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Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling
them to adapt to diverse tissue microenvironments and perform various func-
tions. Traditionally categorized into classically activated (M1) and alternatively
activated (M2) phenotypes, recent advances have revealed a spectrum of
macrophage activation states that extend beyond this dichotomy. The complex
interplay of signaling pathways, transcriptional regulators, and epigenetic mod-
ifications orchestrates macrophage polarization, allowing them to respond to
various stimuli dynamically. Here, we provide a comprehensive overview of
the signaling cascades governing macrophage plasticity, focusing on the roles
of Toll-like receptors, signal transducer and activator of transcription proteins,
nuclear receptors, and microRNAs. We also discuss the emerging concepts
of macrophage metabolic reprogramming and trained immunity, contributing
to their functional adaptability. Macrophage plasticity plays a pivotal role in
tissue repair and regeneration, with macrophages coordinating inflammation,
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angiogenesis, and matrix remodeling to restore tissue homeostasis. By harness-
ing the potential of macrophage plasticity, novel therapeutic strategies targeting
macrophage polarization could be developed for various diseases, including
chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a
deeper understanding of the molecular mechanisms underpinning macrophage
plasticity will pave the way for innovative regenerative medicine and tissue
engineering approaches.
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1 INTRODUCTION

Macrophages, the versatile sentinels of the innate immune
system, play critical roles in host defense, tissue home-
ostasis, and disease pathogenesis. Macrophages exhibit
extraordinary plasticity, enabling them to adapt to diverse
tissue microenvironments and perform various functions.
This plasticity is exemplified by the ability of macrophages
to polarize into distinct functional states in response to
various stimuli, a process orchestrated by complex signal-
ing pathways and transcriptional networks. In the past
decade, there has been a surge of interest in elucidat-
ing the molecular mechanisms governing macrophage
plasticity and their implications for tissue repair and regen-
eration. Macrophages play pivotal roles in all stages of
the tissue repair process, from the initial inflammatory
response to the resolution of inflammation and tissue
remodeling.1–3 Dysregulation of macrophage function can
lead to impaired wound healing, fibrosis, and chronic
inflammation, underscoring the importance of under-
standing the signaling pathways that control macrophage
activation states. Recent studies have shed light on the
complex network of transcription factors, epigenetic regu-
lators, andmetabolic pathways that shape themacrophage
transcriptional landscape and functional properties.4–8
At present, the classification of macrophages into

M1 and M2 types has been widely adopted in scien-
tific research.9–16 Through this extreme classification,
macrophages are divided according to the functional
differences of proinflammatory bactericidal and anti-
inflammatory and anti-inflammatory prorepair.17–19 While
this dichotomy provided a valuable framework for under-
standing macrophage heterogeneity, recent advances in
single-cell technologies and systems biology approaches
have revealed a spectrum of activation states that extend
beyond the M1/M2 paradigm.20,21 Therefore, further
research is necessary to reconcile these findings and pro-
vide a more comprehensive understanding of macrophage

phenotypes and functions.Despite this ongoing debate, the
M1 and M2 classification continues to describe the differ-
ent polarization states of macrophages in the study of tis-
sue healing. During tissue repair, M1 andM2macrophages
fulfill distinct functions, and the timely transition of
macrophages from an M1 to an M2 phenotype plays a
critical role in wound healing and tissue regeneration.22
Through this review, we aim to clarify the key pathways

