogenous inhibitors of MMPs. TIMPs bind to and inactivate MMPs, regulating their proteolytic activity and preventing excessive ECM breakdown. 381,382 The production of specific MMPs and TIMPs by M2 macrophages is tightly controlled and depends on the stage of tissue repair and the microenvironmental cues present. For example, during the early stages of the proliferation and remodeling phase, M2 macrophages may produce higher levels of MMPs to facilitate the initial breakdown of the ECM and create space for new tissue formation. 383,384 As the tissue repair process progresses, M2 macrophages may shift toward producing higher levels of TIMPs to stabilize the newly formed ECM and promote tissue maturation. 385 In addition to regulating MMPs and TIMPs, M2 macrophages modulate the activity of other ECM-remodeling enzymes, such as lysyl oxidases (LOXs) and transglutaminases. LOXs catalyze the cross-linking of collagen and elastin fibers, increasing the stability and mechanical strength of the ECM. In contrast, transglutaminases catalyze the formation of covalent cross-links between ECM proteins, further contributing to ECM stabilization and maturation 386–388 (Figure 2).

4.2.4 | Macrophage plasticity and phenotypic transitions

While the M1 and M2 phenotypes represent the extremes of the macrophage activation spectrum, it is crucial to recognize that macrophages exhibit a remarkable degree of plasticity, capable of adopting a wide range of functional states along a continuum. This plasticity allows macrophages to adapt dynamically to the changing microenvironmental cues encountered during tissue repair and regeneration.³⁸⁹⁻³⁹¹ Recent studies have subdivided M2 macrophages into subgroups, including M2a, M2b, M2c, and M2d, based on their upstream activators and downstream gene expression patterns. 103,104,392 For example, M2a macrophages are activated by IL-4 and IL-13, exhibiting increased expression of IL-10, TGF- β , and chemokines like CCL17, CCL18, and CCL22. In contrast, M2c macrophages are activated by glucocorticoids, IL-10, and TGF- β and exhibit increased transcription of IL-10, TGF-β, CCL16, and CCL18. 393-395 This classification highlights macrophages' complex nature and ability to modify their gene transcription profiles along a continuous spectrum, especially in pathological situations. It is important to note that the M1 and M2 phenotypes represent simplified extremes of a heterogeneous and dynamic functional continuum rather than distinct and mutually exclusive populations. Furthermore, macrophages can undergo phenotypic transitions in response to changing microenvironmental signals, allowing them to adapt their functional programs to the evolving needs of the tissue repair process. For example, M1 macrophages may transition to an M2-like phenotype during the later stages of tissue repair, facilitating the resolution of inflammation and promoting tissue regeneration^{396–398} (Figure 3).

4.3 | Macrophages in tissue-specific repair and regeneration

While the general principles of macrophage involvement in tissue repair and regeneration are consistent across various organ systems, some tissue-specific nuances and mechanisms highlight the versatility and adaptability of

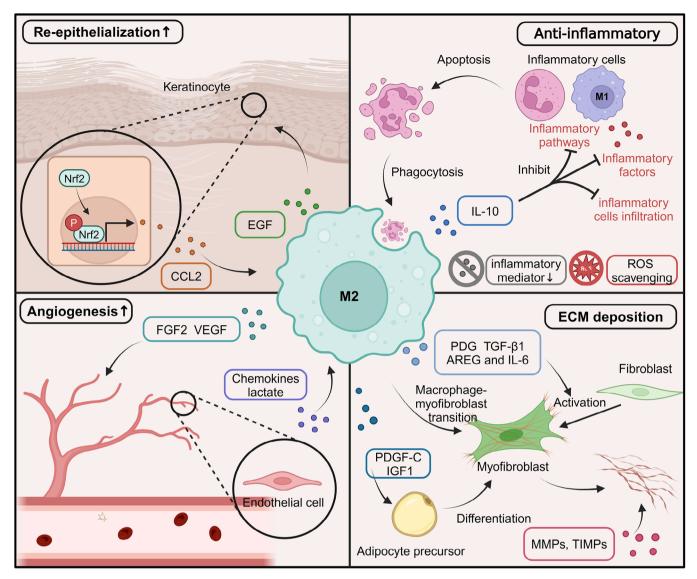


FIGURE 2 The role of M2-type macrophages in wound healing. After the inflammatory period, macrophages are polarized into the M2 phenotype, which exerts anti-inflammatory functions. In addition, the M2-type-Macrophages promote skin cell regeneration by releasing a range of cytokines and shaping the immune microenvironment, acting as key immune cells in tissue regeneration, including epidermal regeneration, vascularization, and ECM remodeling mediated by activated fibroblast. AREG, amphiregulin; CCL2, C-C motif chemokine ligand 2; ECM, extracellular matrix; FGF2, fibroblast growth factor 2; IGF-1, insulin-like growth factor 1; IL-6, interleukin-6; MMPs, matrix metalloproteinases; MMT, macrophage-myofibroblast transition; Nrf2, NF-E2-related factor 2; PDGF, platelet-derived growth factor; TGF-β1, transforming growth factor-beta1; TIMPs, tissue inhibitor of metalloproteinases; VEGF, vascular endothelial growth factor. Created with BioRender.com.

these cells. Here, we will briefly discuss the roles of macrophages in the repair and regeneration of selected tissues, including skeletal muscle, liver, heart, and skin.

4.3.1 | Skeletal muscle repair and regeneration

In skeletal muscle injury, macrophages are crucial in coordinating the inflammatory response, promoting myogenesis, and facilitating tissue remodeling. 399–401

M1 macrophages are the first to infiltrate the injured muscle, where they phagocytose debris and release proinflammatory cytokines to initiate the repair process. 402,403 Subsequently, a phenotypic switch occurs, and M2 macrophages become predominant. These anti-inflammatory macrophages secrete factors like IGF-1 and TGF- β that stimulate myoblast proliferation and differentiation. $^{404-406}$ M2 macrophages also produce MMPs that degrade the extracellular matrix, allowing myoblast migration and fusion into multinucleated myotubes. 407 Recent studies have revealed that

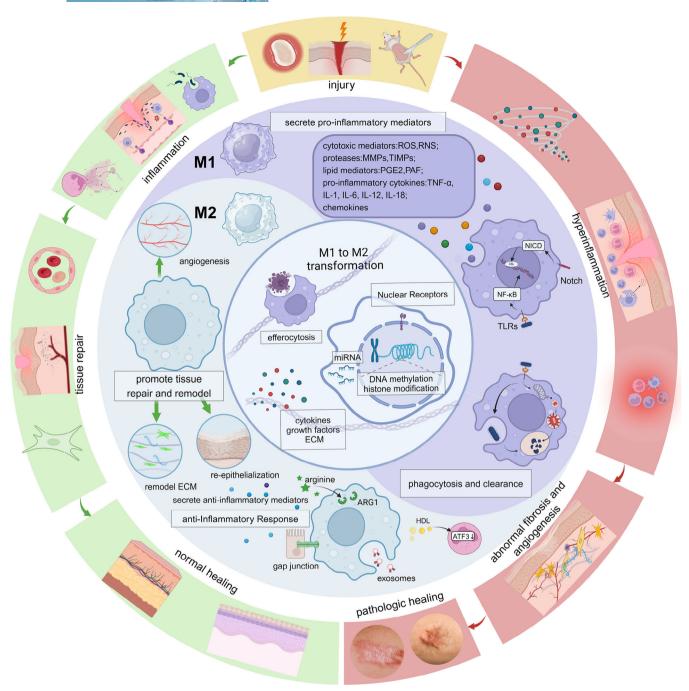


FIGURE 3 Distinctive roles of M1 and M2 in normal and pathological wound healing. M1 and M2 types of macrophages switch according to a chronological phenotype in the wound and work together concertedly to regulate routine wound healing. Tissue repair is completed as the four overlapping events of hemostasis, inflammation, and remodeling occur. During this process, monocytes can repair the wound by recognizing damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Patterns (PAMPs) and differentiate into M1-type macrophages stimulated by specific signals from the inflammatory microenvironment, producing cytotoxic mediators (ROS, RNS), proteases (MMP, TIMPS), lipid mediators (PGE2, PAF) proinflammatory factors (TNF-α, IL-1, IL-6 IL-12, IL-18) chemokines, phagocytosis and clearance of pathogens and tissue debris. Macrophages then polarize from the M1 to the M2 phenotype, promoting angiogenesis, extracellular matrix (ECM) deposition, and re-epithelialization with their anti-inflammatory properties. The M1 and M2 types of macrophages remain in unison and coordination, with excessive M1 macrophage activation leading to tissue damage and chronic inflammation and, conversely, excessive M2 macrophage activation leading to scarring and fibrosis. Created with BioRender.com.

macrophages can directly interact with muscle stem cells (satellite cells) through cell-cell contacts and paracrine signaling. 408-410 These interactions regulate satellite cell quiescence, activation, proliferation, and differentiation, ensuring proper muscle regeneration. Furthermore, macrophages contribute to the revascularization of the regenerating muscle by producing proangiogenic factors like VEGF and promoting the formation of new blood vessels. 87,411 This process is essential for delivering nutrients and oxygen to the newly formed muscle fibers.

4.3.2 | Liver regeneration

The liver has a remarkable capacity for regeneration, and macrophages play a pivotal role in this process. 412 Following partial hepatectomy or liver injury, Kupffer cells (liverresident macrophages) and infiltrating monocyte-derived macrophages orchestrate the regenerative response. 413–415 Initially, M1 macrophages promote hepatocyte proliferation by producing TNF- α and IL-6. They also phagocytose debris and apoptotic cells, creating space for the regenerating liver tissue. 416-418 As regeneration progresses, M2 macrophages dominate and secrete factors like Wnt proteins, EGF, and MMPs that support hepatocyte proliferation, migration, and matrix remodeling. 419-421 M2 macrophages also produce anti-inflammatory cytokines like IL-10 to resolve inflammation and prevent excessive tissue damage. 416,422 Recent studies have highlighted the importance of macrophage-hepatocyte crosstalk in regulating liver regeneration. Macrophages respond to signals from hepatocytes and modulate their phenotype and function accordingly, creating a feedback loop that fine-tunes the regenerative process. 423,424

4.3.3 | Cardiac repair and regeneration

While the adult mammalian heart has limited regenerative capacity, macrophages play a crucial role in regulating the inflammatory response and facilitating cardiac repair following myocardial infarction (MI). 425,426 After MI, M1 macrophages infiltrate the infarcted area and initiate the inflammatory response by producing proinflammatory cytokines and chemokines. 427 They also phagocytose necrotic cardiomyocytes and debris, preparing the area for subsequent repair. As inflammation resolves, M2 macrophages become predominant and promote angiogenesis, extracellular matrix deposition, and scar formation. They secrete factors like VEGF, TGF- β , and PDGF that stimulate endothelial cell proliferation, fibroblast activation, and collagen deposition. 428,429 Interestingly, recent studies have suggested that macrophages

may also play a role in cardiac regeneration by modulating the behavior of cardiac progenitor cells and cardiomyocytes. ^{430,431} M2 macrophages can secrete factors like oncostatin M and IL-33 that promote cardiomyocyte proliferation and survival, potentially contributing to new cardiac muscle. ^{432,433} However, excessive inflammation and prolonged M1 macrophage activation can lead to adverse cardiac remodeling and heart failure. ^{434,435} Therefore, modulating macrophage phenotypes and functions may represent a therapeutic strategy for improving cardiac repair and regeneration.

4.3.4 | Skin wound healing

Macrophages are essential for proper skin wound healing, involving inflammation, tissue formation, and remodeling. During the inflammatory phase, M1 macrophages infiltrate the wound site and phagocytose pathogens, debris, and apoptotic cells. They also release proinflammatory cytokines and chemokines to recruit additional immune cells and initiate the repair process.^{1,2} As the inflammatory phase resolves, M2 macrophages become predominant and promote tissue formation and remodeling.⁶³ They secrete growth factors like VEGF, TGF-β, and PDGF that stimulate angiogenesis, keratinocyte migration and proliferation, and extracellular matrix deposition. 436 M2 macrophages also play a role in wound contraction and scar formation by producing factors that activate fibroblasts and promote collagen deposition. 437-439 Additionally, they secrete anti-inflammatory cytokines like IL-10 to resolve inflammation and prevent excessive tissue damage.440 Recent studies have highlighted the importance of macrophage-keratinocyte crosstalk in regulating skin wound healing. 441,442 Macrophages respond to signals from keratinocytes, modulate their phenotype, and function accordingly, creating a feedback loop that fine-tunes the repair process.

4.4 | Macrophage dynamics in chronic wounds

Chronic wounds, characterized by their persistent inflammatory state and impaired healing, pose a significant challenge in clinical settings. Among the various types of chronic wounds, diabetic wounds stand out as a significant concern due to their increasing prevalence and the unique microenvironment that hinders the healing process. 443 In recent years, the role of macrophages in the pathogenesis and resolution of diabetic wounds has garnered significant attention. 62,444 This section delves into the complex interplay between macrophages and the diabetic

wound microenvironment, highlighting the mechanisms that influence macrophage phenotype and function and exploring potential therapeutic strategies targeting these interactions.

Diabetic wounds, particularly diabetic foot ulcers, are a common and severe complication of diabetes mellitus. The global prevalence of diabetic foot ulcers is estimated to be 6.3%, with a lifetime incidence of up to 25% among diabetic patients. 445,446 These wounds are characterized by a prolonged inflammatory phase, impaired angiogenesis, and delayed re-epithelialization, leading to a chronic nonhealing state. The unique microenvironment of diabetic wounds, shaped by hyperglycemia, oxidative stress, and the accumulation of advanced glycation end products (AGEs), significantly influences the behavior and function of macrophages, which are critical players in the wound healing process. 447,448

4.4.1 | The influence of the diabetic wound microenvironment on macrophage phenotype

In diabetic wounds, the local microenvironment is skewed toward factors promoting a persistent M1 phenotype, leading to chronic inflammation and impaired healing. High glucose levels, a hallmark of diabetes, have been shown to directly influence macrophage polarization. In vitro, studies have demonstrated that exposure to high glucose concentrations enhances the expression of proinflammatory cytokines, such as TNF- α and IL-1 β , in macrophages while suppressing the expression of anti-inflammatory markers, such as IL-10 and ARG-1. This shift toward an M1 phenotype is mediated through the activation of signaling pathways, including NF- κ B and MAPK, which are known to regulate inflammatory responses. 452–454

Oxidative stress, another key feature of the diabetic wound microenvironment, also plays a crucial role in modulating macrophage phenotype. ROS, such as superoxide and hydrogen peroxide, are elevated in diabetic wounds due to hyperglycemia-induced mitochondrial dysfunction and the activation of NADPH oxidase. Excessive ROS levels contribute to the persistent activation of proinflammatory signaling cascades, such as the NF- κ B pathway, in macrophages. Moreover, ROS can directly damage macrophages, impairing their phagocytic function and ability to transition toward an M2 phenotype, which is essential for wound resolution. 54,458

AGEs, formed by the nonenzymatic glycation of proteins and lipids under hyperglycemic conditions, accumulate in the diabetic wound bed and contribute to impaired healing. 459,460 AGEs interact with their receptor (RAGE) on macrophages, triggering proinflammatory signaling pathways, such as NF- κ B and MAPK, and inducing the

production of ROS and proinflammatory cytokines. 461–463 The AGE–RAGE interaction also impairs macrophage efferocytosis, a process critical for the clearance of apoptotic cells and the resolution of inflammation. 464 Consequently, the accumulation of AGEs in diabetic wounds perpetuates a state of chronic inflammation and hinders the transition of macrophages toward an M2 phenotype.

4.4.2 | Mechanisms underlying the effects of glucose, ROS, and AGEs on macrophages

The mechanisms by which high glucose, ROS, and AGEs influence macrophage function in diabetic wounds are complex and multifaceted. High glucose levels can directly alter macrophage metabolism, shifting it toward a more glycolytic phenotype associated with the M1 polarization state. 96,465 This metabolic reprogramming is mediated through the activation of HIF-1 α and the upregulation of glycolytic enzymes, such as hexokinase and pyruvate kinase $^{466-468}$ The increased glycolytic flux in macrophages promotes the production of proinflammatory cytokines and impairs their ability to engage in oxidative phosphorylation, which is necessary for the M2 phenotype.

Oxidative stress, driven by elevated ROS levels, contributes to the persistent activation of redox-sensitive transcription factors, such as NF- κ B and AP-1, in macrophages. ^{469,470} These transcription factors regulate the expression of proinflammatory genes, including TNF- α , IL-1 β , and IL-6, perpetuating the inflammatory response in diabetic wounds. ROS can also directly damage macrophages by inducing lipid peroxidation, protein carbonylation, and DNA damage, impairing their function and survival. ^{471–473} Furthermore, ROS-mediated oxidative modifications of proteins can generate new AGEs, amplifying the AGE–RAGE signaling loop and exacerbating inflammation. ⁴⁷⁴

AGEs interact with RAGE on macrophages, triggering a cascade of signaling events that promote the M1 phenotype. 475,476 The AGE-RAGE interaction activates NF-κB and MAPK pathways, leading to the transcription of proinflammatory genes and the production of ROS.⁴⁷⁷ Additionally, AGEs can induce epigenetic modifications in macrophages, such as histone acetylation and DNA methylation, which regulate gene expression in inflammation and wound healing. 478,479 For example, AGEs have been shown to increase the acetylation of histone H3 at the promoter regions of proinflammatory genes, such as TNF- α and IL-1 β , enhancing their transcription. 480 AGEs also impair macrophage efferocytosis by downregulating the expression of efferocytosis receptors, such as MerTK and CD36, and by inducing the production of "don't eat me" signals, such as CD47, on apoptotic cells. 481,482

4.4.3 | Targeting macrophagemicroenvironment interactions for diabetic wound treatment

Understanding the complex interactions between macrophages and the diabetic wound microenvironment provides valuable insights for developing targeted therapeutic strategies. One promising approach is modulating the ROS levels in the wound bed. Antioxidants, such as N-acetylcysteine and vitamin E, have reduced oxidative stress and improved wound healing in diabetic animal models. 483–485 These antioxidants scavenge ROS, attenuate the activation of proinflammatory signaling pathways, and promote the polarization of macrophages toward an M2 phenotype. Clinical studies have also demonstrated the potential of topical antioxidant application in improving diabetic wound healing, highlighting the translational relevance of targeting ROS. 486,487

Another strategy is inhibiting AGE formation and accumulation of AGEs in the wound bed. Pharmacological agents, such as aminoguanidine and pyridoxamine, have been shown to reduce AGE formation and improve wound healing in diabetic animal models. 488,489 These compounds trap reactive carbonyl intermediates and prevent their condensation with proteins to form AGEs. Additionally, targeting the AGE–RAGE signaling axis using RAGE antagonists or soluble RAGE (sRAGE) has shown promise in preclinical studies. 490 sRAGE acts as a decoy receptor, sequestering AGEs and preventing their interaction with cell surface RAGE, thus attenuating proinflammatory signaling in macrophages. 491,492

Modulating macrophage metabolism is another potential therapeutic approach. Compounds that promote oxidative phosphorylation and mitochondrial biogenesis, such as resveratrol and metformin, have been shown to skew macrophages toward an M2 phenotype and improve wound healing in diabetic animal models. 493–496 These compounds activate AMPK to promote the expression of anti-inflammatory genes and suppress glycolysis. Clinical trials investigating the effects of metformin on diabetic wound healing have shown promising results, with improved wound closure rates and reduced inflammation. 497

In conclusion, macrophages are versatile and dynamic cells that play pivotal roles throughout the various tissue repair and regeneration phases. Their remarkable plasticity and ability to adapt to changing microenvironmental cues allow them to orchestrate various processes, from initiating inflammation and pathogen clearance to promoting angiogenesis, extracellular matrix remodeling, and tissue regeneration. As our understanding of macrophage biology continues to deepen, these cells hold great promise as therapeutic targets for enhancing tissue

repair and regenerative processes in various pathological conditions.

5 | HARNESSING MACROPHAGES: TARGETING PATHWAYS FOR TISSUE REPAIR AND REGENERATION

Macrophages, the versatile cells of the innate immune system, have emerged as pivotal players in the intricate tissue repair and regeneration process. Recent advancements in regenerative medicine and molecular biology have shed light on the critical role of macrophages in promoting the regeneration of various tissues, including the heart, liver, kidney, muscle, and nerves. The ability of macrophages to adopt diverse phenotypes in response to microenvironmental cues has made them attractive therapeutic targets for enhancing tissue repair and regeneration. This section explores the current strategies for harnessing macrophages to promote tissue repair and regeneration, focusing on the latest research findings from the past decade. We discuss targeting specific pathways, such as the CSF-1/CSF-1R signaling pathway, and the modulation of macrophage function through signaling pathways and transcription factors. Additionally, we highlight the potential of relay transfer and cell transplantation of macrophages and biomaterial-based strategies for precise regulation of macrophage polarization phenotypes (Figure 4).

5.1 | Targeting the CSF-1/CSF-1R signaling pathway

The macrophage CSF-1 and its receptor (CSF-1R) signaling pathway play a crucial role in the maturation and transformation of TrMΦ, making it an attractive target for therapeutic^{498–501} interventions. Stutchfield et al.⁵⁰² demonstrated that the administration of CSF1-Fc, an exogenous form of CSF-1, enhanced the recruitment and conversion of monocytes into protective hepatic macrophages, facilitating liver recovery after acute injury and partial hepatectomy. Furthermore, a systematic review and meta-analysis by Wei et al.⁵⁰³ provided robust evidence supporting the efficacy and safety of CSF in accelerating wound healing. In addition to CSF-related approaches, targeting chemokine receptors on monocytes and macrophages has shown promise in altering their migration patterns and impacting their function in tissue repair. 169,504 Promoting the survival of M2 macrophages, which play an essential role in tissue repair and angiogenesis, represents another promising strategy for enhancing tissue healing.

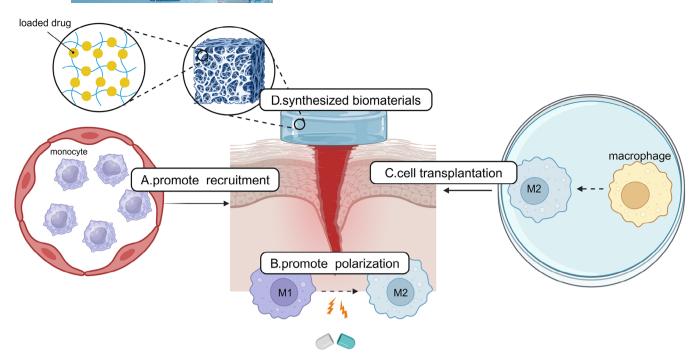


FIGURE 4 Therapeutic strategies for wound healing targeting macrophages. There are currently the following potential therapeutic strategies for wound healing targeting macrophages: (A) Promote monocyte recruitment to increase the number of macrophages in the wound. (B) Promote the timely polarization of proinflammatory M1 macrophages in the wound into an anti-inflammatory and prorepair M2 phenotype. (C) Macrophages were induced to express the M2 phenotype in vitro, and the macrophages promoting repair were transplanted into the wound tissue site. (D) The use of biosynthetic materials to precisely regulate the surface transformation of macrophages, such as hydrogels, can promote wound repair through different substances synthesized by hydrogels or drugs supported by them. Created with BioRender.com.

5.2 | Modulating macrophage function through signaling pathways and transcription factors

Manipulating macrophage function by targeting specific signaling pathways and transcription factors has emerged as a promising therapeutic strategy for promoting tissue repair and regeneration. The TLR9 signaling pathway has been found to encourage macrophage M2 polarization in various models.⁵⁰⁵ Activation of the TLR9 pathway, such as with the agonist cobitolimod, induces a prohealing phenotype in macrophages, enhancing macrophage-mediated tissue healing in conditions like ulcerative colitis. 506 Transcription factors, including NF-κB and MAPK, play critical roles in macrophage activation and polarization. 507,508 Inhibiting these signaling pathways has shown promising results in promoting M2 polarization and reducing inflammation. Puerarin, a compound from traditional Chinese medicine, has demonstrated the ability to inhibit NF-κB and MAPK pathways, leading to decreased production of inflammatory cytokines and promotion of M2 polarization in macrophages. 99,509,510 Noncoding RNAs, particularly miRNAs, have also emerged as important macrophage polarization and activation regulators. Targeting specific noncoding RNAs provides a means to

modulate macrophage function and influence tissue repair processes. 511,512 For instance, inhibiting the pro-M1 polarization molecule CRMP2 through small interfering RNA has demonstrated reduced local inflammation and fibrosis following MI. 513

5.3 | Relay transfer and cell transplantation of macrophages

Targeting specific subpopulations of macrophages through relay transfer and cell transplantation has shown great potential for clinical treatment aimed at tissue repair and regeneration. ⁵¹⁴ Lopes et al. ⁵¹⁵ demonstrated the efficacy of modifying macrophages to express the M2 phenotype in vitro and subsequently transferring these M2 macrophages to a colitis mouse model, reducing inflammation and pathological damage. Similarly, Zheng et al. ⁵¹⁶ stimulated macrophages to adopt the M2 phenotype using IL-4 and IL-13. They transplanted these M2 macrophages into a streptozotocin-induced diabetic mouse model, significantly reducing damage in the islets and kidneys. These studies highlight the potential of relay transfer and polarized macrophage cell transplantation to promote tissue repair and regeneration. However, further

research is needed to fully understand the mechanisms of macrophage polarization and develop more precise and effective strategies for modulating macrophage function in vivo. ⁵¹⁷ This includes identifying specific markers and signaling pathways that regulate macrophage polarization and investigating methods to optimize the survival and functionality of transplanted macrophages.

5.4 | Biomaterial-based strategies for precise regulation of macrophage polarization

Recent advancements in biomaterials have enabled precise regulation of macrophage polarization phenotypes, specifically M1/M2, leading to enhanced tissue regeneration and accelerated wound healing.⁵¹⁸⁻⁵²³ Hydrogelbased constructs, known for their biocompatibility, tunable physical properties, and drug-delivery capabilities, have emerged as valuable tools for tissue repair. 524-526 Huang et al. 527 developed curcumin-based metal-organic framework hydrogels that effectively downregulated M1 macrophage-related gene expression while upregulating anti-inflammatory gene expression, promoting the polarization of macrophages toward the M2 phenotype and facilitating the regeneration of blood vessels and nerves in chronic wounds. Henn et al.528 investigated xenotransplantation-mediated activation of Trem2+ macrophages, which promoted re-epithelialization and angiogenesis through growth factor secretion and contributed to collagen remodeling by secreting MMPs.³⁷⁸ By designing a soft pullulan-collagen hydrogel, delivery of Trem2+ macrophages obtained after vitamin D3 treatment to the wound bed showed great potential for clinical translation. Biomaterials offer a platform for precise modulation of macrophage function and polarization through tailored design and incorporation of specific cues, such as drug delivery systems or bioactive molecules. 529-532 Further research is needed to optimize the design and functionality of biomaterials to achieve better control over macrophage polarization and ultimately improve clinical outcomes in tissue repair and regeneration (Table 3).

5.5 | Therapeutic potential and clinical applications

The therapeutic potential of macrophages in cell-based therapies has been demonstrated in various clinical trials and preclinical studies. 522,559,560 Macrophages have outperformed stem cells in specific target diseases, showcasing their outstanding regenerative capacity. 561 Conditions such as kidney disease, stroke, arterial disease, and

cancer have been targeted using macrophage-based therapies. Genetic modification of macrophages, such as the development of chimeric antigen receptor-macrophages (CAR-M), has further expanded the potential of genetically engineered macrophages for cell therapy.^{562–564} The use of induced pluripotent stem cell (iPSC)-derived macrophages, macrophages loaded with nanoparticles, ex vivo polarization and adoptive transfer of macrophages, and surface-anchoring engineering of macrophages have also shown promising results in preclinical studies. 565-567 The therapeutic applications of macrophage CSF-1 have been explored in various contexts, including tissue repair after ischemia in the kidney and heart, promotion of angiogenesis, and elimination of amyloid deposits in the brain. 568-570 CSF-1 has been shown to promote a residenttype macrophage phenotype, making it a potential treatment for tissue repair (Table 4).

In summary, macrophages play a crucial role in tissue repair, regeneration, and fibrosis, making them attractive targets for therapeutic interventions. The ability to harness macrophages through various strategies, such as targeting specific signaling pathways, modulating macrophage function, relay transfer and cell transplantation, and biomaterial-based approaches, holds great promise for enhancing tissue repair and regeneration. Future research should further elucidate the mechanisms that instruct macrophages to adopt specific phenotypes and identify novel targets for therapeutic modulation. The development of more precise and effective strategies for modulating macrophage function in vivo and optimizing the survival and functionality of transplanted macrophages will be crucial for translating these findings into clinical applications. Additionally, the potential of genetically engineered macrophages, such as CAR-M, and using iPSC-derived macrophages warrant further exploration. Combining macrophage-based therapies with other therapeutic modalities, such as biomaterials and drug delivery systems, may also provide synergistic effects and improve clinical outcomes.

6 | CONCLUSION AND PROSPECTS

Macrophages are remarkably plastic cells that play pivotal roles in tissue homeostasis, inflammation, repair, and regeneration. The past decade has witnessed significant advances in understanding the molecular mechanisms governing macrophage plasticity and their functional implications in health and disease. While providing a helpful framework, the traditional M1/M2 classification system has been challenged by the emergence of a spectrum of activation states revealed by single-cell technologies. The complex interplay between tissue-specific

Currently, biomaterial strategies for targeting macrophages and their functions in wound healing. TABLE 3

		Bioactive		
Hydrogel composition		molecules	Effect of hydrogel dressings	References
Natural hydrogel	Agarose	Carrageenan	Promote macrophage to enter the proinflammatory M1 type	533
Natural hydrogel	Hyaluronic acid	Paeoniflorin	Modulating the phenotype of macrophages from M1 to M2	534
		H_2S	Promoting macrophage polarization toward M2 phenotype and inhibiting M1 polarization	535
		MiR-223	Increased the level of macrophage infiltration but also effectively mediated the local polarization of macrophages toward the M2 phenotype	536
		Tetramethylpyrazine	Activation of M2 macrophage function via STAT signaling pathway	537
Natural hydrogel	Gelatin	Snail glycosaminoglycan	By sequestrating proinflammatory cytokines and downregulating their expression by inhibiting the NF-кB signaling pathway, macrophages were promoted to polarization toward the M2 phenotype.	538,539
Natural hydrogel	Chitosan	Collagen type I	Promote the production of anti-inflammatory cytokines in macrophages and selectively reduce the production of proinflammatory cytokines. The polarization of macrophages toward the M2 subgroup was directly induced, and the M1 polarization of wound bed macrophages was reversed.	540
		PGE2	Inhibited the infiltration of inflammatory cells and secretion of proinflammatory cytokines and promoted the polarization of M2 macrophages at the injured site	541
		Phosphocreatine	Inhibits the expression of proinflammatory cytokine chemokines in macrophages stimulated by INF	542
		Bone marrow mesenchymal stem cell-derived exosome	Promotes the phenotype transition from M1 to anti-inflammatory M2 and inhibits the release of various proinflammatory cytokines	543
		Melanin composite nanoparticles	Promoted the polarization of M1 macrophage to M2 macrophage and activated autophagy of M2 macrophages	544
Natural hydrogel	Chitosan/agarose	Vitamin C	Reduces the ability of macrophages to produce MMP1 and MMP2	545
Natural hydrogel	Agarose-grafting-hyaluronan scaffold	Agarose-grafting- hyaluronan scaffold	Accelerate cell proliferation and stimulate secretion of TNF- $\!\alpha$ for macrophages.	546
Natural hydrogel	Curdlan/agarose Curdlan/chitosan	Vitamin C and hydrocortisone	Significantly decrease release of MMP-2 by human macrophages	547
				(Continues)

(Continues)

(Continued)

TABLE 3

		Bioactive		
Hydrogel composition		molecules	Effect of hydrogel dressings	References
Synthetic hydrogel	Polyacrylamide	Glucose oxidase	Induce the transformation of macrophages to M2 phenotype, accelerate the transformation of wound microenvironment to remodeling state, and then accelerate angiogenesis and neurogenesis	548
Synthetic hydrogel	Polyvinyl alcohol	ROS-responsive linker, mupirocin, and GM-CSF	Reduces inflammation, reduces the secretion of various proinflammatory cytokines, increases the percentage of M2-type macrophages, and triggers the production of new blood vessels and collagen around the wound	549
		Cholinium salicylate, cholinium gallate, cholinium vanillate and cholinium caffeate	The decrease in LPS-induced NO production indicated that the material had anti-inflammatory activity	055
		Aloe gel extract	Downregulate the expression of the proinflammatory gene, IL-6 and iNOS, and significantly inhibit the production of reactive oxygen species	551
Synthetic hydrogel	Methyl methacrylate	Glycyrrhizic acid, Zn2+	By regulating the ratio of MI/M2 macrophages rather than ablating macrophages, the three stages of diabetic wound repair were accelerated.	552
Synthetic hydrogel	polyvinyl alcohol/polyvinylidene fluoride	Piezoelectric response	Regulate macrophage phenotype from the MI subtype to the M2 subtype, and the expression level of inflammatory factors is reduced through the AKT and ERKI/2 signaling pathways.	553
Composite hydrogel	Chitosan/polyvinyl alcohol	Ursolic acid	Reduce the M1 phenotype transformation of macrophages stimulated by lipopolysaccharide, effectively restore the M2 polarization of macrophages, and shorten the inflammatory period	554
Composite hydrogel	Gelatin methacrylate and silk fibroin glycidyl methacrylate	Platelet-derived extracellular vesicles, resveratrol	Inhibiting the expression of proinflammatory factors TNF- α and iNOS in macrophages, increasing the expression of anti-inflammatory factors TGF- β 1 and Arg-1, promoting angiogenesis, and accelerating wound healing	555
Composite hydrogel	Polylactic acid/bletilla striata polysaccharide/rosmarinic acid	Rosmarinic acid, bletilla striata polysaccharide	Transform M1 macrophages into M2 macrophages, reduce the release of inflammatory factors, and promote effective wound healing.	556
Composite hydrogel	Chitosan/polyvinyl alcohol/gelatin	Chitosan/polyvinyl alcohol/gelatin	Macrophages moderately induced M1-type polarization, which made them have specific phagocytic potential, and induced M2-type polarization in the late healing period	557
Composite hydrogel	Polyvinyl alcohol/xanthan gum/hypromellose/sodium carboxymethyl	Silver nanoparticles	Reduce the production of $\mathrm{H_2O_2}$ -mediated inflammatory response in macrophages	558

Abbreviations: ARG, arginine; INF, interferon; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharides; MiR, microRNA; MMP, matrix metalloproteinase; PGE2, prostaglandin E2; STAT, signal transducer and activator of transcription; TGF, transforming growth factor; TNF, tumor necrosis factor.

TABLE 4 Clinical study on regulating macrophages to improve wound healing.