and epigenetic regulation that regulate the polarization
of macrophages and discuss their roles in the repair and
regeneration of various tissue damage to provide ideas
and approaches for clinically diagnosing and treating
macrophages as targets. The review is structured into
four main sections. In the first section, we provide an
overview of the historical perspective onmacrophage plas-
ticity and the evolution of the M1/M2 paradigm. We then
delve into the spectrum of macrophage activation states
revealed by recent single-cell studies and discuss the limi-
tations of the traditional classification system. The second
section focuses on the signaling pathways that control
macrophage polarization, emphasizing the roles of TLRs,
signal transducer and activator of transcription (STAT)
proteins, nuclear receptors, and microRNAs (miRNAs).
We also discuss the emerging concepts of macrophage
metabolic reprogramming and epigenetic regulation, high-
lighting their importance in shaping macrophage func-
tional properties. The third section explores the functional
significance of macrophage plasticity in tissue repair
and regeneration, providing examples from cutaneous
wound healing, skeletal muscle regeneration, and liver
repair. We discuss macrophages’ dynamic roles in the
repair process’s different stages and the consequences of
macrophage dysfunction in pathological conditions. The
final section addresses the therapeutic potential of tar-
geting macrophage polarization pathways, discussing the
current strategies and future directions for modulating
macrophage function in chronic wounds, fibrotic diseases,
and inflammatory disorders.
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2 MACROPHAGE PLASTICITY: FROM
HISTORICAL ORIGINS TO
CONTEMPORARY INSIGHTS

Macrophages, the versatile sentinels of the immune sys-
tem, exhibit remarkable plasticity that enables them to
adapt to diverse tissue microenvironments and perform
a wide array of functions.23 First discovered by Élie
Metchnikoff in 1882, these phagocytic cells were recog-
nized for their roles in immunity and inflammation.24,25
Over the past century, our understanding of macrophage
heterogeneity and plasticity has dramatically expanded,
revealing their critical involvement in tissue homeostasis,
wound healing, and disease pathogenesis. The traditional
M1/M2 classification system, proposed by Mills et al.15
in 2000, provided a valuable framework for understand-
ing macrophage polarization. M1 macrophages, activated
by interferon-γ (IFN-γ) and lipopolysaccharide (LPS),
exhibit proinflammatory properties and potent microbi-
cidal activity. In contrast, M2 macrophages, induced by
interleukin-4 (IL-4) and IL-13, display anti-inflammatory
and tissue-repair functions.While this dichotomy captures
the extremes of macrophage activation, recent advances
have revealed a spectrum of activation states that extend
beyond the M1/M2 paradigm. This section discusses
the historical origins of macrophage plasticity research
and highlights the latest discoveries that have reshaped
our understanding of this phenomenon. We explore the
molecular mechanisms underlying macrophage plasticity,
including transcriptional regulation, epigenetic modifica-
tions, and metabolic reprogramming. Furthermore, we
discuss the functional significance of macrophage plas-
ticity in health and disease, focusing on tissue-specific
adaptations and the role of trained immunity. Finally, we
outline this rapidly evolving field’s challenges and future
directions.

2.1 Historical perspective on
macrophage plasticity

Macrophage plasticity emerged in the 1960s when Mack-
aness et al.26–31 reported two distinct macrophage activa-
tion states responding to cytokines. Type 1 macrophages,
now known as M1, exhibited enhanced microbicidal activ-
ity against intracellular pathogens like Mycobacterium
tuberculosis. Type 2 macrophages, now called M2, damp-
ened inflammation and promoted extracellular matrix
remodeling. In the 1980 and 1990s, the phenotypic and
functional differences between M1 and M2 macrophages
came into sharper focus. Stein et al.32 found that M1
macrophages produced high levels of proinflammatory
cytokines, such as tumor necrosis factor-α (TNF-α), IL-

1, IL-6, and IL-12. This enabled them to stimulate T-cell
responses and potently unleash oxidative attacks against
pathogens. Conversely, M2 macrophages secreted anti-
inflammatory cytokines like IL-10 and expressed high
arginase-1 (ARG-1) levels, allowing them to suppress
immune responses and promote tissue repair.32 Based on
arginine metabolism, theM1/M2 classification systemwas
consolidated by Mills et al.15 in 2000, drawing parallels
with T helper 1 (Th1) and Th2 lymphocyte polariza-
tion. While this dichotomy provided a helpful framework,
it oversimplified the complex spectrum of macrophage
activation states observed in vivo (Table 1).