Treatment measure	Applied disease	Effect on macrophages	Therapeutic effect	References
ON101	DFUs	Decreasing inflammatory M1 macrophage activity and enriching M2 macrophage populations	ON101 showed significant efficacy in diabetic ulcers lasting 6 months or larger than 5cm2	522
rhGM-CSF	Deep second-degree burn wound	Stimulate macrophages' maturation and rapid recruitment, save damaged macrophages, and accelerate	The wound healing is accelerated, the formation of capillaries is accelerated, and the scar after healing is reduced.	571
	Deep second-degree burns of infants	wound repair	It is beneficial for controlling infection, accelerating scab dissolution, and inhibiting pathological scarring formation.	572
	Third-degree frostbite wound		Improves wound healing and inflammation levels and reduces the risk of infection	573
NPWT	DFUs to be treated with STSG	Macrophages were polarized from M1 to M2	Increased survival of skin grafts	574
TR-987 0.1% active gel	Wound after laser resurfacing	Mildly increases the proinflammatory phenotype and initiates the wound repair cascade	Skin quality after healing (elastosis and wrinkling) is significantly improved.	575
YaSP	DFUs	Inhibition of nitric oxide production in M1 macrophages	Accelerated the speed of diabetic wound healing	576
Alveofact	Human suction blister wound	The number of M1 macrophages in the wound was decreased, and the secretion of inflammatory cytokines was decreased.	The speed of wound re-epithelialization and wound healing were accelerated.	577
Expressive writing	Punch biopsy wound	Langerhans cell infiltration and duration increased, and macrophage M1 polarization decreased during healing.	Wound re-epithelialization and healing were accelerated.	578
Cobitolimod	Ulcerative colitis	Macrophages are stimulated to secrete IL-10 by TRL9.	Improve the dysregulation of intestinal cytokines and excessive inflammation	506
EGCG	Skin scar	Macrophage M2 polarization increased.	Skin scar elasticity increases, hydration increases, and blood vessel density decreases.	579,580
MALP-2	Punch biopsy wound	MALP-2 activates macrophages to secrete significant growth factors for wound healing through TLR-2 and TLR-6.	The induced wound local inflammation subsided 48h later.	581

Abbreviations: DFUs, diabetic foot ulcers; EGCG, epigallocatechin-3-gallate; EMD, enamel matrix protein derivative, NPWT, negative pressure wound therapy; rhGM-CSF, recombinant human granulocyte-macrophage colony-stimulating factor; STSG, split-thickness skin graft; YaSP, Ya-Samarn-Phlae.

factors, ontogeny, and microenvironmental cues shapes macrophages' transcriptional and epigenetic landscape, giving rise to a diverse array of functional phenotypes. The signaling pathways orchestrating macrophage polarization have been extensively studied, with TLRs, STAT proteins, nuclear receptors, and miRNAs emerging as key regulators. The integration of these signaling cascades, along

with metabolic reprogramming and epigenetic modifications, fine-tunes macrophage responses to various stimuli. Notably, the crosstalk between these pathways and the influence of the tissue microenvironment on macrophage plasticity has been increasingly recognized. The discovery of $\text{Tr} \Phi \Phi$ with distinct ontogenies and the concept of trained immunity have further expanded our understand-

ing of macrophage heterogeneity and their capacity for long-term functional reprogramming. The functional significance of macrophage plasticity is exemplified by their roles in tissue repair and regeneration. Macrophages orchestrate the inflammatory response, clear cellular debris, and promote angiogenesis, extracellular matrix remodeling, and tissue regeneration. The dynamic transition from proinflammatory to proresolving phenotypes is crucial for successfully executing the repair process. Dysregulation of macrophage function contributes to impaired wound healing, fibrosis, and chronic inflammation, underscoring the therapeutic potential of targeting macrophage polarization in various pathological conditions.

Despite the significant progress in understanding macrophage plasticity, several challenges and opportunities remain. The complex heterogeneity of macrophage phenotypes in vivo and their functional implications in specific tissue contexts warrant further investigation. Developing more sophisticated computational tools and spatial transcriptomics approaches will enable a more comprehensive analysis of macrophage diversity and its interactions with other cells in the tissue microenvironment. Moreover, the mechanisms underlying the crosstalk between signaling pathways and the long-term epigenetic reprogramming of macrophages in response to environmental challenges require further elucidation. Translating the knowledge of macrophage plasticity into clinical applications is a significant challenge and opportunity. Targeting specific signaling pathways or transcription factors to modulate macrophage function holds promise for treating inflammatory diseases, fibrotic disorders, and impaired wound healing. However, developing targeted therapies that selectively modulate macrophage polarization while minimizing off-target effects remains a significant hurdle. Nanoparticle-based drug delivery systems and engineered exosomes have shown potential in delivering therapeutic agents specifically to macrophages, but their clinical translation requires further optimization and safety evaluation. The field of macrophage-based cell therapies is rapidly evolving, with strategies such as adoptive transfer of ex vivo polarized macrophages, genetic engineering of macrophages, and the use of iPSC-derived macrophages showing promising results in preclinical studies. However, these engineered macrophages' longterm survival, functionality, and safety in vivo need to be carefully assessed. Combining macrophage-based therapies with other therapeutic modalities, such as biomaterials, growth factors, and immunomodulatory agents, may provide synergistic effects and improve clinical outcomes.

In conclusion, macrophage plasticity is a fundamental property that underlies their diverse functions in tissue homeostasis, inflammation, repair, and regenera-

tion. The past decade has witnessed a paradigm shift in understanding macrophage heterogeneity and the molecular mechanisms governing their polarization. Integrating single-cell technologies, spatial transcriptomics, and computational approaches has unveiled the complex landscape of macrophage activation states and their functional implications. Targeting macrophage plasticity holds immense therapeutic potential for various diseases, from inflammatory disorders to tissue regeneration and cancer. However, translating these findings into clinical applications requires a deeper understanding of the context-dependent roles of macrophages, the development of more precise and effective strategies for modulating their function, and rigorous safety and efficacy evaluations. As the field of macrophage biology continues to evolve, interdisciplinary collaborations between immunologists, bioengineers, and clinicians will be crucial in harnessing the power of these versatile cells to benefit human health. With the rapid pace of scientific discoveries and technological advancements, the coming years promise to be an exciting era for macrophage research, with the potential to revolutionize our approach to treating diseases and promoting tissue regeneration.

AUTHOR CONTRIBUTIONS

Lingfeng Yan and Jue Wang wrote the manuscript and drew the figures. Xin Cai helped design the tables. Yih-Cherng Liou, Han-Ming Shen, and Jianlei Hao helped design the manuscript structure and write the manuscript. Canhua Huang, Gaoxing Luo, and Weifeng He evaluated and reviewed the manuscript structure, ideas and science. All authors have read and approved the final manuscript.

ACKNOWLEDGMENTS

We would like to thank BioRender for its application in drawing Figures 1-4. This work was supported by grants from the National Natural Sciences Foundation of China (No. 81630055 and No. 81920108022 to G. X. L.; No. 82172232 and No. 31872742 to W. F. H.), the Military Medical Science and Technology Youth Training Program of the Army Military Medical University (Third Military Medical University) (No. 20QNPY024 to W. F. H.) and the Special Project for Enhancing Science and Technology Innovation Ability (frontier exploration) of the Army Military Medical University (Third Military Medical University) Innovation Ability (No. 2019XQY12 to W. F. H.).

CONFLICT OF INTEREST STATEMENT

Author Canhua Huang and Yih-Cherng Liou are Editorial board members of Medcomm. Author Canhua Huang and Yih-Cherng Liou were not involved in the journal's review of or decisions related to this manuscript. The other authors declared no conflict of interest.

DATA AVAILABILITY STATEMENT

Data availability is not applicable to this article as no new data were created or analyzed in this study.

ETHICS STATEMENT

No ethical approval was required for this study.

ORCID

Lingfeng Yan https://orcid.org/0009-0002-4997-0780

REFERENCES

- Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. *Biomolecules*. 2021;11(5):700.
- Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-mediated inflammation in skin wound healing. *Cells*. 2022;11(19):2953.
- Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage functions in wound healing. J Tissue Eng Regen Med. 2019;13(1):99-109.
- 4. Chen C, Liu T, Tang Y, Luo G, Liang G, He W. Epigenetic regulation of macrophage polarization in wound healing. *Burns Trauma*. 2023;11:tkac057.
- Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. *Front Immunol*. 2019:10:1462.
- Sun X, Li Y, Deng Q, et al. Macrophage polarization, metabolic reprogramming, and inflammatory effects in ischemic heart disease. Front Immunol. 2022;13:934040.
- 7. Willenborg S, Sanin DE, Jais A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. *Cell Metab.* 2021;33(12):2398-2414. e9.
- 8. Theocharidis G, Thomas BE, Sarkar D, et al. Single cell transcriptomic landscape of diabetic foot ulcers. *Nat Commun*. 2022;13(1):181.
- Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. *Immunology*. 2018;154(2):186-195.
- 10. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. *Immunity*. 2005;23(4):344-346.
- Karlinsey K, Qu L, Matz AJ, Zhou B. A novel strategy to dissect multifaceted macrophage function in human diseases. *J Leukoc Biol.* 2022;112(6):1535-1542.
- An L, Michaeli J, Pallavi P, et al. Concurrent stimulation of monocytes with CSF1 and polarizing cytokines reveals phenotypic and functional differences with classical polarized macrophages. *J Leukoc Biol.* 2022;112(3):437-447.
- O'Brien EM, Spiller KL. Pro-inflammatory polarization primes Macrophages to transition into a distinct M2-like phenotype in response to IL-4. *J Leukoc Biol.* 2022;111(5):989-1000.
- 14. Liang B, Wang H, Wu D, Wang Z. Macrophage M1/M2 polarization dynamically adapts to changes in microenvironment and modulates alveolar bone remodeling after dental implantation. *J Leukoc Biol.* 2021;110(3):433-447.
- Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. *J Immunol*. 2000;164(12):6166-6173.

- Eming SA, Murray PJ, Pearce EJ. Metabolic orchestration of the wound healing response. *Cell Metab.* 2021;33(9):1726-1743.
- He P, Dai M, Li Z, et al. Effect of connexin 43 in LPS/IL-4-induced macrophage M1/M2 polarization: an observational study. *Medicine (Baltimore)*. 2024;103(15):e37811.
- Scott TE, Lewis CV, Zhu M, et al. IL-4 and IL-13 induce equivalent expression of traditional M2 markers and modulation of reactive oxygen species in human macrophages. Sci Rep. 2023;13(1):19589.
- Zhu Y, Chen X, Lu Y, et al. Glutamine mitigates murine burn sepsis by supporting macrophage M2 polarization through repressing the SIRT5-mediated desuccinylation of pyruvate dehydrogenase. *Burns Trauma*. 2022;10:tkac041.
- Strizova Z, Benesova I, Bartolini R, et al. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond). 2023;137(15):1067-1093.
- Oliver MA, Davis XD, Bohannon JK. TGFβ macrophage reprogramming: a new dimension of macrophage plasticity. *J Leukoc Biol.* 2024;115(3):411-414.
- Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. *Immunity*. 2016;44(3):450-462.
- Xia T, Fu S, Yang R, et al. Advances in the study of macrophage polarization in inflammatory immune skin diseases. *J Inflamm* (Lond). 2023;20(1):33.
- Gordon S. Phagocytosis: the legacy of Metchnikoff. Cell. 2016;166(5):1065-1068.
- Life of Elie Metchnikoff, 1845–1916. Nature. 1922;109(2728):163-166.
- Van Epps HL. Macrophage activation unveiled. J Exp Med. 2005;202(7):884.
- Palmieri EM, McGinity C, Wink DA, McVicar DW. Nitric oxide in macrophage immunometabolism: hiding in plain sight. *Metabolites*. 2020;10(11):429.
- Wlaschek M, Singh K, Sindrilaru A, Crisan D, Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic Biol Med. 2019;133:262-275.
- Liu L, Guo H, Song A, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-κB and MAPK pathways. BMC Immunol. 2020;21(1):32.
- Kashfi K, Kannikal J, Nath N. Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells. 2021;10(11):3194.
- Mackaness GB, Blanden RV. Cellular immunity. Prog Allergy. 1967;11:89-140.
- Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. *J Exp Med*. 1992;176(1):287-292.
- 33. von Recklinghausen F. Ueber Eiter- und Bindegewebskörperchen. Arch Pathol Anat Physiol Klin Med. 1863;28(1):157-197.
- Tauber AI. Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol. 2003;4(11):897-901.
- Sródka A, Gryglewski RW, Szczepariski W. Browicz or Kupffer cells? Pol J Pathol. 2006;57(4):183-185.
- Aschoff L. Das reticuloendotheliale System. Ergebn Inn Med Kinderheilk. 1924;26:1-118.
- 37. van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. *J Exp Med.* 1968;128(3):415-435.

- MedComm
- 38. van Furth R. Current view on the mononuclear phagocyte system. *Immunobiology*. 1982;161(3-4):178-185.
- Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. *Cell Host Microbe*. 2012;12(2):223-232.
- 40. Lavin Y, Winter D, Blecher-Gonen R, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. *Cell*. 2014;159(6):1312-1326.
- Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. *Immunity*. 2014:40(2):274-288.
- 42. Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. *Science*. 2014;345(6204):1250684.
- Arts RJ, Novakovic B, Ter Horst R, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. *Cell Metab*. 2016;24(6):807-810
- 44. Roussel M, Ferrell PB, Jr., Greenplate AR, et al. Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. *J Leukoc Biol.* 2017;102(2):437-447.
- Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. *Immunity*. 2019;50(5):1317-1334. e10.
- Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084.
- Wu MM, Wang QM, Huang BY, et al. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. *Pharmacol Res.* 2021;172:105796.
- 48. Lin YH, Wang YH, Peng YJ, et al. Interleukin 26 skews macrophage polarization towards M1 phenotype by activating cJUN and the NF-κB pathway. *Cells*. 2020;9(4):938.
- Liu L, Stokes JV, Tan W, Pruett SB. An optimized flow cytometry panel for classifying macrophage polarization. *J Immunol Methods*. 2022;511:113378.
- Zhang J, Liu X, Wan C, et al. NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption. J Clin Periodontol. 2020;47(4):451-460.
- 51. Hirani D, Alvira CM, Danopoulos S, et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia. *Eur Respir J.* 2022;59(2):2002248.
- 52. Cutolo M, Campitiello R, Gotelli E, Soldano S. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. *Front Immunol.* 2022;13:867260.
- 53. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. *J Cell Physiol.* 2018;233(9):6425-6440.
- 54. Zhang B, Yang Y, Yi J, Zhao Z, Ye R. Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis. *J Periodontal Res.* 2021;56(5):991-1005.
- Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. *Immunobiology*. 2019;224(2):242-253.

- Fan X, Zheng S, Chen C, et al. Sialidase facilitates Porphyromonas gingivalis immune evasion by reducing M1 polarization, antigen presentation, and phagocytosis of infected macrophages. Front Cell Infect Microbiol. 2023;13:1173899.
- 57. Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. *J Nutr Biochem.* 2019;66:1-16.
- 58. Bogen B, Fauskanger M, Haabeth OA, Tveita A. CD4(+) T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. *Cancer Immunol Immunother*. 2019;68(11):1865-1873.
- Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage. 2020;28(5):555-561.
- Ma PF, Gao CC, Yi J, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. *J Hepatol*. 2017;67(4):770-779.
- Ishikawa S, Noma T, Fu HY, et al. Apoptosis inhibitor of macrophage depletion decreased M1 macrophage accumulation and the incidence of cardiac rupture after myocardial infarction in mice. *PLoS One*. 2017;12(11):e0187894.
- Louiselle AE, Niemiec SM, Zgheib C, Liechty KW. Macrophage polarization and diabetic wound healing. *Transl Res.* 2021;236:109-116.
- Sharifiaghdam M, Shaabani E, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophages as a therapeutic target to promote diabetic wound healing. *Mol Ther*. 2022;30(9):2891-2908.
- Gao X, Lu C, Miao Y, Ren J, Cai X. Role of macrophage polarisation in skin wound healing. *Int Wound J.* 2023;20(7):2551-2562.
- He Y, Gao Y, Zhang Q, Zhou G, Cao F, Yao S. IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. *Neuroscience*. 2020;437:161-171.
- Gao S, Zhou J, Liu N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol. 2015:85:131-139.
- Lundahl MLE, Mitermite M, Ryan DG, et al. Macrophage innate training induced by IL-4 and IL-13 activation enhances OXPHOS driven anti-mycobacterial responses. *Elife*. 2022;11:e74690.
- Huang X, Li Y, Fu M, Xin HB. Polarizing Macrophages In Vitro. Methods Mol Biol. 2018;1784:119-126.
- Qu R, Zhou M, Qiu Y, et al. Glucocorticoids improve the balance of M1/M2 macrophage polarization in experimental autoimmune uveitis through the P38MAPK-MEF2C axis. *Int Immunopharmacol*. 2023;120:110392.
- Luo L, Wang S, Hu Y, et al. Precisely Regulating M2 Subtype Macrophages for Renal Fibrosis Resolution. ACS Nano. 2023;17(22):22508-22526.
- Chen S, Wang M, Lu T, et al. JMJD6 in tumor-associated macrophage regulates macrophage polarization and cancer progression via STAT3/IL-10 axis. *Oncogene*. 2023;42(37):2737-2750.
- Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol. 2022;13:967193.
- Kiseleva V, Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Biochemical and molecular inducers and

- modulators of M2 macrophage polarization in clinical perspective. *Int Immunopharmacol.* 2023;122:110583.
- 74. Fang J, Ou Q, Wu B, et al. TcpC inhibits M1 but promotes M2 macrophage polarization via regulation of the MAPK/NFκB and Akt/STAT6 pathways in urinary tract infection. *Cells*. 2022:11(17):2674.
- Wang J, Xu L, Xiang Z, et al. Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206(+) M2-like macrophage polarization. *Cell Death Dis.* 2020;11(2):136.
- Xu ZJ, Gu Y, Wang CZ, et al. The M2 macrophage marker CD206: a novel prognostic indicator for acute myeloid leukemia. Oncoimmunology. 2020;9(1):1683347.
- Zhu Y, Sun X, Tan S, et al. M2 macrophage-related gene signature in chronic rhinosinusitis with nasal polyps. Front Immunol. 2022;13:1047930.
- Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nanoparticle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. *Biomaterials*, 2020;239:119833.
- Chen X, Wan Z, Yang L, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA. *J Nanobiotechnology*. 2022;20(1):110.
- Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. *Microbiome*. 2022;10(1):38.
- Fu XH, Li JP, Li XY, et al. M2-macrophage-derived exosomes promote meningioma progression through TGF-β signaling pathway. J Immunol Res. 2022;2022:8326591.
- 82. Cai G, Lu Y, Zhong W, et al. Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1. *Cell Prolif.* 2023;56(9):e13440.
- 83. Nakazaki M, Morita T, Lankford KL, Askenase PW, Kocsis JD. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. *J Extracell Vesicles*. 2021;10(11):e12137.
- Oh S, Lee JH, Kim HM, et al. Poly-L-lactic acid fillers improved dermal collagen synthesis by modulating M2 macrophage polarization in aged animal skin. Cells. 2023;12(9):1320.
- Li S, Ding X, Zhang H, Ding Y, Tan Q. IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation. *Int Immunopharmacol*. 2022:106:108605.
- Wang Y, Geng X, Guo Z, et al. M2 macrophages promote subconjunctival fibrosis through YAP/TAZ signalling. *Ann Med*. 2024;56(1):2313680.
- 87. Zhang J, Muri J, Fitzgerald G, et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. *Cell Metab.* 2020;31(6):1136-1153. e7.
- 88. Lu Y, Han G, Zhang Y, et al. M2 macrophage-secreted exosomes promote metastasis and increase vascular permeability in hepatocellular carcinoma. *Cell Commun Signal*. 2023;21(1):299.
- 89. Xu H, Zhu Y, Hsiao AW, et al. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. *Biomaterials*. 2023;294:121998.