2.1.1 M1 macrophages

M1macrophages, also referred to as classically activated or
proinflammatory macrophages, are induced by exposure
to bacterial products like LPS and inflammatory cytokines
such as IFN-γ and TNF-α.46,47 This activation state is char-
acterized by the expression of specific surface markers,
including CD80, CD86, andmajor histocompatibility com-
plex (MHC) class II molecules, and the production of
proinflammatory cytokines and mediators.48,49 Key mark-
ers and functions of M1 macrophages include (a) Cytokine
production: M1 macrophages secrete high levels of proin-
flammatory cytokines such as TNF-α, IL-1 beta (IL-1β),
IL-6, IL-12, and IL-23. These cytokines orchestrate the
inflammatory response, recruit and activate other immune
cells, and promote tissue damage.50–53 (b) Microbicidal
activity: M1 macrophages are equipped with potent micro-
bicidal mechanisms, including the production of reactive
oxygen species (ROS), reactive nitrogen species (RNS),
and the expression of inducible nitric oxide synthase
(iNOS).54,55 These factors contribute to the killing of invad-
ing pathogens and tumor cells. (c) Antigen presentation:
M1 macrophages upregulate the expression of56 class II
molecules, enabling them to effectively present antigens
to T cells and initiate adaptive immune responses.57,58
(d) Tissue remodeling: M1 macrophages secrete proteolytic
enzymes, such as matrix metalloproteinases (MMPs),
which contribute to the breakdown of extracellular matrix
components, facilitating tissue remodeling and repair.59–61
M1 macrophages play crucial roles in the initial stages of
inflammation, pathogen clearance, and tissue injury, coor-
dinating the innate immune response and initiating the
repair process.62–64

2.1.2 M2 macrophages

In contrast to the proinflammatory M1 phenotype, M2
macrophages, also known as alternatively activated or
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TABLE 1 History of macrophage polarization studies.

Time Finder Conclusion References
1863 Recklinghausen Mononuclear amoeba cells were discovered and called connective tissue

bodies, distinguishing them from pus bodies.

33

1882 Metchnikoff He discovered a cell capable of engulfing particles and fragments of
carmine dye. He named the cells macrophages and the process of
phagocytosis.

24,34

1898 Kupffer & Browicz Kupffer discovered the star-shaped cells in the liver, and Browicz
identified the star-shaped cells as distinct macrophages of the liver.

35

1924 Aschoff He classified the cells in the body capable of swallowing dyes as the
reticuloendothelial system.

36

1967 Mackaness He discovered that macrophages could attack bacteria indiscriminately
after infection and defined “macrophage activation” for the first time.

26,31

1968 van Furth & Cohn The mononuclear macrophage system is defined as a population whose
life history is defined: promonocytes in the bone marrow, monocytes in
the blood, and macrophages in the tissue.

37,38

1992 Stein He was the first to discover that IL-4-activated M2 macrophages were
distinct from the classical activation of macrophages.

32

2000 Mills He further clarified the M1/M2 classification system of macrophages
based on arginine metabolism.

15

2012 Quintin He was the first to propose functional reprogramming of monocytes 39

2014 Lavin He determined that macrophages from different tissues have
tissue-specific enhancer landscapes, highlighting the importance of the
microenvironment for the macrophage regulatory landscape.

40

2014 Xue He used the scRNA-seq technique to identify 49 distinct subpopulations of
macrophages through 28 different stimuli.

41

2014 Cheng He proposed that training immunity relies on the aerobic glycolysis
pathway induced by the Akt–mTOR–HIF-1α pathway.

42

2016 Arts He proposed an essential role for metabolic regulation in the functional
reprogramming of macrophages and discovered that the transcription
factor ATF plays a vital role in this process.

43

2017 Roussel He used CyTOF to identify markers of mononuclear phagocytic system
activation in response to various stimuli and found cells that could
express both M1 and M2 markers.

44

2019 Zilionis He discovered the presence of macrophages in the lungs of mice that
express both the M1 and M2 markers.

45

Abbreviations: CyTOF, mass cytometry by time of flight; HIF, hypoxia-inducible factor.

anti-inflammatory macrophages, are induced by exposure
to cytokines such as IL-4 and IL-13 and immunomodu-
latory molecules like glucocorticoids and IL-10.65–73 M2
macrophages are characterized by the expression of spe-
cific surface markers, including CD163 and CD206 (man-
nose receptor), and the production of anti-inflammatory
cytokines and mediators involved in tissue repair and
homeostasis.74–77 Key markers and functions of M2
macrophages include (a) anti-inflammatory cytokine pro-
duction: M2 macrophages secrete high levels of anti-
inflammatory cytokines such as IL-10 and TGF-β, which
help to dampen the inflammatory response and pro-
mote tissue repair.78–83 (b) Extracellular matrix remod-
eling: M2 macrophages contribute to synthesizing and
remodeling extracellular matrix components, including

collagen, fibronectin, and proteoglycans, facilitating tis-
sue repair and wound healing.84–86 (c) Angiogenesis: M2
macrophages secrete proangiogenic factors, such as VEGF,
which promote the formation of new blood vessels,
ensuring adequate nutrient and oxygen supply to the
injured tissue.87–89 (d) Phagocytosis and efferocytosis: M2
macrophages efficiently phagocytose cellular debris and
apoptotic cells, a process known as efferocytosis, which
is crucial for the resolution of inflammation and tissue
remodeling.90–93 (e) Tissue homeostasis: M2 macrophages
play essential roles in maintaining tissue homeostasis by
regulating metabolic processes, promoting insulin sen-
sitivity, and contributing to the clearance of cellular
debris.94–96 M2 macrophages are instrumental in the
later stages of tissue repair, promoting the resolution of
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inflammation, angiogenesis, extracellular matrix remodel-
ing, and restoring tissue homeostasis.97–99
It is important to note that the M1/M2 polarization

represents a continuum, and macrophages can exhibit
a range of phenotypes between these two extremes,
depending on the specific microenvironmental cues
they encounter.100–102 Additionally, recent research has
revealed the existence of distinct subpopulations within
the M1 and M2 categories, each with unique transcrip-
tional profiles and functional characteristics.68,103–105 The
dynamic interplay between M1 and M2 macrophages is
crucial for orchestrating an effective immune response,
balancing inflammation and tissue repair, and main-
taining homeostasis. Dysregulation of this balance can
contribute to the development and progression of various
pathological conditions, including chronic inflammatory
diseases, autoimmune disorders, and impaired wound
healing.106–108 Understanding the molecular mechanisms
governing macrophage polarization and the signaling
pathways that regulate their phenotypic transformation is
essential for developing targeted therapeutic strategies to
modulate macrophage function and enhance tissue repair
and regeneration.

2.2 The spectrum of macrophage
activation states: beyondM1/M2 dichotomy

The advent of single-cell technologies, such as single-
cell RNA sequencing (scRNA-seq) and mass cytome-
try (CyTOF), has revolutionized our understanding of
macrophage heterogeneity.109–111 These high-resolution
techniques have allowed researchers to profile the tran-
scriptomes and proteomes of individual macrophages,
uncovering a continuum of activation states that extend
beyond the M1/M2 dichotomy.112 A seminal study by Xue
et al.41 used scRNA-seq to analyze human macrophages
stimulated with 28 different activation conditions. They
identified 49 distinct macrophage subsets, each with a
unique transcriptional signature, highlighting the incred-
ible diversity of macrophage responses to environmental
cues. Similarly, a CyTOF study by Roussel et al.44 demon-
strated that human macrophages exhibit a spectrum of
activation states in response to various stimuli, with some
cells coexpressing both M1 and M2 markers. Recent stud-
ies have also revealed novel macrophage subsets with
unique functions. For example, Angel et al.113 identified a
population of antigen-presenting macrophages in human
lymph nodes that express high levels of MHC class II
and costimulatory molecules, suggesting a role in adap-
tive immunity. Another study by Zilionis et al.45 discovered
a subset of mouse lung macrophages expressing M1 and
M2 markers that play a critical role in maintaining lung

homeostasis. These findings underscore the limitations
of the M1/M2 classification system and emphasize the
need for a more nuanced understanding of macrophage
plasticity. The spectrum of activation states revealed by
single-cell technologies highlights the remarkable adapt-
ability of macrophages to diverse environmental cues and
their multifaceted roles in health and disease.8,114,115