- Razi S, Yaghmoorian Khojini J, Kargarijam F, et al. Macrophage efferocytosis in health and disease. *Cell Biochem Funct*. 2023;41(2):152-165.
- 91. Aitcheson SM, Frentiu FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds. *Molecules*. 2021;26(16):4917.
- Zhong X, Lee HN, Kim SH, et al. Myc-nick promotes efferocytosis through M2 macrophage polarization during resolution of inflammation. *Faseb J.* 2018;32(10):5312-5325.
- 93. Govindappa PK, Elfar JC. Erythropoietin promotes M2 macrophage phagocytosis of Schwann cells in peripheral nerve injury. *Cell Death Dis.* 2022;13(3):245.
- Ying W, Gao H, Dos Reis FCG, et al. MiR-690, an exosomalderived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. *Cell Metab*. 2021;33(4):781-790. e5.
- Li X, Ren Y, Chang K, et al. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol. 2023;14:1153915.
- Russo S, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites. Front Immunol. 2021;12:746151.
- 97. Savitri C, Kwon JW, Drobyshava V, Ha SS, Park K. M2 macrophage-derived concentrated conditioned media significantly improves skin wound healing. *Tissue Eng Regen Med*. 2022;19(3):617-628.
- Pi L, Fang B, Meng X, Qian L. LncRNA XIST accelerates burn wound healing by promoting M2 macrophage polarization through targeting IL-33 via miR-19b. *Cell Death Discov*. 2022;8(1):220.
- Li S, Yang P, Ding X, Zhang H, Ding Y, Tan Q. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype. *Burns Trauma*. 2022;10: tkac046.
- 100. Anders CB, Lawton TMW, Ammons MCB. Metabolic immunomodulation of macrophage functional plasticity in nonhealing wounds. Curr Opin Infect Dis. 2019;32(3):204-209.
- Hourani T, Perez-Gonzalez A, Khoshmanesh K, et al. Labelfree macrophage phenotype classification using machine learning methods. Sci Rep. 2023;13(1):5202.
- 102. Ordaz-Arias MA, Díaz-Alvarez L, Zúñiga J, Martinez-Sánchez ME, Balderas-Martínez YI. Cyclic attractors are critical for macrophage differentiation, heterogeneity, and plasticity. Front Mol Biosci. 2022;9:807228.
- 103. Zhang Q, Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting. *Int J Mol Sci.* 2023;24(8):7493.
- Nakai K. Multiple roles of macrophage in skin. J Dermatol Sci. 2021;104(1):2-10.
- 105. Anders CB, Lawton TMW, Smith HL, Garret J, Doucette MM, Ammons MCB. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes. J Leukoc Biol. 2022;111(3):667-693.
- 106. Kang H, Bang JY, Mo Y, et al. Effect of Acinetobacter lwoffii on the modulation of macrophage activation and asthmatic inflammation. Clin Exp Allergy. 2022;52(4):518-529.

- 107. Kuo CH, Tsai ML, Li CH, et al. Altered pattern of macrophage polarization as a biomarker for severity of childhood asthma. *J Inflamm Res.* 2021;14:6011-6023.
- 108. Feng D, Huang WY, Niu XL, Hao S, Zhang LN, Hu YJ. Significance of macrophage subtypes in the peripheral blood of children with systemic juvenile idiopathic arthritis. *Rheumatol Ther*. 2021;8(4):1859-1870.
- 109. Fan P, Zhang Y, Ding S, Du Z, Zhou C, Du X. Integrating RNA-seq and scRNA-seq to explore the mechanism of macrophage ferroptosis associated with COPD. Front Pharmacol. 2023;14:1139137.
- Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD more than inflammation. *Nat Rev Endocrinol*. 2022;18(8):461-472.
- 111. Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. *Cell Rep.* 2020;30(5):1271-1281.
- 112. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? *Nat Neurosci*. 2016;19(8):987-991.
- Angel CE, Chen CJJ, Horlacher OC, et al. Distinctive localization of antigen-presenting cells in human lymph nodes. *Immunobiology*. 2009;113(6):1257-1267. doi:10.1182/blood-2008-06-165266
- Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. *Immunity*. 2022;55(9):1564-1580.
- 115. Yao C, Cao Y, Wang D, et al. Single-cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury. *Faseb J.* 2022;36(7): e22393
- 116. Yue Z, Nie L, Zhang P, Chen Q, Lv Q, Wang Q. Tissue-resident macrophage inflammaging aggravates homeostasis dysregulation in age-related diseases. *Cell Immunol*. 2021;361:104278.
- 117. Gosselin D, Link VM, Romanoski CE, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. *Cell*. 2014;159(6):1327-1340.
- 118. Blériot C, Chakarov S, Ginhoux F. Determinants of resident tissue macrophage identity and function. *Immunity*. 2020;52(6):957-970.
- Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: masters in multitasking. *Immunity*. 2022;55(9):1530-1548.
- 120. Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. Neuro-immune interactions drive tissue programming in intestinal macrophages. *Cell.* 2016;164(3):378-391.
- 121. Schulthess J, Pandey S, Capitani M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. *Immunity*. 2019;50(2):432-445. e7.
- 122. Duan H, Wang L, Huangfu M, Li H. The impact of microbiotaderived short-chain fatty acids on macrophage activities in disease: mechanisms and therapeutic potentials. *Biomed Pharmacother*. 2023;165:115276.
- 123. Meng L, Lu C, Wu B, et al. Taurine antagonizes macrophages M1 polarization by mitophagy-glycolysis switch blockage via dragging SAM-PP2Ac transmethylation. *Front Immunol*. 2021;12:648913.
- 124. Jia D, Chen S, Bai P, et al. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. *Circulation*. 2022;145(20):1542-1556.

- 125. Hill DA, Lim HW, Kim YH, et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. *Proc Natl Acad Sci USA*. 2018;115(22):E5096-E5105.
- Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. *Nature*. 2023;618(7966):698-707.
- Wu Y, Hirschi KK. Tissue-resident macrophage development and function. Front Cell Dev Biol. 2020;8:617879.
- 128. Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. *Immunity*. 2013;38(1):79-91.
- 129. Xu Y, Schrank PR, Williams JW. Macrophage fate mapping. *Curr Protoc.* 2022;2(6):e456.
- Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and central nervous system-associated macrophages-from origin to disease modulation. *Annu Rev Immunol*. 2021;39:251-277.
- 131. Fan X, Lu P, Cui XH, et al. Repopulating Kupffer cells originate directly from hematopoietic stem cells. *Stem Cell Res Ther*. 2023;14(1):351.
- 132. Dick SA, Wong A, Hamidzada H, et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. *Sci Immunol*. 2022;7(67):eabf7777.
- Richoz N, Tuong ZK, Loudon KW, et al. Distinct pathogenic roles for resident and monocyte-derived macrophages in lupus nephritis. *JCI Insight*. 2022;7(21):e159751.
- Rizzo G, Gropper J, Piollet M, et al. Dynamics of monocytederived macrophage diversity in experimental myocardial infarction. *Cardiovasc Res.* 2023:119(3):772-785.
- Kloc M, Kubiak JZ. Monocyte and macrophage function diversity. *Int J Mol Sci.* 2022;23(20):12404.
- 136. Ochando J, Mulder WJM, Madsen JC, Netea MG, Duivenvoorden R. Trained immunity - basic concepts and contributions to immunopathology. *Nat Rev Nephrol*. 2023;19(1):23-37.
- 137. Guo Z, Wang L, Liu H, Xie Y. Innate immune memory in monocytes and macrophages: the potential therapeutic strategies for atherosclerosis. *Cells*. 2022;11(24):4072.
- 138. Ferluga J, Yasmin H, Al-Ahdal MN, Bhakta S, Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis. *Immunobiology*. 2020;225(3):151951.
- 139. Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, et al. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. *Nat Immunol.* 2022;23(12):1687-1702.
- 140. Arts RJ, Blok BA, van Crevel R, et al. Vitamin A induces inhibitory histone methylation modifications and down-regulates trained immunity in human monocytes. *J Leukoc Biol.* 2015;98(1):129-136.
- 141. Adams K, Weber KS, Johnson SM. Exposome and immunity training: how pathogen exposure order influences innate immune cell lineage commitment and function. *Int J Mol Sci.* 2020;21(22):8462.
- 142. Chen J, Gao L, Wu X, et al. BCG-induced trained immunity: history, mechanisms and potential applications. *J Transl Med*. 2023;21(1):106.
- 143. Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun. 2023;137:102956.

- 144. Fani Maleki A, Cisbani G, Plante MM, et al. Muramyl dipeptidemediated immunomodulation on monocyte subsets exerts therapeutic effects in a mouse model of Alzheimer's disease. *J Neuroinflammation*. 2020;17(1):218.
- 145. Moorlag S, Rodriguez-Rosales YA, Gillard J, et al. BCG vaccination induces long-term functional reprogramming of human neutrophils. *Cell Rep.* 2020;33(7):108387.
- 146. Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, et al. Toll-like receptors in acute kidney injury. *Int J Mol Sci.* 2021;22(2):816.
- 147. Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. *Front Immunol*. 2022;13:812774.
- 148. Onyishi CU, Desanti GE, Wilkinson AL, et al. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. *Nat Commun*. 2023;14(1):4895.
- 149. Kirchner S, Lei V, MacLeod AS. The cutaneous wound innate immunological microenvironment. *Int J Mol Sci.* 2020;21(22):8748.
- 150. Wang L, Wang J, Han L, Chen T. Palmatine attenuated lipopolysaccharide-induced acute lung injury by inhibiting M1 phenotype macrophage polarization via NAMPT/TLR2/CCR1 signaling. *J Agric Food Chem*. 2024.
- 151. Owen AM, Luan L, Burelbach KR, et al. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. *Front Immunol.* 2022;13:1044662.
- 152. Hsieh WY, Zhou QD, York AG, et al. Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome. *Cell Metab.* 2020;32(1):128-143. e5.
- 153. Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301(5633):640-643.
- 154. Pereira M, Durso DF, Bryant CE, et al. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways. *Cell Rep.* 2022;40(7):111225.
- 155. Luo X, Bao X, Weng X, et al. The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway. *Life Sci.* 2022;291:120064.
- 156. Li Y, Zhang L, Ren P, et al. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. *Phytomedicine*. 2021;93:153812.
- 157. McKiel LA, Woodhouse KA, Fitzpatrick LE. A macrophage reporter cell assay to examine toll-like receptor-mediated NFkB/AP-1 signaling on adsorbed protein layers on polymeric surfaces. J Vis Exp. 2020;(155):
- Hannemann N, Cao S, Eriksson D, et al. Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. *J Clin Invest*. 2019;129(7):2669-2684.
- 159. Negishi H, Ohba Y, Yanai H, et al. Negative regulation of Toll-like-receptor signaling by IRF-4. *Proc Natl Acad Sci USA*. 2005;102(44):15989-15994.
- 160. Wu L, Chen L, Li H, et al. Nocardia rubra cell-wall skeleton mitigates whole abdominal irradiation-induced intestinal injury via regulating macrophage function. *Burns Trauma*. 2024:12:tkad045.
- 161. Olona A, Hateley C, Muralidharan S, Wenk MR, Torta F, Behmoaras J. Sphingolipid metabolism during Toll-like recep-

- tor 4 (TLR4)-mediated macrophage activation. *Br J Pharmacol*. 2021;178(23):4575-4587.
- 162. Ye Y, Wang Y, Yang Y, Tao L. Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway. *Inflamm Res.* 2020;69(4):375-383.
- Zhang Y, Song Y, Du J, et al. S100 calcium-binding protein A9 promotes skin regeneration through toll-like receptor 4 during tissue expansion. *Burns Trauma*. 2023;11:tkad030.
- 164. Xie XD, Tang M, Yi SL, et al. Polysaccharide of Asparagus cochinchinensis (Lour.) Merr regulates macrophage immune response and epigenetic memory through TLR4-JNK/p38/ERK signaling pathway and histone modification. *Phytomedicine*. 2024;124:155294.
- 165. Bode JG, Ehlting C, Häussinger D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. *Cell Signal*. 2012;24(6):1185-1194.
- 166. Hu J, Wang H, Li X, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. *Theranostics*. 2020;10(21):9702-9720.
- 167. Xiao J, Li W, Zheng X, et al. Targeting 7-dehydrocholesterol reductase integrates cholesterol metabolism and IRF3 activation to eliminate infection. *Immunity*. 2020;52(1):109-122.
- 168. Seebach E, Sonnenmoser G, Kubatzky KF. Staphylococcus aureus planktonic but not biofilm environment induces an IFN- β macrophage immune response via the STING/IRF3 pathway. *Virulence*. 2023;14(1):2254599.
- 169. Zhang C, Cheng N, Qiao B, et al. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration. *J Cachexia Sarcopenia Muscle*, 2020;11(5):1291-1305.
- Zheng M, Karki R, Williams EP, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. *Nat Immunol.* 2021;22(7):829-838.
- 171. Khan S, Shafiei MS, Longoria C, Schoggins JW, Savani RC, Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. *Elife*. 2021;10:e68563.
- 172. Qian Y, Chu G, Zhang L, et al. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology. 2024;22(1):72.
- 173. Gundra UM, Mishra BB, Wong K, Teale JM. Increased disease severity of parasite-infected TLR2-/- mice is correlated with decreased central nervous system inflammation and reduced numbers of cells with alternatively activated macrophage phenotypes in a murine model of neurocysticercosis. *Infect Immun*. 2011;79(7):2586-2596.
- 174. Li W, Wang K, Liu Y, et al. A novel drug combination of mangiferin and cinnamic acid alleviates rheumatoid arthritis by inhibiting TLR4/NFκB/NLRP3 activation-induced pyroptosis. *Front Immunol.* 2022;13:912933.
- 175. Li L, Pan Z, Ning D, Fu Y. Rosmanol and carnosol synergistically alleviate rheumatoid arthritis through inhibiting TLR4/NF-κB/MAPK pathway. *Molecules*. 2021;27(1):78.
- Dai W, Long L, Wang X, Li S, Xu H. Phytochemicals targeting Toll-like receptors 4 (TLR4) in inflammatory bowel disease. *Chin Med.* 2022;17(1):53.

- 177. Liu B, Wang X, Chen TZ, et al. Polarization of M1 tumor associated macrophage promoted by the activation of TLR3 signal pathway. *Asian Pac J Trop Med*. 2016;9(5):484-488.
- 178. Thomas G, Micci L, Yang W, et al. Intra-tumoral activation of endosomal TLR pathways reveals a distinct role for TLR3 agonist dependent type-1 interferons in shaping the tumor immune microenvironment. *Front Oncol.* 2021;11:711673.
- 179. Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. *Cell Signal*. 2014:26(2):192-197.
- 180. Li L, Wei C, Cai S, Fang L. TRPM7 modulates macrophage polarization by STAT1/STAT6 pathways in RAW264.7 cells. *Biochem Biophys Res Commun*. 2020;533(4):692-697.
- 181. Liu Y, Liu Z, Tang H, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. *Am J Physiol Cell Physiol*. 2019;317(4):C762-C775.
- 182. Jerke U, Tkachuk S, Kiyan J, et al. Stat1 nuclear translocation by nucleolin upon monocyte differentiation. *PLoS One*. 2009;4(12):e8302.
- 183. Chattopadhyay D, Das S, Guria S, Basu S, Mukherjee S. Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway. *Biochem J*. 2021;478(22):4027-4043.
- 184. Yang T, Wang R, Liu H, et al. Berberine regulates macrophage polarization through IL-4-STAT6 signaling pathway in Helicobacter pylori-induced chronic atrophic gastritis. *Life Sci.* 2021;266:118903.
- Shi JH, Liu LN, Song DD, et al. TRAF3/STAT6 axis regulates macrophage polarization and tumor progression. *Cell Death Differ*. 2023;30(8):2005-2016.
- 186. Huang C, Wang J, Liu H, et al. Ketone body β -hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. *BMC Med.* 2022;20(1):148.
- 187. Rahal OM, Wolfe AR, Mandal PK, et al. Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int J Radiat Oncol Biol Phys. 2018;100(4):1034-1043.
- 188. Xiang X, Feng D, Hwang S, et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice. *J Hepatol*. 2020;72(4):736-745.
- 189. Sun W, Wang Q, Zhang R, Zhang N. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-κB/NLRP3 pathway and inhibiting HDAC3 and P2×7R activation. *Food Funct.* 2023;14(15):7247-7269.
- 190. Covarrubias AJ, Aksoylar HI, Horng T. Control of macrophage metabolism and activation by mTOR and Akt signaling. *Semin Immunol*. 2015;27(4):286-296.
- 191. Donninelli G, Saraf-Sinik I, Mazziotti V, et al. Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain. *J Neuroinflammation*. 2020;17(1):149.
- 192. Geng T, Yan Y, Xu L, et al. CD137 signaling induces macrophage M2 polarization in atherosclerosis through STAT6/PPARδ pathway. *Cell Signal*. 2020;72:109628.

- 193. Gong M, Zhuo X, Ma A. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. *Med Sci Monit Basic Res.* 2017;23:240-249.
- Czimmerer Z, Nagy L. Epigenomic regulation of macrophage polarization: Where do the nuclear receptors belong? *Immunol Rev.* 2023;317(1):152-165.
- 195. Tu Y, Liu J, Kong D, et al. Irisin drives macrophage antiinflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radic Biol Med. 2023;201:98-110.
- 196. Sharma S, Shen T, Chitranshi N, et al. Retinoid X receptor: cellular and biochemical roles of nuclear receptor with a focus on neuropathological involvement. *Mol Neurobiol*. 2022;59(4):2027-2050.
- 197. He L, Jhong JH, Chen Q, et al. Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. *Cell Rep.* 2021;37(5): 109955.
- 198. Yu T, Gao M, Yang P, et al. Insulin promotes macrophage phenotype transition through PI3K/Akt and PPAR-γ signaling during diabetic wound healing. J Cell Physiol. 2019;234(4):4217-4231.
- 199. Xu M, Wang X, Li Y, et al. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner. *Front Immunol.* 2021;12:618501.
- Ding H, Dong J, Wang Y, et al. Ginsenoside Rb1 interfered with macrophage activation by activating PPARy to inhibit insulin resistance in obesity. *Molecules*. 2023;28(7):3083.
- 201. de la Aleja AG, Herrero C, Torres-Torresano M, et al. Inhibition of LXR controls the polarization of human inflammatory macrophages through upregulation of MAFB. *Cell Mol Life Sci.* 2023;80(4):96.
- Dong XC. Sirtuin 6—a key regulator of hepatic lipid metabolism and liver health. Cells. 2023;12(4):663.
- 203. Zhang X, McDonald JG, Aryal B, et al. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. *Proc Natl Acad Sci* USA. 2021;118(47):e2107682118.
- 204. Li X, Huang X, Feng Y, et al. Cylindrin from Imperata cylindrica inhibits M2 macrophage formation and attenuates renal fibrosis by downregulating the LXR-α/PI3K/AKT pathway. Eur J Pharmacol. 2023;950:175771.
- Oishi Y, Spann NJ, Link VM, et al. SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. *Cell Metab*. 2017;25(2):412-427.
- 206. Chuang ST, Stein JB, Nevins S, et al. Enhancing CAR macrophage efferocytosis via surface engineered lipid nanoparticles targeting LXR signaling. Adv Mater. 2024;36(19): e2308377.
- 207. Babuta M, Szabo G. Extracellular vesicles in inflammation: focus on the microRNA cargo of EVs in modulation of liver diseases. *J Leukoc Biol.* 2022;111(1):75-92.
- Nandan D, Rath CT, Reiner NE. Leishmania regulates host macrophage miRNAs expression by engaging transcription factor c-Myc. J Leukoc Biol. 2021;109(5):999-1007.
- 209. Yang B, Lin Y, Huang Y, Zhu N, Shen Y-Q. Extracellular vesicles modulate key signalling pathways in refractory wound healing. *Burns Trauma*. 2023;11:tkad039.

- 210. Ye J, Kang Y, Sun X, Ni P, Wu M, Lu S. MicroRNA-155 inhibition promoted wound healing in diabetic rats. *Int J Low Extrem Wounds*. 2017;16(2):74-84.
- 211. Chachques JC, Gardin C, Lila N, et al. Elastomeric cardiowrap scaffolds functionalized with mesenchymal stem cells-derived exosomes induce a positive modulation in the inflammatory and wound healing response of mesenchymal stem cell and macrophage. *Biomedicines*. 2021;9(7):824.
- 212. Zheng L, Su J, Zhang Z, et al. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. *Sci Rep.* 2020;10(1):20750.
- 213. Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. *J Hepatol*. 2016;64(6):1378-1387.
- 214. Gao Y, Han T, Han C, et al. Propofol regulates the TLR4/NFκB pathway through miRNA-155 to protect colorectal cancer intestinal barrier. *Inflammation*. 2021;44(5):2078-2090.
- Chaudhuri AA, So AY, Sinha N, et al. MicroRNA-125b potentiates macrophage activation. *J Immunol*. 2011;187(10):5062-5068.
- 216. Peng X, He F, Mao Y, et al. miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. *J Mol Endocrinol*. 2022;69(2):315-327.
- 217. Li R, Zhao K, Ruan Q, Meng C, Yin F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Ern1 and promoting M2 macrophage polarization. *Arthritis Res Ther*. 2020;22(1):75.
- 218. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. *Nat Med*. 2011;17(1):64-70.
- 219. Ding N, Luo G, Li H, et al. A cyclodextrin-based ph-responsive microRNA delivery platform targeting polarization of M1 to M2 macrophages for sepsis therapy. *Adv Healthc Mater*. 2023;12(27):e2301243.
- 220. Ying W, Tseng A, Chang RC, et al. MicroRNA-223 is a crucial mediator of PPARy-regulated alternative macrophage activation. *J Clin Invest.* 2015;125(11):4149-4159.
- 221. Amoruso A, Blonda M, Gironi M, et al. Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. *Sci Rep.* 2020;10(1):6125.
- 222. Paoletti A, Ly B, Cailleau C, et al. Liposomal AntagomiR-155-5p restores anti-inflammatory macrophages and improves arthritis in preclinical models of rheumatoid arthritis. *Arthritis Rheumatol.* 2024;76(1):18-31.
- 223. Li ZL, Yang BC, Gao M, Xiao XF, Zhao SP, Liu ZL. Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR-21 axis. *Mol Ther Nucleic Acids*. 2021;25:502-514.
- 224. Jing C, Castro-Dopico T, Richoz N, et al. Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. *Proc Natl Acad Sci USA*. 2020;117(26):15160-15171.
- 225. Wang Z, Zhao F, Xu C, et al. Metabolic reprogramming in skin wound healing. *Burns Trauma*. 2024;12:tkad047.
- 226. Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. *Circ Res.* 2020;126(6):789-806.

- 227. Wang F, Zhang S, Vuckovic I, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. *Cell Metab*. 2018;28(3):463-475. e4.
- 228. Liu T, Wen Z, Shao L, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1 α ubiquitination in sepsis. *Clin Immunol*. 2023;254:109698.
- 229. Zhong WJ, Liu T, Yang HH, et al. TREM-1 governs NLRP3 inflammasome activation of macrophages by firing up glycolysis in acute lung injury. *Int J Biol Sci.* 2023;19(1):242-257.
- Tian S, Tan S, Fan M, et al. Hypoxic environment of wounds and photosynthesis-based oxygen therapy. *Burns Trauma*. 2024:12:tkae012.
- 231. Jin L, Zhou S, Zhao S, et al. Early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and epithelial–mesenchymal transition during wound healing. *Burns Trauma*. 2024;12:tkae017.
- Nascimento Júnior JXD, Sola-Penna M, Zancan P. Clotrimazole reverses macrophage M2 polarization by disrupting the PI3K/AKT/mTOR pathway. *Biochem Biophys Res Commun*. 2024;696:149455.
- 233. Cui Y, Chen J, Zhang Z, Shi H, Sun W, Yi Q. The role of AMPK in macrophage metabolism, function and polarisation. *J Transl Med*. 2023;21(1):892.
- 234. Cheng JW, Yu Y, Zong SY, et al. Berberine ameliorates collageninduced arthritis in mice by restoring macrophage polarization via AMPK/mTORC1 pathway switching glycolytic reprogramming. *Int Immunopharmacol*. 2023;124(Pt B):111024.
- 235. Yang Y, Wang J, Guo S, et al. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS-AMPK-mTORC1-autophagy pathway. *Redox Biol.* 2020;32:101501.
- Feng X, Chen W, Ni X, et al. Metformin, macrophage dysfunction and atherosclerosis. Front Immunol. 2021;12:682853.
- 237. Kim YS, Park BS, Baek HS, Kang HM, Oh JM, Kim IR. Metformin activates AMPK and mTOR to Inhibit RANKLstimulated osteoclast formation. Eur Rev Med Pharmacol Sci. 2023;27(18):8795-8811.
- 238. Liu S, Zhang H, Li Y, et al. S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. *J Immunother Cancer*. 2021;9(6):e002548.
- Xiao S, Qi M, Zhou Q, et al. Macrophage fatty acid oxidation in atherosclerosis. *Biomed Pharmacother*. 2024;170:116092.
- 240. Chang L, Gao J, Yu Y, et al. MMP10 alleviates non-alcoholic steatohepatitis by regulating macrophage M2 polarization. *Int Immunopharmacol*. 2023;124(Pt B):111045.
- 241. Chen X, He Y, Fu W, et al. Histone deacetylases (HDACs) and atherosclerosis: a mechanistic and pharmacological review. Front Cell Dev Biol. 2020;8:581015.
- 242. Das Gupta K, Shakespear MR, Iyer A, Fairlie DP, Sweet MJ. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Transl Immunol. 2016;5(1):e62.
- 243. Karnam K, Sedmaki K, Sharma P, Mahale A, Ghosh B, Kulkarni OP. Pharmacological blockade of HDAC3 accelerates diabetic wound healing by regulating macrophage activation. *Life Sci.* 2023;321:121574.

- 244. Ghiboub M, Zhao J, Li Yim AYF, et al. HDAC3 mediates the inflammatory response and LPS tolerance in human monocytes and macrophages. Front Immunol. 2020;11:550769.
- 245. Xu L, An T, Jia B, et al. Histone deacetylase 3-specific inhibitor RGFP966 attenuates oxidative stress and inflammation after traumatic brain injury by activating the Nrf2 pathway. *Burns Trauma*. 2024;12:tkad062.
- Kang H, Kim S, Lee JY, Kim B. Inhibitory effects of ginsenoside compound K on lipopolysaccharide-stimulated inflammatory responses in macrophages by regulating sirtuin 1 and histone deacetylase 4. Nutrients. 2023;15(7):1626.
- 247. Kang H, Park YK, Lee JY. Inhibition of alcohol-induced inflammation and oxidative stress by astaxanthin is mediated by its opposite actions in the regulation of sirtuin 1 and histone deacetylase 4 in macrophages. *Biochim Biophys Acta Mol Cell Biol Lipids*. 2021;1866(1):158838.
- 248. Zhao Y, Ma G, Yang X. HDAC5 promotes Mycoplasma pneumoniae-induced inflammation in macrophages through NF-κB activation. *Life Sci.* 2019;221:13-19.
- Poralla L, Stroh T, Erben U, et al. Histone deacetylase 5 regulates the inflammatory response of macrophages. *J Cell Mol Med*. 2015;19(9):2162-2171.
- Yang X, Wang X, Liu D, Yu L, Xue B, Shi H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. *Mol Endocrinol*. 2014;28(4):565-574.
- 251. Li HD, Chen X, Xu JJ, et al. DNMT3b-mediated methylation of ZSWIM3 enhances inflammation in alcohol-induced liver injury via regulating TRAF2-mediated NF-κB pathway. Clin Sci (Lond). 2020;134(14):1935-1956.
- 252. Li B, Huo Y, Lin Z, Wang T. [DNA hydroxymethylase 10–11 translocation 2 (TET2) inhibits mouse macrophage activation and polarization]. *Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi*. 2017;33(9):1165-1170.
- Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. *Transl Res.* 2018;191:29-44
- 254. Yu H, Pan J, Zheng S, et al. Hepatocellular carcinoma cell-derived exosomal miR-21-5p induces macrophage M2 polarization by targeting RhoB. *Int J Mol Sci.* 2023;24(5):4593.
- 255. Wang Q, Xie Y, He Q, Geng Y, Xu J. LncRNA-Cox2 regulates macrophage polarization and inflammatory response through the CREB-C/EBP β signaling pathway in septic mice. *Int Immunopharmacol*. 2021;101(Pt B):108347.
- 256. Du M, Yuan L, Tan X, et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. *Nat Commun*. 2017;8(1):2049.
- 257. Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. *Immunobiology*. 2018;223(1):101-111.
- 258. Zhu X, Guo Q, Zou J, et al. MiR-19a-3p suppresses M1 macrophage polarization by inhibiting STAT1/IRF1 pathway. Front Pharmacol. 2021;12:614044.
- 259. Bian J, Zhu Y, Tian P, Yang Q, Li Z. Adaptor protein HIP-55 promotes macrophage M1 polarization through promoting AP-1 complex activation. *Cell Signal*. 2024;117:111124.
- 260. Tan S, Wang Z, Li N, et al. Transcription factor Zhx2 is a check-point that programs macrophage polarization and antitumor response. *Cell Death Differ*. 2023;30(9):2104-2119.

- 261. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. *Neuron*. 2014;83(5):1098-1116.
- 262. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. *JCI Insight*. 2016;1(19):e87748.
- 263. Tang RZ, Zhu JJ, Yang FF, et al. DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis. J Mol Cell Cardiol. 2019;128:11-24.
- 264. Li J, Ye F, Xu X, et al. Targeting macrophage M1 polarization suppression through PCAF inhibition alleviates autoimmune arthritis via synergistic NF-κB and H3K9Ac blockade. J Nanobiotechnology. 2023;21(1):280.
- 265. Mullican SE, Gaddis CA, Alenghat T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. *Genes Dev.* 2011;25(23):2480-2488.
- 266. Zhou X, Chen H, Shi Y, et al. Histone deacetylase 8 inhibition prevents the progression of peritoneal fibrosis by counteracting the epithelial-mesenchymal transition and blockade of M2 macrophage polarization. Front Immunol. 2023;14:1137332.
- 267. Das Gupta K, Ramnath D, von Pein JB, et al. HDAC7 is an immunometabolic switch triaging danger signals for engagement of antimicrobial versus inflammatory responses in macrophages. *Proc Natl Acad Sci USA*. 2023;120(4): e2212813120.
- Schiano C, Benincasa G, Franzese M, et al. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. *Pharmacol Ther.* 2020:210:107514.
- 269. Zhong C, Tao B, Yang F, et al. Histone demethylase JMJD1C promotes the polarization of M1 macrophages to prevent glioma by upregulating miR-302a. *Clin Transl Med*. 2021;11(9):e424.
- 270. Li H, Hu W, Lin Y, Xu T, Zhang X, Wang C. MicroRNA-9-5p is involved in lipopolysaccharide-induced acute lung injury via the regulation of macrophage polarization. *Int J Toxicol*. 2023;42(2):156-164.
- 271. Liu X, Mao Y, Kang Y, et al. MicroRNA-127 promotes antimicrobial host defense through restricting A20-mediated deubiquitination of STAT3. *iScience*. 2020;23(1):100763.
- 272. Zhang P, Wang H, Luo X, et al. MicroRNA-155 inhibits polarization of macrophages to M2-type and suppresses choroidal neovascularization. *Inflammation*. 2018;41(1):143-153.
- 273. Yu T, Gan S, Zhu Q, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. *Nat Commun*. 2019;10(1):4353.
- 274. Zhao C, Zeng N, Zhou X, et al. CAA-derived IL-6 induced M2 macrophage polarization by activating STAT3. BMC Cancer. 2023;23(1):392.
- 275. Liu M, Tong Z, Ding C, et al. Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. *J Clin Invest*. 2020;130(4):2081-2096.
- Li W, Wang Y, Zhu L, et al. The P300/XBP1s/Herpud1 axis promotes macrophage M2 polarization and the development of choroidal neovascularization. *J Cell Mol Med*. 2021;25(14):6709-6720
- 277. denDekker AD, Davis FM, Joshi AD, et al. TNF- α regulates diabetic macrophage function through the histone acetyltransferase MOF. *JCI Insight*. 2020;5(5):e132306.