2.3 Tissue-specific imprinting of
macrophage identity and function

One of the most significant advances in macrophage
biology over the past decade has been recognizing
the profound influence of tissue microenvironments
on macrophage development, phenotype, and function.
Macrophages are present in virtually all tissues, perform-
ing specialized functions tailored to the unique demands
of their local niche.116 Recent studies have shown that
tissue-specific factors, such as cytokines, metabolites, and
cell–cell interactions, can imprint distinct transcriptional
and epigenetic signatures on resident macrophages, giving
rise to specialized subsets with unique functions.117,118 For
example, Lavin et al.40 demonstrated that macrophages
from different tissues, such as the lung, liver, and spleen,
possess distinct enhancer landscapes shaped by tissue-
specific transcription factors. The gut microbiome has also
emerged as a critical regulator of intestinal macrophage
function.119,120 Studies have shown that microbial metabo-
lites, such as short-chain fatty acids and taurine, can mod-
ulate the phenotype and activity of intestinalmacrophages,
promoting homeostasis and protecting against enteric
infections.121–123 These findings highlight the importance
of studying macrophages in their native tissue context and
underscore the limitations of extrapolating conclusions
from in vitro studies to in vivo settings. The tissue-
specific imprinting of macrophage identity and function
has important implications for our understanding of
immune regulation and disease pathogenesis, as dysreg-
ulation of these processes may contribute to developing
inflammatory and metabolic disorders.116,124,125

2.4 Ontogenetic diversity of
tissue-resident macrophages

Another significant paradigm shift in macrophage biol-
ogy has been the discovery of the ontogenetic diversity
of tissue-resident macrophages (TrMΦ).126,127 Contrary
to the traditional view that all tissue macrophages are
derived from circulating monocytes, recent fate mapping
studies have revealed that many TrMΦ are established
during embryonic development and maintain themselves
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through local proliferation, independent of adult mono-
cyte input.128,129 For example, microglia, the resident
macrophages of the central nervous system, have been
shown to originate from yolk sac-derived progenitors
that seed the brain early in embryonic development.130
Similarly, Kupffer cells, the resident macrophages of
the liver, are derived from a combination of yolk sac
and fetal liver progenitors.131 The ontogenetic origin
of TrMΦ has important implications for their function
and response to environmental challenges. Embryoni-
cally derived macrophages have been shown to possess
unique transcriptional and epigenetic profiles compared
with their monocyte-derived counterparts, which may
confer distinct functional properties.132,133 The discovery
of the ontogenetic diversity of TrMΦ has also prompted
a reevaluation of the contribution of monocyte-derived
macrophages to tissue homeostasis and inflammation.
While monocyte-derived macrophages play a crucial role
in the response to injury and infection, their contribution
to the maintenance of TrMΦ populations appears context
dependent. It may vary across different organs and disease
states.134,135

2.5 Trained immunity: long-term
reprogramming of macrophages

In addition to short-term plasticity, macrophages
can undergo long-term functional reprogramming in
response to microbial stimuli, known as trained innate
immunity.136,137 This process involves epigenetic and
metabolic changes that enhance the responsiveness
of macrophages to subsequent challenges, providing
a form of innate immune memory.138,139 A landmark
study by Quintin et al.39 demonstrated that exposure
to the fungal cell wall component β-glucan induces
epigenetic modifications in human monocytes, leading
to increased production of proinflammatory cytokines
upon restimulation. This trained immunity is mediated
by changes in histone methylation, acetylation, and a
metabolic shift toward glycolysis.140,141 Subsequent studies
have shown that other microbial stimuli, such as the
bacillus Calmette-Guérin (BCG) vaccine and the bacterial
component muramyl dipeptide, can also induce trained
immunity in macrophages.139,142–144 Arts et al.43 identi-
fied a critical role for ATF7 in mediating the epigenetic
reprogramming of macrophages during β-glucan-induced
training. Another study by Cheng et al.42 demonstrated
that the metabolic enzyme glutamine synthetase is essen-
tial for the induction of trained immunity by β-glucan,
highlighting the link between metabolism and epigenetic
reprogramming. The discovery of trained immunity has
important implications for developing novel immunother-

apies. For example, Moorlag et al.145 showed that BCG
vaccination induces trained immunity in human mono-
cytes, enhancing their ability to eliminate the respiratory
syncytial virus. Harnessing trained immunity could be
a promising strategy for boosting host defense against
infectious diseases.
In summary, the study of macrophage plasticity has

come a long way since the initial discovery of these ver-
satile immune cells by Élie Metchnikoff in 1882. The
traditional M1/M2 classification system provided a valu-
able framework for understanding macrophage polar-
ization, but recent advances have revealed a spectrum
of activation states that extend beyond this dichotomy.
Single-cell technologies have uncovered macrophages’
remarkable heterogeneity and ability to adapt to diverse
tissue microenvironments. The functional significance of
macrophage plasticity is evident in their roles in maintain-
ing tissue homeostasis, orchestrating immune responses,
and contributing to disease pathogenesis. Tissue-specific
imprinting and trained immunity further highlight the
adaptability of macrophages to their local environment
and their capacity for long-term functional reprogram-
ming.

3 SIGNALING PATHWAYS
ORCHESTRATINGMACROPHAGE
POLARIZATION: AN INTRICATE
REGULATORY NETWORK

Macrophages are versatile innate immune cells that play
critical roles in host defense, tissue homeostasis, and
disease pathogenesis. These cells exhibit remarkable plas-
ticity, adapting their phenotype and function in response
to diverse microenvironmental signals. Macrophage polar-
ization refers to the process bywhichmacrophages acquire
distinct functional programs, classically categorized into
two main subsets: classically activated (M1) and alterna-
tively activated (M2) macrophages. M1 macrophages are
induced by Th1 cytokines, such as IFN-γ, and microbial
products, including LPS. They exhibit potent proinflam-
matory and microbicidal activities, secreting high levels
of proinflammatory cytokines (e.g., IL-1β, IL-6, IL-12,
and TNF-α) and producing reactive oxygen and nitro-
gen species. In contrast, M2 macrophages are polarized
by Th2 cytokines, such as IL-4 and IL-13, associated
with anti-inflammatory responses, tissue repair, and tumor
progression. M2 macrophages produce anti-inflammatory
cytokines (e.g., IL-10 and TGF-β) and express scavenger
receptors, mannose receptors, and ARG-1. Recent studies
have revealed that macrophage polarization is a highly
dynamic and complex process involving the integra-
tion of multiple signaling pathways. These pathways are
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triggered by the engagement of PRRs, cytokine receptors,
and other surface molecules, activating transcription fac-
tors and epigenetic regulators that shape the macrophage
transcriptional landscape. Understanding the molecu-
lar mechanisms governing macrophage polarization is
crucial for developing targeted therapies to modulate
macrophage function in various pathological conditions,
such as inflammatory diseases and cancer. This section
provides an in-depth discussion of the critical signal-
ing pathways that orchestrate macrophage polarization,
focusing on recent findings and their implications for
therapeutic interventions. We will explore the roles of
toll-like receptors (TLRs), STAT proteins, nuclear recep-
tors, miRNAs, metabolic reprogramming, and epigenetic
modifications in shaping macrophage activation states.
Furthermore, we will highlight the crosstalk between
these signaling cascades and their potential as therapeu-
tic targets for modulating macrophage function in disease
contexts.