- 278. Zhang M, Hei R, Zhou Z, Xiao W, Liu X, Chen Y. Macrophage polarization involved the inflammation of chronic obstructive pulmonary disease by S1P/HDAC1 signaling. *Am J Cancer Res.* 2023:13(9):4478-4489.
- 279. Zheng X, Sarode P, Weigert A, et al. The HDAC2-SP1 axis orchestrates protumor macrophage polarization. *Cancer Res.* 2023;83(14):2345-2357.
- 280. Xu G, Niu L, Wang Y, et al. HDAC6-dependent deacetylation of TAK1 enhances sIL-6R release to promote macrophage M2 polarization in colon cancer. *Cell Death Dis.* 2022;13(10):888.
- 281. Zhong Y, Huang T, Huang J, et al. The HDAC10 instructs macrophage M2 program via deacetylation of STAT3 and promotes allergic airway inflammation. *Theranostics*. 2023;13(11):3568-3581.
- 282. Luan B, Goodarzi MO, Phillips NG, et al. Leptin-mediated increases in catecholamine signaling reduce adipose tissue inflammation via activation of macrophage HDAC4. *Cell Metab.* 2014;19(6):1058-1065.
- 283. Peng W, Xie Y, Luo Z, et al. UTX deletion promotes M2 macrophage polarization by epigenetically regulating endothelial cell-macrophage crosstalk after spinal cord injury. *J Nanobiotechnology*. 2023;21(1):225.
- 284. Lee JY, Mehrazarin S, Alshaikh A, et al. Histone Lys demethylase KDM3C demonstrates anti-inflammatory effects by suppressing NF-κB signaling and osteoclastogenesis. *Faseb J.* 2019;33(9):10515-10527.
- 285. Liu T, Zhang Z, Shen W, Wu Y, Bian T. MicroRNA Let-7 induces M2 macrophage polarization in COPD emphysema through the IL-6/STAT3 pathway. *Int J Chron Obstruct Pulmon Dis.* 2023;18:575-591.
- 286. Li Y, Chen X, Jin R, et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. *Sci Adv.* 2021;7(9):eabd6740.
- 287. Zhao G, Yu H, Ding L, et al. microRNA-27a-3p delivered by extracellular vesicles from glioblastoma cells induces M2 macrophage polarization via the EZH1/KDM3A/CTGF axis. *Cell Death Discov.* 2022;8(1):260.
- 288. Ghorbani S, Talebi F, Chan WF, et al. MicroRNA-181 variants regulate T cell phenotype in the context of autoimmune neuroinflammation. *Front Immunol.* 2017;8:758.
- 289. Spinosa M, Lu G, Su G, et al. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147. *Faseb J.* 2018;32(11):fj201701138RR.
- 290. Wang Y, Han B, Wang Y, et al. Mesenchymal stem cell-secreted extracellular vesicles carrying TGF-β1 up-regulate miR-132 and promote mouse M2 macrophage polarization. *J Cell Mol Med*. 2020;24(21):12750-12764.
- 291. Freemerman AJ, Johnson AR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. *J Biol Chem*. 2014;289(11):7884-7896.
- 292. Hou Y, Wei D, Zhang Z, et al. FABP5 controls macrophage alternative activation and allergic asthma by selectively programming long-chain unsaturated fatty acid metabolism. *Cell Rep.* 2022;41(7):111668.
- 293. Kieler M, Hofmann M, Schabbauer G. More than just protein building blocks: how amino acids and related metabolic path-

- ways fuel macrophage polarization. *Febs j.* 2021;288(12):3694-3714.
- 294. Pereira M, Chen TD, Buang N, et al. Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo. *Cell Rep.* 2019;28(2):498-511. e5.
- 295. Tardito S, Martinelli G, Soldano S, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun Rev. 2019;18(11):102397.
- 296. Peng Y, Zhou M, Yang H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases. *Mediators Inflamm*. 2023;2023:8821610.
- Zhang K, Guo J, Yan W, Xu L. Macrophage polarization in inflammatory bowel disease. *Cell Commun Signal*. 2023;21(1):367.
- 298. Du Y, Rong L, Cong Y, Shen L, Zhang N, Wang B. Macrophage polarization: an effective approach to targeted therapy of inflammatory bowel disease. *Expert Opin Ther Targets*. 2021;25(3):191-209.
- Gao J, Liang Y, Wang L. Shaping polarization of tumorassociated macrophages in cancer immunotherapy. Front Immunol. 2022;13:888713.
- 300. Akkari L, Bowman RL, Tessier J, et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. *Sci Transl Med.* 2020;12(552):eaaw7843.
- Hu Q, Wu G, Wang R, Ma H, Zhang Z, Xue Q. Cutting edges and therapeutic opportunities on tumor-associated macrophages in lung cancer. Front Immunol. 2022;13:1007812.
- 302. Liu X, Hogg GD, Zuo C, et al. Context-dependent activation of STING-interferon signaling by CD11b agonists enhances antitumor immunity. *Cancer Cell*. 2023;41(6):1073-1090. e12.
- 303. Li LG, Yang XX, Xu HZ, et al. A dihydroartemisininloaded nanoreactor motivates anti-cancer immunotherapy by synergy-induced ferroptosis to activate Cgas/STING for reprogramming of macrophage. *Adv Healthc Mater.* 2023;12(28):
- 304. Yu DM, Zhao J, Lee EE, et al. GLUT3 promotes macrophage signaling and function via RAS-mediated endocytosis in atopic dermatitis and wound healing. *J Clin Invest.* 2023;133(21):e170706.
- 305. Shirakawa K, Endo J, Kataoka M, et al. IL (interleukin)-10-STAT3-galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. *Circulation*. 2018;138(18):2021-2035.
- 306. Zhang SM, Wei CY, Wang Q, Wang L, Lu L, Qi FZ. M2-polarized macrophages mediate wound healing by regulating connective tissue growth factor via AKT, ERK1/2, and STAT3 signaling pathways. *Mol Biol Rep.* 2021;48(9):6443-6456.
- Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. *Nat Rev Immunol*. 2020;20(2):95-112.
- Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. *Annu Rev Pathol.* 2020;15:493-518.
- Geng J, Shi Y, Zhang J, et al. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. *Nat Commun*. 2021;12(1):3519.
- Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291.

- 311. Zumerle S, Calì B, Munari F, et al. Intercellular calcium signaling induced by ATP potentiates macrophage phagocytosis. *Cell Rep.* 2019;27(1):1-10. e4.
- 312. Tan F, Cao Y, Zheng L, et al. Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling. *Front Immunol*. 2022;13:922614.
- 313. Wang E-J, Wu M-Y, Ren Z-Y, et al. Targeting macrophage autophagy for inflammation resolution and tissue repair in inflammatory bowel disease. *Burns Trauma*. 2023;11:tkad004.
- 314. Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. *Nat Rev Mol Cell Biol*. 2020;21(7):398-414.
- 315. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. *Eur J Pharmacol*. 2020;877:173090.
- 316. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. *Annu Rev Immunol*. 1999;17:593-623.
- Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The role of macrophages in Staphylococcus aureus infection. *Front Immunol*. 2020;11:620339.
- 318. Small AG, Harvey S, Kaur J, et al. Vitamin D upregulates the macrophage complement receptor immunoglobulin in innate immunity to microbial pathogens. *Commun Biol.* 2021;4(1):401.
- 319. Minhas R, Bansal Y, Bansal G. Inducible nitric oxide synthase inhibitors: a comprehensive update. *Med Res Rev.* 2020;40(3):823-855.
- 320. Tsai CF, Chen GW, Chen YC, et al. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. *Nutrients*. 2021;14(1):67.
- 321. Sivaraman K, Wrenger S, Liu B, et al. Mice inflammatory responses to inhaled aerosolized LPS: effects of various forms of human alpha1-antitrypsin. *J Leukoc Biol.* 2023;113(1):58-70.
- 322. Monteith AJ, Miller JM, Maxwell CN, Chazin WJ, Skaar EP. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. *Sci Adv.* 2021;7(37):eabj2101.
- 323. Nagaoka I, Tamura H, Reich J. Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis model. *Int J Mol Sci.* 2020;21(17):5973.
- 324. Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in bacteria-macrophage interaction: defenders or victims of circumstance? *Front Cell Infect Microbiol*. 2020;10:601072.
- 325. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. *Immunol Rev.* 2015;264(1):182-203
- 326. Rai R, Singh V, Mathew BJ, Singh AK, Chaurasiya SK. Mycobacterial response to an acidic environment: protective mechanisms. *Pathog Dis.* 2022;80(1):ftac032.
- 327. Demkow U. Molecular mechanisms of neutrophil extracellular trap (NETs) degradation. *Int J Mol Sci.* 2023;24(5):4896.
- 328. Korobova ZR, Arsentieva NA, Totolian AA. Macrophage-derived chemokine MDC/CCL22: an ambiguous finding in COVID-19. *Int J Mol Sci.* 2023;24(17):13083.
- 329. Hurme P, Komulainen M, Tulkki M, et al. Cytokine expression in rhinovirus- vs. respiratory syncytial virus-induced first wheezing episode and its relation to clinical course. *Front Immunol*. 2022;13:1044621.
- 330. Jin H, Wen X, Sun R, et al. Engineered nanovesicles from activated neutrophils with enriched bactericidal proteins have

- molecular debridement ability and promote infectious wound healing. *Burns Trauma*. 2024;12:tkae018.
- 331. Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. *Nat Rev Immunol.* 2023;23(9):563-579.
- 332. McCubbrey AL, McManus SA, McClendon JD, et al. Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells. *Cell Rep.* 2022;38(2):110222.
- Chang M, Nguyen TT. Strategy for treatment of infected diabetic foot ulcers. Acc Chem Res. 2021;54(5):1080-1093.
- Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. *J Biol Chem.* 2022;298(2):101530.
- Maassen S, Coenen B, Ioannidis M, et al. Itaconate promotes a wound resolving phenotype in pro-inflammatory macrophages. *Redox Biol.* 2023;59:102591.
- 336. Zeng L, Zhou S, Chen C, et al. Experimental study of fat derived pellets promoting wound healing in rats. *Bioengineered*. 2021;12(2):12323-12331.
- Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 2017;79:593-617.
- 338. Jung M, Ma Y, Iyer RP, et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. *Basic Res Cardiol.* 2017;112(3):33.
- Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG.
 The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care (New Rochelle). 2020;9(4):184-198.
- 340. Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. *J Exp Med*. 2020;217(1):e20190418.
- Minton K. Immune regulation: IL-10 targets macrophage metabolism. Nat Rev Immunol. 2017;17(6):345.
- 342. Wang J, Chen G, Li L, et al. Sustained induction of IP-10 by MRP8/14 via the IFN β -IRF7 axis in macrophages exaggerates lung injury in endotoxemic mice. *Burns Trauma*. 2023;11:tkad006.
- Liu J, Wang H, Zhang L, et al. Periodontal ligament stem cells promote polarization of M2 macrophages. *J Leukoc Biol*. 2022;111(6):1185-1197.
- 344. Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. *Cell Mol Immunol*. 2023;20(9):1002-1022.
- 345. De Nardo D, Labzin LI, Kono H, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. *Nat Immunol*. 2014;15(2):152-160.
- 346. Petta I, Thorp M, Ciers M, et al. Myeloid A20 is critical for alternative macrophage polarization and type-2 immune-mediated helminth resistance. *Front Immunol.* 2024;15:1373745.
- 347. Zheng Y, Wang S, Zhong Y, Huang C, Wu X. A20 affects macrophage polarization through the NLRP3 inflammasome signaling pathway and promotes breast cancer progression. *Exp Ther Med.* 2023;25(4):147.
- Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: an organizing principle in biology and medicine. *Pharmacol Ther*. 2021;227:107879.
- Martin P, Gurevich DB. Macrophage regulation of angiogenesis in health and disease. Semin Cell Dev Biol. 2021;119:101-110.

- 350. Hadrian K, Willenborg S, Bock F, Cursiefen C, Eming SA, Hos D. Macrophage-mediated tissue vascularization: similarities and differences between cornea and skin. *Front Immunol*. 2021:12:667830.
- 351. Huang X, Zheng L, Zhou Y, et al. Controllable adaptive molybdate-oligosaccharide nanoparticles regulate M2 macrophage mitochondrial function and promote angiogenesis via PI3K/HIF-1α/VEGF pathway to accelerate diabetic wound healing. *Adv Healthc Mater*. 2024;13(3):e2302256.
- 352. Du H, Li S, Lu J, et al. Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis by human dermal microvascular endothelial cells in diabetic foot ulcers. *Burns Trauma*. 2023;11:tkad020.
- 353. Song X, Chen Y, Chen X, et al. Exosomes from tannic acid-stimulated macrophages accelerate wound healing through miR-221-3p mediated fibroblasts migration by targeting CDKN1b. *Int J Biol Macromol.* 2023;244:125088.
- 354. Laplante P, Brillant-Marquis F, Brissette MJ, et al. MFG-E8 reprogramming of macrophages promotes wound healing by increased bFGF production and fibroblast functions. *J Invest Dermatol.* 2017;137(9):2005-2013.
- Zhu L, Qian J, Jiang Y, Yang T, Duan Q, Xiao X. PIGF reduction compromises angiogenesis in diabetic foot disease through macrophages. *Front Immunol*. 2021;12:736153.
- 356. White MJV, Briquez PS, White DAV, Hubbell JA. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes. *NPJ Regen Med.* 2021;6(1):76.
- 357. Song Y, Yang J, Li T, et al. CD34(+) cell-derived fibroblast-macrophage cross-talk drives limb ischemia recovery through the OSM-ANGPTL signaling axis. *Sci Adv.* 2023;9(15): eadd2632.
- 358. Lapkina EZ, Esimbekova AR, Ruksha TG. [Vasculogenic mimicry]. *Arkh Patol*. 2023;85(6):62-69.
- 359. Senk A, Fazzari J, Djonov V. Vascular mimicry in zebrafish fin regeneration: how macrophages build new blood vessels. *Angiogenesis*. 2024.
- 360. Yan D, He Y, Dai J, Yang L, Wang X, Ruan Q. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation. *Biosci Rep.* 2017;37(3):BSR20170002.
- 361. Bai H, Xie B, Li M, et al. Biodegraded PCl and gelatin fabricated vascular patch in rat aortic and inferior vena cava angioplasty. *Microvasc Res.* 2022;141:104314.
- 362. Forrest OA, Dobosh B, Ingersoll SA, et al. Neutrophil-derived extracellular vesicles promote feed-forward inflammasome signaling in cystic fibrosis airways. *J Leukoc Biol.* 2022;112(4):707-716.
- 363. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. *Cell Stem Cell*. 2022;29(8):1161-1180.
- El Ayadi A, Jay JW, Prasai A. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. *Int J Mol Sci.* 2020;21(3):1105.
- 365. Shi T, Denney L, An H, Ho LP, Zheng Y. Alveolar and lung interstitial macrophages: definitions, functions, and roles in lung fibrosis. *J Leukoc Biol*. 2021;110(1):107-114.
- 366. Wang J, Shang R, Yang J, et al. P311 promotes type II transforming growth factor- β receptor mediated fibroblast activation and

- granulation tissue formation in wound healing. *Burns Trauma*. 2022;10:tkac027.
- 367. Wang Y, Zhang L, Wu GR, et al. MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. *Sci Adv*. 2021;7(1):eabb6075.
- 368. Huang C, Ogawa R. Role of inflammasomes in keloids and hypertrophic scars-lessons learned from chronic diabetic wounds and skin fibrosis. *Int J Mol Sci.* 2022;23(12):6820.
- 369. Setten E, Castagna A, Nava-Sedeño JM, et al. Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context. *Nat Commun*. 2022;13(1):6499.
- 370. Liu Q, Yang Q, Wu Z, et al. IL-1β-activated mTORC2 promotes accumulation of IFN-γ(+) γδ T cells by upregulating CXCR3 to restrict hepatic fibrosis. Cell Death Dis. 2022;13(4):289.
- 371. Simões FC, Cahill TJ, Kenyon A, et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. *Nat Commun*. 2020;11(1):600.
- 372. Zhu H, Fu J, Chen S, et al. FC-99 reduces macrophage tenascin-C expression by upregulating miRNA-494 in arthritis. *Int Immunopharmacol*. 2020;79:106105.
- Okada T, Suzuki H. The role of tenascin-C in tissue injury and repair after stroke. Front Immunol. 2020;11:607587.
- 374. Chen K, Rao Z, Dong S, et al. Roles of the fibroblast growth factor signal transduction system in tissue injury repair. *Burns Trauma*. 2022;10:tkac005.
- Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med. 2022;16(1):56-82.
- 376. Huang J, Heng S, Zhang W, et al. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. *Semin Cell Dev Biol.* 2022;128:137-144.
- 377. Dai S, Xu M, Pang Q, et al. Hypoxia macrophage-derived exosomal miR-26b-5p targeting PTEN promotes the development of keloids. *Burns Trauma*. 2024;12:tkad036.
- 378. Zhao X, Chen J, Sun H, Zhang Y, Zou D. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. *Cell Biosci.* 2022;12(1):117.
- 379. He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol. 2022;13:1093990.
- 380. Travnickova J, Nhim S, Abdellaoui N, et al. Macrophage morphological plasticity and migration is Rac signalling and MMP9 dependant. *Sci Rep.* 2021;11(1):10123.
- 381. Wang X, Zhang D, Fucci QA, Dollery CM, Owen CA. Surface-bound matrix metalloproteinase-8 on macrophages: Contributions to macrophage pericellular proteolysis and migration through tissue barriers. *Physiol Rep.* 2021;9(5):e14778.
- Qiu L, Wang Y, Wang Y, et al. Ursolic acid ameliorated neuronal damage by restoring microglia-activated MMP/TIMP imbalance in vitro. *Drug Des Devel Ther*. 2023;17:2481-2493.
- Ishida Y, Kuninaka Y, Nosaka M, et al. Immunohistochemical analysis on MMP-2 and MMP-9 for wound age determination. *Int J Legal Med.* 2015;129(5):1043-1048.
- 384. Cecchi R, Tomoya I, Camatti J, Mizuho N, Yuko I, Toshikazu K. Expression of matrix metalloproteinase-9 (MMP-9) in human skin within 1 hour after injury through immunohistochemical staining: a pilot study. *Int J Legal Med.* 2024.