3.1 Toll-like receptors: sentinels of
macrophage polarization

TLRs are a family of pattern recognition receptors
(PRRs) that play a pivotal role in the innate immune
response by recognizing conserved molecular patterns
associated with pathogens (PAMPs) and endogenous
danger signals (DAMPs).146,147 TLR signaling is a crucial
driver of macrophage polarization, particularly in M1
activation.148–150 Engagement of TLRs by their respective
ligands triggers the recruitment of adaptor proteins,
such as myeloid differentiation primary response 88
(MyD88) and TIR-domain-containing adapter-inducing
IFN-β (TRIF), which initiate downstream signaling
cascades.151–154 These cascades lead to the activation of
transcription factors, including nuclear factor-κB (NF-κB),
activator protein-1 (AP-1), and IFN regulatory factors
(IRFs), which drive the expression of proinflammatory
genes and shape the M1 macrophage phenotype.155–160
TLR4, the receptor for bacterial LPS, is a potent inducer
of M1 polarization.159,161 Upon LPS recognition, TLR4
activates both MyD88-dependent and TRIF-dependent
pathways, producing proinflammatory cytokines and
type I IFNs, respectively.162,163 The MyD88-dependent
pathway involves the activation of NF-κB and mitogen-
activated protein kinases (MAPKs), such as p38, JNK, and
ERK, which promote the expression of proinflammatory
genes.164–166 The TRIF-dependent pathway, on the other
hand, activates IRF3 and IRF7, leading to the produc-
tion of type I IFNs and the induction of IFN-stimulated
genes.167–169 Other TLRs, such as TLR2 (which recognizes
bacterial lipoproteins) and TLR3 (which detects viral

double-stranded RNA), also contribute to macrophage
polarization. TLR2 signaling predominantly activates
NF-κB and MAPKs, driving M1 polarization, while TLR3
activation leads to the production of type I IFNs and
proinflammatory cytokines via the TRIF-dependent
pathway.170–172 Recent studies have revealed that TLR
signaling can also modulate M2 polarization. For instance,
activation of TLR2 and TLR4 has been shown to enhance
the expression of M2 markers, such as ARG-1 and Ym1, in
the presence of IL-4.150,173 This suggests that TLR signaling
can fine-tune macrophage polarization depending on the
microenvironmental context and the presence of other
polarizing stimuli. Targeting TLR signaling pathways
has emerged as a promising therapeutic strategy for
modulating macrophage polarization in various disease
settings. For example, inhibition of TLR4 signaling has
been shown to attenuate M1 polarization and promote
M2-like phenotypes in models of inflammatory diseases,
such as rheumatoid arthritis and inflammatory bowel
disease.174–176 Conversely, activation of TLR3 signaling
has been explored to boost antitumor immunity by pro-
moting M1 polarization in tumor-associated macrophages
(TAMs).177,178