- 385. Sun C, Yan H, Jiang K, Huang L. Protective effect of casticin on experimental skin wound healing of rats. *J Surg Res.* 2022;274:145-152.
- Alonso-Nocelo M, Ruiz-Cañas L, Sancho P, et al. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. *Gut.* 2023;72(2):345-359
- 387. Chrobok NL, Sestito C, Wilhelmus MM, Drukarch B, van Dam AM. Is monocyte- and macrophage-derived tissue transglutaminase involved in inflammatory processes? *Amino Acids*. 2017;49(3):441-452.
- 388. Sun H, Kaartinen MT. Transglutaminases in monocytes and macrophages. *Med Sci (Basel)*. 2018;6(4):115.
- 389. Kim SY, Nair MG. Macrophages in wound healing: activation and plasticity. *Immunol Cell Biol*. 2019;97(3):258-267.
- 390. Xiong Y, Lin Z, Bu P, et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. *Adv Mater*. 2023;35(19):e2212300.
- Wolf SJ, Melvin WJ, Gallagher K. Macrophage-mediated inflammation in diabetic wound repair. Semin Cell Dev Biol. 2021:119:111-118.
- 392. Schlundt C, Fischer H, Bucher CH, Rendenbach C, Duda GN, Schmidt-Bleek K. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time. *Acta Biomater*. 2021;133:46-57.
- 393. Ross EA, Devitt A, Johnson JR. Macrophages: the good, the bad, and the gluttony. *Front Immunol.* 2021;12:708186.
- 394. Miki S, Suzuki JI, Takashima M, Ishida M, Kokubo H, Yoshizumi M. S-1-Propenylcysteine promotes IL-10-induced M2c macrophage polarization through prolonged activation of IL-10R/STAT3 signaling. Sci Rep. 2021;11(1): 22469.
- 395. Selig M, Poehlman L, Lang NC, Völker M, Rolauffs B, Hart ML. Prediction of six macrophage phenotypes and their IL-10 content based on single-cell morphology using artificial intelligence. *Front Immunol.* 2023;14:1336393.
- 396. Rahman K, Vengrenyuk Y, Ramsey SA, et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. *J Clin Invest.* 2017;127(8):2904-2915
- 397. Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. *J Exp Med*. 2007;204(5):1057-1069.
- 398. Crane MJ, Daley JM, van Houtte O, Brancato SK, Henry WL, Jr., Albina JE. The monocyte to macrophage transition in the murine sterile wound. *PLoS One*. 2014;9(1):e86660.
- 399. Cui CY, Ferrucci L, Gorospe M. Macrophage involvement in aging-associated skeletal muscle regeneration. *Cells*. 2023;12(9):1214.
- 400. Scala P, Rehak L, Giudice V, et al. Stem cell and macrophage roles in skeletal muscle regenerative medicine. *Int J Mol Sci.* 2021;22(19):10867.
- Wang Y, Lu J, Liu Y. Skeletal muscle regeneration in cardiotoxin-induced muscle injury models. *Int J Mol Sci.* 2022;23(21):13380.
- 402. Li N, Chen J, Geng C, et al. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-

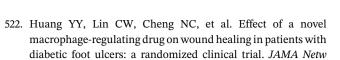
- I/Caspase1/GSDMD signaling pathway in CS-AKI. *Cell Death Discov.* 2022;8(1):90.
- 403. Martins L, Gallo CC, Honda TSB, et al. Skeletal muscle healing by M1-like macrophages produced by transient expression of exogenous GM-CSF. *Stem Cell Res Ther.* 2020;11(1):473.
- 404. Tonkin J, Temmerman L, Sampson RD, et al. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. *Mol Ther*. 2015;23(7):1189-1200.
- 405. Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol. 2021:119:11-22.
- 406. Chowdary AR, Maerz T, Henn D, et al. Macrophage-mediated PDGF activation correlates with regenerative outcomes following musculoskeletal trauma. *Ann Surg.* 2023;278(2):e349-e359.
- 407. Peck BD, Murach KA, Walton RG, et al. A muscle cell-macrophage axis involving matrix metalloproteinase 14 facilitates extracellular matrix remodeling with mechanical loading. Faseb J. 2022;36(2):e22155.
- 408. Ratnayake D, Nguyen PD, Rossello FJ, et al. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature. 2021;591(7849):281-287.
- 409. Shang M, Cappellesso F, Amorim R, et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration. *Nature*. 2020;587(7835):626-631.
- 410. Southerland KW, Xu Y, Peters DT, et al. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells. *Genome Med.* 2023;15(1):95.
- 411. Tusavitz S, Keoonela S, Kalkstein M, et al. Macrophage-derived Wnt signaling increases endothelial permeability during skeletal muscle injury. *Inflamm Res.* 2020;69(12):1235-1244.
- 412. Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. *Nat Rev Mol Cell Biol*. 2021;22(9):608-624.
- 413. Guilliams M, Scott CL. Liver macrophages in health and disease. *Immunity*. 2022;55(9):1515-1529.
- 414. Liu R, Scimeca M, Sun Q, et al. Harnessing metabolism of hepatic macrophages to aid liver regeneration. *Cell Death Dis.* 2023;14(8):574.
- 415. Guilliams M, Bonnardel J, Haest B, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. *Cell.* 2022;185(2):379-396. e38.
- 416. Li M, Sun X, Zhao J, et al. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. *Cell Mol Immunol*. 2020;17(7):753-764.
- 417. Li L, Cui L, Lin P, et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. *Cell Stem Cell*. 2023;30(3):283-299. e9.
- 418. Li R, Li D, Nie Y. IL-6/gp130 signaling: a key unlocking regeneration. *Cell Regen*. 2023;12(1):16.
- 419. Yang J, Mowry LE, Nejak-Bowen KN, et al. β -Catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! *Hepatology*. 2014;60(3):964-976.
- Hu S, Monga SP. Wnt/-catenin signaling and liver regeneration: circuit, biology, and opportunities. *Gene Expr.* 2021;20(3):189-199.

- 421. Heo MJ, Suh JH, Poulsen KL, Ju C, Kim KH. Updates on the immune cell basis of hepatic ischemia-reperfusion injury. *Mol Cells*. 2023;46(9):527-534.
- Starkey Lewis P, Campana L, Aleksieva N, et al. Alternatively activated macrophages promote resolution of necrosis following acute liver injury. *J Hepatol.* 2020;73(2):349-360.
- 423. Du S, Zhang X, Jia Y, et al. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysismediated HMGB1 lactylation and secretion of hepatocytes. *Theranostics*. 2023;13(11):3856-3871.
- 424. Liu Z, Wang M, Wang X, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury. *Redox Biol.* 2022;52:102305.
- Kim Y, Nurakhayev S, Nurkesh A, Zharkinbekov Z, Saparov A. Macrophage polarization in cardiac tissue repair following myocardial infarction. *Int J Mol Sci.* 2021;22(5):2715.
- 426. Yap J, Irei J, Lozano-Gerona J, Vanapruks S, Bishop T, Boisvert WA. Macrophages in cardiac remodelling after myocardial infarction. *Nat Rev Cardiol*. 2023;20(6):373-385.
- Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. *Cardiovasc Res.* 2020;116(6):1101-1112.
- 428. Chen Y, Wu G, Li M, et al. LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. *Redox Biol.* 2022;56:102446.
- Glinton KE, Ma W, Lantz C, et al. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. J Clin Invest. 2022;132(9):e140685.
- Jian Y, Zhou X, Shan W, et al. Crosstalk between macrophages and cardiac cells after myocardial infarction. *Cell Commun Signal*. 2023;21(1):109.
- 431. Thorp EB. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction. *J Clin Invest.* 2023;133(18):e171953.
- 432. Abe H, Takeda N, Isagawa T, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. *Nat Commun*. 2019;10(1):2824.
- 433. Jiang C, Jin X, Li C, et al. Roles of IL-33 in the pathogenesis of cardiac disorders. *Exp Biol Med (Maywood)*. 2023;248(22):2167-2174.
- 434. Li Z, Liu X, Zhang X, et al. TRIM21 aggravates cardiac injury after myocardial infarction by promoting M1 macrophage polarization. Front Immunol. 2022;13:1053171.
- 435. Zha Z, Cheng Y, Cao L, et al. Monomeric CRP aggravates myocardial injury after myocardial infarction by polarizing the macrophage to pro-inflammatory phenotype through JNK signaling pathway. *J Inflamm Res.* 2021;14:7053-7064.
- 436. Gurevich DB, Severn CE, Twomey C, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. *Embo J.* 2018;37(13):e97786.
- 437. Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and chronic wound healing. *Int J Mol Sci.* 2017;18(7):1545.
- 438. Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative scar-free skin wound healing. *Tissue Eng Part B Rev.* 2019;25(4):294-311.

- 439. Hong YK, Chang YH, Lin YC, Chen B, Guevara BEK, Hsu CK. Inflammation in wound healing and pathological scarring. *Adv Wound Care (New Rochelle)*. 2023;12(5):288-300.
- 440. Ullm F, Riedl P, Machado de Amorim A, et al. 3D scaffold-based macrophage fibroblast coculture model reveals IL-10 dependence of wound resolution phase. *Adv Biosyst*. 2020;4(1):e1900220.
- 441. Wu R, Zhang H, Zhao M, et al. Nrf2 in keratinocytes protects against skin fibrosis via regulating epidermal lesion and inflammatory response. *Biochem Pharmacol*. 2020;174:113846.
- 442. Villarreal-Ponce A, Tiruneh MW, Lee J, et al. Keratinocyte-macrophage crosstalk by the Nrf2/Ccl2/EGF signaling axis orchestrates tissue repair. *Cell Rep.* 2020;33(8):108417.
- 443. Sen CK. Human wound and its burden: updated 2022 compendium of estimates. *Adv Wound Care (New Rochelle)*. 2023;12(12):657-670.
- 444. Wu X, He W, Mu X, et al. Macrophage polarization in diabetic wound healing. *Burns Trauma*. 2022;10:109-116.
- 445. Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic foot ulcers: a review. *Jama*. 2023;330(1):62-75.
- 446. McDermott K, Fang M, Boulton AJM, Selvin E, Hicks CW. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. *Diabetes Care*. 2023;46(1):209-221.
- 447. Papachristou S, Pafili K, Papanas N. Skin AGEs and diabetic neuropathy. *BMC Endocr Disord*. 2021;21(1):28.
- 448. Harb A, Elbatreek MH, Elshahat A, El-Akabawy N, Barakat W, Elkomy NM. Repurposing alagebrium for diabetic foot ulcer healing: impact on AGEs/NFκB/NOX1 signaling. Eur J Pharmacol. 2023;959:176083.
- 449. Shomali N, Mahmoudi J, Mahmoodpoor A, et al. Harmful effects of high amounts of glucose on the immune system: an updated review. *Biotechnol Appl Biochem*. 2021;68(2):404-410.
- 450. Aki T, Funakoshi T, Noritake K, Unuma K, Uemura K. Extracellular glucose is crucially involved in the fate decision of LPS-stimulated RAW264.7 murine macrophage cells. *Sci Rep.* 2020;10(1):10581.
- 451. Kaewarpai T, Thongboonkerd V. High-glucose-induced changes in macrophage secretome: regulation of immune response. Mol Cell Biochem. 2019;452(1-2):51-62.
- 452. An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. *Faseb J.* 2019;33(11):12515-12527.
- 453. Mo Y, Mo L, Zhang Y, Zhang Y, Yuan J, Zhang Q. High glucose enhances the activation of NLRP3 inflammasome by ambient fine particulate matter in alveolar macrophages. *Part Fibre Toxicol*. 2023;20(1):41.
- 454. He W, Mu X, Wu X, et al. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. *Burns Trauma*. 2024;12:tkad050.
- 455. Geng K, Ma X, Jiang Z, et al. High glucose-induced STING activation inhibits diabetic wound healing through promoting M1 polarization of macrophages. *Cell Death Discov*. 2023;9(1):136.
- 456. Zhao Z, Ming Y, Li X, et al. Hyperglycemia aggravates periodontitis via autophagy impairment and ros-inflammasome-mediated macrophage pyroptosis. *Int J Mol Sci.* 2023;24(7):6309.
- 457. Suzuki T, Yamashita S, Hattori K, Matsuda N, Hattori Y. Impact of a long-term high-glucose environment on pro-inflammatory responses in macrophages stimulated with lipopolysaccharide.

39 of 42

- Naunyn Schmiedebergs Arch Pharmacol. 2021;394(10):2129-2139.
- 458. Yuan Y, Chen Y, Peng T, et al. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. *Clin Sci* (*Lond*). 2019;133(15):1759-1777.
- 459. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312.
- 460. Shaikh-Kader A, Houreld NN, Rajendran NK, Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. *Cell Biochem Funct*. 2019;37(6):432-442.
- 461. Parthasarathy G, Mauer AS, Golla N, et al. Macrophage RAGE activation is proinflammatory in NASH. *JCI Insight*. 2024;9(3):e169138.
- 462. Feng Z, Zhu L, Wu J. RAGE signalling in obesity and diabetes: focus on the adipose tissue macrophage. *Adipocyte*. 2020;9(1):563-566.
- 463. Leerach N, Munesue S, Harashima A, et al. RAGE signaling antagonist suppresses mouse macrophage foam cell formation. *Biochem Biophys Res Commun.* 2021;555:74-80.
- 464. Li K, Chen G, Luo H, et al. MRP8/14 mediates macrophage efferocytosis through RAGE and Gas6/MFG-E8, and induces polarization via TLR4-dependent pathway. *J Cell Physiol*. 2021;236(2):1375-1390.
- 465. Fu J, Sun Z, Wang X, et al. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. *Kidney Int.* 2022;102(6):1291-1304.
- 466. Jia Y, Chen J, Zheng Z, et al. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in diabetic kidney disease. Mol Med. 2022;28(1):95.
- 467. Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. *Cell Metab*. 2020;32(3):437-446. e5.
- 468. Wang Q, Zhong Y, Li Z, et al. Multitranscriptome analyses of keloid fibroblasts reveal the role of the HIF- 1α /HOXC6/ERK axis in keloid development. *Burns Trauma*. 2022;10:tkac013.
- 469. Hull RP, Srivastava PK, D'Souza Z, et al. Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1 β synthesis in macrophages. *BMC Genomics*. 2013;14:92.
- 470. Kim NY, Kim S, Park HM, et al. Cinnamomum verum extract inhibits NOX2/ROS and PKCδ/JNK/AP-1/NF-κB pathwaymediated inflammatory response in PMA-stimulated THP-1 monocytes. *Phytomedicine*. 2023;112:154685.
- 471. Liu J, Wei Y, Jia W, et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. *Redox Biol.* 2022;56:102452.
- 472. Yang Y, Wang Y, Guo L, Gao W, Tang TL, Yan M. Interaction between macrophages and ferroptosis. *Cell Death Dis.* 2022;13(4):355.
- 473. Zhai Z, Gomez-Mejiba SE, Gimenez MS, et al. Free radical-operated proteotoxic stress in macrophages primed with lipopolysaccharide. Free Radic Biol Med. 2012;53(1):172-181.


- 474. Liu Z, Ma Y, Cui Q, et al. Toll-like receptor 4 plays a key role in advanced glycation end products-induced M1 macrophage polarization. *Biochem Biophys Res Commun*. 2020;531(4):602-608.
- 475. Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. *Biomolecules*. 2022;12(4):542.
- 476. He S, Hu Q, Xu X, et al. Advanced glycation end products enhance M1 macrophage polarization by activating the MAPK pathway. *Biochem Biophys Res Commun.* 2020;525(2):334-340
- 477. Xing Y, Pan S, Zhu L, et al. Advanced glycation end products induce atherosclerosis via RAGE/TLR4 signaling mediated-m1 macrophage polarization-dependent vascular smooth muscle cell phenotypic conversion. *Oxid Med Cell Longev*. 2022;2022:9763377.
- Itakura M, Yamaguchi K, Kitazawa R, et al. Histone functions as a cell-surface receptor for AGEs. *Nat Commun*. 2022;13(1):2974.
- 479. Ju CC, Liu XX, Liu LH, et al. Epigenetic modification: a novel insight into diabetic wound healing. *Heliyon*. 2024;10(6):e28086.
- 480. Mir AR, Habib S, Uddin M. Recent advances in histone glycation: emerging role in diabetes and cancer. *Glycobiology*. 2021;31(9):1072-1079.
- 481. Mao QY, He SY, Hu QY, et al. Advanced glycation end products (AGEs) inhibit macrophage efferocytosis of apoptotic β cells through binding to the receptor for AGEs. *J Immunol*. 2022;208(5):1204-1213.
- 482. Friggeri A, Banerjee S, Biswas S, et al. Participation of the receptor for advanced glycation end products in efferocytosis. *J Immunol.* 2011;186(11):6191-6198.
- 483. Zayed MA, Wei X, Park KM, et al. N-Acetylcysteine accelerates amputation stump healing in the setting of diabetes. *Faseb J*. 2017;31(6):2686-2695.
- 484. Afzali H, Jafari Kashi AH, Momen-Heravi M, et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. *Wound Repair Regen*. 2019;27(3):277-284.
- 485. Saeg F, Orazi R, Bowers GM, Janis JE. Evidence-based nutritional interventions in wound care. *Plast Reconstr Surg.* 2021;148(1):226-238.
- Nikolic M, Andjic M, Bradic J, et al. Topical application of siberian pine essential oil formulations enhance diabetic wound healing. *Pharmaceutics*. 2023;15(10):2437.
- 487. Eghtedari Y, Oh LJ, Girolamo ND, Watson SL. The role of topical N-acetylcysteine in ocular therapeutics. *Surv Ophthalmol*. 2022;67(2):608-622.
- 488. Tian M, Qing C, Niu Y, et al. Effect of aminoguanidine intervention on neutrophils in diabetes inflammatory cells wound healing. *Exp Clin Endocrinol Diabetes*. 2013;121(10):635-642.
- Jiang M, Yakupu A, Guan H, et al. Pyridoxamine ameliorates methylglyoxal-induced macrophage dysfunction to facilitate tissue repair in diabetic wounds. *Int Wound J.* 2022;19(1):52-63.
- 490. Chang PC, Tsai SC, Jheng YH, Lin YF, Chen CC. Softtissue wound healing by anti-advanced glycation end-products agents. J Dent Res. 2014;93(4):388-393.

- 491. Kim CH, Kang HY, Kim G, et al. Soluble receptors for advanced glycation end-products prevent unilateral ureteral obstructioninduced renal fibrosis. *Front Pharmacol.* 2023;14:1172269.
- 492. Miyagawa T, Iwata Y, Oshima M, et al. Soluble receptor for advanced glycation end products protects from ischemia-and reperfusion-induced acute kidney injury. *Biol Open*. 2022;11(1):bio058852.
- 493. Malaguarnera L. Influence of resveratrol on the immune response. *Nutrients*. 2019;11(5):946.
- 494. Ding Y, Yang P, Li S, Zhang H, Ding X, Tan Q. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice. *Pharm Biol.* 2022;60(1):2328-2337.
- 495. Qing L, Fu J, Wu P, Zhou Z, Yu F, Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. *Am J Transl Res.* 2019;11(2):655-668.
- 496. Cavalcante-Silva J, Koh TJ. Targeting the NOD-Like receptor pyrin domain containing 3 inflammasome to improve healing of diabetic wounds. Adv Wound Care (New Rochelle). 2023;12(11):644-656.
- 497. Tawfeek HM, Abou-Taleb DAE, Badary DM, Ibrahim M, Abdellatif AAH. Pharmaceutical, clinical, and immuno-histochemical studies of metformin hydrochloride topical hydrogel for wound healing application. *Arch Dermatol Res.* 2020;312(2):113-121.
- 498. Muñoz-Garcia J, Cochonneau D, Télétchéa S, et al. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. *Theranostics*. 2021;11(4):1568-1593.
- 499. Liu Y, Zhang Z, Wang B, et al. Inflammation-stimulated MSC-derived small extracellular vesicle miR-27b-3p regulates macrophages by targeting CSF-1 to promote temporomandibular joint condylar regeneration. *Small*. 2022;18(16):e2107354.
- 500. Ead JK, Armstrong DG. Granulocyte-macrophage colonystimulating factor: conductor of the wound healing orchestra? *Int Wound J.* 2023;20(4):1229-1234.
- 501. Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. *J Leukoc Biol*. 2021;110(4):771-796.
- 502. Stutchfield BM, Antoine DJ, Mackinnon AC, et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. *Gastroenterology*. 2015;149(7):1896-1909. e14.
- 503. Wei Y, Li J, Huang Y, et al. The clinical effectiveness and safety of using epidermal growth factor, fibroblast growth factor and granulocyte-macrophage colony stimulating factor as therapeutics in acute skin wound healing: a systematic review and meta-analysis. *Burns Trauma*. 2022;10:tkac002.
- 504. Wang LL, Zhao R, Li JY, et al. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. *Eur J Pharmacol.* 2016;786:128-136.
- 505. Ma C, Ouyang Q, Huang Z, et al. Toll-like receptor 9 inactivation alleviated atherosclerotic progression and inhibited macrophage polarized to M1 phenotype in ApoE-/- mice. *Dis Markers*. 2015;2015:909572.
- 506. Schmitt H, Ulmschneider J, Billmeier U, et al. The TLR9 agonist cobitolimod induces IL10-Producing wound healing macrophages and regulatory T cells in ulcerative colitis. *J Crohns Colitis*. 2020;14(4):508-524.

- 507. Gao Y, Jin H, Tan H, Cai X, Sun Y. Erythrocyte-derived extracellular vesicles aggravate inflammation by promoting the proinflammatory macrophage phenotype through TLR4-MyD88-NF-κB-MAPK pathway. J Leukoc Biol. 2022;112(4):693-706
- Akter S, Sharma RK, Sharma S, Rastogi S, Fiebich BL, Akundi RS. Exogenous ATP modulates PGE(2) release in macrophages through sustained phosphorylation of CDK9 and p38 MAPK. J Leukoc Biol. 2021:110(4):663-677.
- 509. Gao S, Li L, Li L, et al. Effects of the combination of tanshinone IIA and puerarin on cardiac function and inflammatory response in myocardial ischemia mice. *J Mol Cell Cardiol*. 2019:137:59-70.
- 510. Wu J, Ma X, Lu Y, et al. Edible pueraria lobata-derived exosomes promote M2 macrophage polarization. *Molecules*. 2022;27(23):8184.
- 511. Luo Z, Qi B, Sun Y, et al. Engineering bioactive M2 macrophage-polarized, anti-inflammatory, miRNA-based liposomes for functional muscle repair: from exosomal mechanisms to biomaterials. *Small*. 2022;18(34): e2201957.
- 512. Li J, Wei C, Yang Y, Gao Z, Guo Z, Qi F. Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21-5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6. *Burns*. 2022;48(8):1893-1908.
- 513. Zhou LS, Zhao GL, Liu Q, Jiang SC, Wang Y, Zhang DM. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. *J Inflamm (Lond)*. 2015;12:11.
- Danon D, Madjar J, Edinov E, et al. Treatment of human ulcers by application of macrophages prepared from a blood unit. *Exp Gerontol.* 1997;32(6):633-641.
- 515. Lopes TCM, Almeida GG, Souza IA, et al. High-densityimmune-complex regulatory macrophages promote recovery of experimental colitis in mice. *Inflammation*. 2021;44(3):1069-1082.
- Zheng D, Wang Y, Cao Q, et al. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus. Nephron Exp Nephrol. 2011;118(4):e87-e99.
- 517. Theocharidis G, Rahmani S, Lee S, et al. Murine macrophages or their secretome delivered in alginate dressings enhance impaired wound healing in diabetic mice. *Biomaterials*. 2022;288:121692.
- 518. Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory biomaterials for tissue repair. *Chem Rev.* 2021;121(18):11305-11335.
- 519. Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. *Burns Trauma*. 2023;11:tkac058.
- 520. Fu YJ, Shi YF, Wang LY, et al. All-natural immunomodulatory bioadhesive hydrogel promotes angiogenesis and diabetic wound healing by regulating macrophage heterogeneity. Adv Sci (Weinh). 2023;10(13):e2206771.
- 521. Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterialbased regenerative medicine strategies. *Acta Biomater*. 2021;133:4-16.

Open. 2021;4(9):e2122607.

- 523. Wu Y, Zhang J, Lin A, et al. Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection. *Burns Trauma*. 2024;12:tkae009.
- 524. Huang C, Dong L, Zhao B, et al. Anti-inflammatory hydrogel dressings and skin wound healing. *Clin Transl Med.* 2022:12(11):e1094.
- 525. Kwak G, Cheng J, Kim H, et al. Sustained exosome-guided macrophage polarization using hydrolytically degradable PEG hydrogels for cutaneous wound healing: identification of key proteins and MiRNAs, and sustained release formulation. *Small.* 2022;18(15):e2200060.
- 526. Shen P, Chen Y, Luo S, et al. Applications of biomaterials for immunosuppression in tissue repair and regeneration. *Acta Biomater*. 2021:126:31-44.
- 527. Huang K, Liu W, Wei W, et al. Photothermal hydrogel encapsulating intelligently bacteria-capturing Bio-MOF for infectious wound healing. *ACS Nano*. 2022;16(11):19491-19508.
- 528. Henn D, Chen K, Fehlmann T, et al. Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2(+) macrophages. *Sci Adv.* 2021;7(49): eabi4528.
- 529. Tu C, Lu H, Zhou T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. *Biomaterials*. 2022;286:121597.
- Chen Z, Wang L, Guo C, et al. Vascularized polypeptide hydrogel modulates macrophage polarization for wound healing. *Acta Biomater*. 2023;155:218-234.
- 531. Zhao R, Jin X, Li A, et al. Precise diabetic wound therapy: PLS nanospheres eliminate senescent cells via DPP4 targeting and PARP1 activation. *Adv Sci (Weinh)*. 2022;9(1):e2104128.
- 532. Liu W, Zu L, Wang S, et al. Tailored biomedical materials for wound healing. *Burns Trauma*. 2023;11:tkad040.
- 533. Huang Y, Zhang L, Song R, Mao X, Tang S. A carrageenan/agarose composite sponge and its immunomodulatory activities toward RAW264.7. *J Biomed Mater Res A*. 2021;109(6):829-839.
- 534. Yang H, Song L, Sun B, et al. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. *Mater Today Bio*. 2021;12:100139.
- 535. Wu J, Chen A, Zhou Y, et al. Novel H(2)S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages. *Biomaterials*. 2019;222:119398.
- 536. Saleh B, Dhaliwal HK, Portillo-Lara R, et al. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing. *Small*. 2019;15(36):e1902232.
- 537. Chu D, Chen J, Liu X, et al. A tetramethylpyrazine-loaded hyaluronic acid-based hydrogel modulates macrophage polarization for promoting wound recovery in diabetic mice. *Int J Biol Macromol.* 2023;245:125495.
- 538. Deng T, Gao D, Song X, et al. A natural biological adhesive from snail mucus for wound repair. *Nat Commun*. 2023;14(1):396.

539. Zhou Z, Deng T, Tao M, et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization. *Biomate*-

rials. 2023:299:122141.

- 540. Shen T, Dai K, Yu Y, Wang J, Liu C. Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. *Acta Biomater*. 2020;117:192-203.
- 541. Zhang S, Liu Y, Zhang X, et al. Prostaglandin E(2) hydrogel improves cutaneous wound healing via M2 macrophages polarization. *Theranostics*. 2018;8(19):5348-5361.
- 542. Sheng W, Qin H, Wang T, et al. Advanced phosphocreatine-grafted chitosan hydrogel promote wound healing by macrophage modulation. *Front Bioeng Biotechnol*. 2023;11:1199939.
- 543. Geng X, Qi Y, Liu X, Shi Y, Li H, Zhao L. A multifunctional antibacterial and self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived exosomes for accelerating diabetic wound healing. *Biomater Adv.* 2022;133:112613.
- 544. Kong X, Chen H, Li F, et al. Three-dimension chitosan hydrogel loading melanin composite nanoparticles for wound healing by anti-bacteria, immune activation and macrophage autophagy promotion. *Int J Biol Macromol.* 2023;237:124176.
- 545. Vivcharenko V, Wojcik M, Przekora A. Cellular response to vitamin C-enriched chitosan/agarose film with potential application as artificial skin substitute for chronic wound treatment. *Cells.* 2020;9(5):1185.
- 546. Chu B, Zhang A, Huang J, et al. Preparation and biological evaluation of a novel agarose-grafting-hyaluronan scaffold for accelerated wound regeneration. *Biomed Mater*. 2020;15(4):045009.
- 547. Wojcik M, Kazimierczak P, Vivcharenko V, Koziol M, Przekora A. Effect of vitamin C/hydrocortisone immobilization within curdlan-based wound dressings on in vitro cellular response in context of the management of chronic and burn wounds. *Int J Mol Sci.* 2021;22(21):11474.
- Tian M, Zhou L, Fan C, et al. Bimetal-organic framework/GOxbased hydrogel dressings with antibacterial and inflammatory modulation for wound healing. *Acta Biomater*. 2023;158:252-265.
- Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. *Biomaterials*. 2020;258:120286.
- Luque GC, Moya M, Picchio ML, et al. Polyphenol iongel patches with antimicrobial, antioxidant and anti-inflammatory properties. *Polymers (Basel)*. 2023;15(5):1076.
- Liu C, Wang Y, Wang P, et al. In situ electrospun aloenanofiber membrane for chronic wound healing. Smart Mater Med. 2023;4:514-521.
- Qian Y, Zheng Y, Jin J, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv Mater. 2022;34(29):e2200521.
- 553. Wang L, Yu Y, Zhao X, et al. A biocompatible self-powered piezoelectric poly(vinyl alcohol)-based hydrogel for diabetic wound repair. ACS Appl Mater Interfaces. 2022;14(41):46273-46289.
- 554. Lv H, Zhao M, Li Y, et al. Electrospun chitosan-polyvinyl alcohol nanofiber dressings loaded with bioactive ursolic acid promoting diabetic wound healing. *Nanomaterials (Basel)*. 2022;12(17):2933.

- 555. Zhu W, Dong Y, Xu P, et al. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. *Acta Biomater*. 2022;154:212-230.
- 556. Zhong G, Qiu M, Zhang J, et al. Fabrication and characterization of PVA@PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. *Int J Biol Macromol*. 2023;234:123693.
- 557. Zhu M, Chen YZ, Ou JZ, et al. [Effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice]. *Zhonghua Shao Shang Za Zhi*. 2022;38(10):923-931.
- 558. Singh S, Nwabor OF, Sukri DM, et al. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. *Int J Biol Macromol*. 2022;216:235-250.
- 559. Liu W, Zhang Y, Zhu W, et al. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets. *Front Immunol.* 2018;9:2228.
- 560. Su HY, Yang CY, Ou HT, et al. Cost-effectiveness of novel macrophage-regulating treatment for wound healing in patients with diabetic foot ulcers from the Taiwan health care sector perspective. *JAMA Netw Open.* 2023;6(1):e2250639.
- 561. Weivoda MM, Chew CK, Monroe DG, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. *Nat Commun*. 2020:11(1):87.
- 562. Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. *Mol Cancer*. 2023;22(1):20.
- 563. Liu Y, Hu P, Zheng Z, et al. Photoresponsive vaccinelike CAR-M system with high-efficiency central immune regulation for inflammation-related depression. *Adv Mater*. 2022;34(11):e2108525.
- 564. Chocarro L, Blanco E, Fernández-Rubio L, et al. Cutting-edge CAR engineering: beyond T cells. *Biomedicines*. 2022;10(12):3035.
- 565. Usui-Ouchi A, Giles S, Harkins-Perry S, et al. Integrating human iPSC-derived macrophage progenitors into retinal organoids to generate a mature retinal microglial niche. *Glia*. 2023;71(10):2372-2382.
- 566. Li Y, Che J, Chang L, et al. CD47- and integrin $\alpha 4/\beta 1$ comodified-macrophage-membrane-coated nanoparticles
 enable delivery of colchicine to atherosclerotic plaque. *Adv Healthc Mater.* 2022;11(4):e2101788.
- 567. Hou X, Zhang X, Zhao W, et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. *Nat Nanotechnol*. 2020;15(1):41-46.
- 568. Xu L, Sharkey D, Cantley LG. Tubular GM-CSF promotes late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury. *J Am Soc Nephrol.* 2019;30(10):1825-1840.
- 569. Bloise N, Rountree I, Polucha C, et al. Engineering immunomodulatory biomaterials for regenerating the infarcted myocardium. *Front Bioeng Biotechnol.* 2020;8:292.

- Spangenberg E, Severson PL, Hohsfield LA, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. *Nat Commun.* 2019;10(1):3758.
- 571. Yan D, Liu S, Zhao X, et al. Recombinant human granulocyte macrophage colony stimulating factor in deep second-degree burn wound healing. *Medicine (Baltimore)*. 2017;96(22):e6881.
- 572. Luo B, Sun HT, Wang YT, et al. Clinical efficacy of rhGM-CSF gel and medical collagen sponge on deep second-degree burns of infants: a randomized clinical trial. *Medicine (Baltimore)*. 2024:103(1):e36304.
- 573. Zhang XH, Cui CL, Zhu HY, et al. The effects of recombinant human granulocyte-macrophage colony-stimulating factor gel on third-degree frostbite wounds in northeastern china: a randomized controlled trial. *J Burn Care Res.* 2023;44(3):715-722.
- 574. Wu Y, Shen G, Hao C. Negative pressure wound therapy (NPWT) is superior to conventional moist dressings in wound bed preparation for diabetic foot ulcers: A randomized controlled trial. *Saudi Med J.* 2023:44(10):1020-1029.
- 575. Wu DC, Kollipara R, Carter MJ, Goldman MP. A novel macrophage-activating gel improves healing and skin quality after CO₂ laser resurfacing of the chest. *Dermatol Surg*. 2022;48(12):1312-1316.
- 576. Sanpinit S, Chokpaisarn J, Na-Phatthalung P, et al. Effectiveness of Ya-Samarn-Phlae in diabetic wound healing: evidence from in vitro studies and a multicenter randomized controlled clinical trial. *J Ethnopharmacol*. 2024;326:117929.
- 577. Mirastschijski U, Schwab I, Coger V, et al. Lung surfactant accelerates skin wound healing: a translational study with a randomized clinical phase i study. Sci Rep. 2020;10(1):2581.
- 578. Robinson H, Jarrett P, Vedhara K, et al. The effect of expressive writing on wound healing: Immunohistochemistry analysis of skin tissue two weeks after punch biopsy wounding. J Psychosom Res. 2022;161:110987.
- 579. Ud-Din S, Foden P, Mazhari M, et al. A double-blind, randomized trial shows the role of zonal priming and direct topical application of epigallocatechin-3-gallate in the modulation of cutaneous scarring in human skin. *J Invest Dermatol*. 2019;139(8):1680-1690. e16.
- 580. Ud-Din S, Wilgus TA, McGeorge DD, Bayat A. Pre-emptive priming of human skin improves cutaneous scarring and is superior to immediate and delayed topical anti-scarring treatment post-wounding: a double-blind randomised placebocontrolled clinical trial. *Pharmaceutics*. 2021;13(4):510.
- 581. Niebuhr M, Mühlradt PF, Wittmann M, Kapp A, Werfel T. Intracutaneous injection of the macrophage-activating lipopeptide-2 (MALP-2) which accelerates wound healing in mice-a phase I trial in 12 patients. *Exp Dermatol*. 2008;17(12):1052-1056.

How to cite this article: Yan L, Wang J, Cai X, et al. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. *MedComm*. 2024;5:e658. https://doi.org/10.1002/mco2.658