3.2 STAT signaling: a key regulator of
macrophage polarization

STAT proteins are transcription factors that play crit-
ical roles in cytokine signaling and macrophage
polarization.179 Different STAT proteins are activated
by specific cytokines and regulate distinct aspects of
macrophage function, with STAT1 and STAT6 being
particularly important for M1 and M2 polarization,
respectively.180 STAT1 is activated by IFN-γ, a potent
inducer of M1 polarization.181,182 Upon IFN-γ binding to
its receptor, Janus kinases (JAKs) are activated, leading to
the phosphorylation and dimerization of STAT1. Activated
STAT1 dimers translocate to the nucleus, where they
bind to gamma-activated sequences in the promoters
of target genes, driving the expression of proinflamma-
tory and microbicidal factors, such as inducible iNOS
and IL-12.182,183 In contrast, STAT6 is activated by the
Th2 cytokines IL-4 and IL-13, critical drivers of M2
polarization.184,185 Engagement of IL-4 or IL-13 with
their respective receptors leads to the activation of JAKs
and the phosphorylation of STAT6. Phosphorylated
STAT6 dimers translocate to the nucleus and bind to
specific DNA sequences, promoting the expression of
M2-associated genes, such as ARG-1, mannose receptor
(CD206), and resistin-like molecule-α (FIZZ1).185,186 The
balance between STAT1 and STAT6 activation is a critical
determinant of macrophage polarization, with the relative
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abundance of IFN-γ and IL-4/IL-13 in the microenviron-
ment playing a key role.187,188 Interestingly, STAT1 and
STAT6 have been shown to antagonize each other’s func-
tions, with STAT1 activation suppressing M2 polarization
and STAT6 activation inhibiting M1 responses.189,190 This
antagonism highlights the complex interplay between sig-
naling pathways in shaping macrophage activation states.
Targeting STAT signaling pathways has emerged as a
potential therapeutic strategy for modulating macrophage
polarization in various disease contexts. For example,
inhibition of STAT1 signaling has been explored to
attenuate M1 polarization and promote tissue repair in
models of inflammatory diseases, such as multiple scle-
rosis and inflammatory bowel disease.189,191 Conversely,
activation of STAT6 signaling has been investigated as
a potential approach to promote M2 polarization and
resolve inflammation in conditions such as obesity and
atherosclerosis.192,193

3.3 Nuclear receptors: transcriptional
regulators of macrophage polarization

Nuclear receptors are a family of ligand-activated tran-
scription factors that regulate macrophage polarization
and function.194 Two nuclear receptors, peroxisome
proliferator-activated receptor-γ (PPARγ) and liver X
receptors (LXRs), have been particularly implicated
in modulating macrophage activation states. PPARγ
is a master regulator of M2 polarization, promoting
the expression of anti-inflammatory and tissue repair
genes.195 Activation of PPARγ by endogenous ligands,
such as polyunsaturated fatty acids and eicosanoids, or
synthetic agonists, such as thiazolidinediones, leads to the
formation of heterodimers with retinoid X receptors.196
These heterodimers bind to specific DNA sequences called
PPAR response elements in the promoters of target genes,
driving the expression of M2-associated factors, such as
ARG-1, CD206, and IL-10.197 PPARγ activation has been
shown to antagonize M1 polarization by inhibiting the
activity of proinflammatory transcription factors, such as
NF-κB and AP-1.198 This antagonism is mediated through
various mechanisms, including direct protein–protein
interactions, competition for coactivators, and induction
of anti-inflammatory genes. Consequently, PPARγ ago-
nists have been explored as potential therapeutic agents
for modulating macrophage polarization in inflammatory
diseases, such as atherosclerosis, obesity, and insulin
resistance.198–200 LXRs, including LXRα and LXRβ, are
another nuclear receptor class regulating macrophage
polarization and function. LXRs are activated by oxys-
terols and oxidized cholesterol derivatives and play critical
roles in lipid metabolism and inflammation. Activation of

LXRs has been shown to promote an anti-inflammatory
M2-like phenotype in macrophages, characterized by
increased expression of genes involved in lipid efflux,
such as ATP-binding cassette transporters A1 and G1, and
reduced production of proinflammatory cytokines.201,202
LXR agonists have demonstrated anti-inflammatory and
immunomodulatory effects in various disease models,
including atherosclerosis, Alzheimer’s, and autoimmune
disorders.203,204 These effects are mediated, in part, by the
ability of LXRs to inhibit NF-κB signaling and promote
the resolution of inflammation.205 As such, targeting LXR
signaling has emerged as a potential therapeutic strategy
for modulating macrophage polarization and function in
inflammatory diseases.206

3.4 MicroRNAs: posttranscriptional
regulators of macrophage polarization

miRNAs are small noncoding RNAs that regulate gene
expression at the posttranscriptional level by binding to
complementary sequences in the 3′ untranslated regions
of target mRNAs, leading to their degradation or transla-
tional repression.207–209 Evidence suggests that miRNAs
play crucial roles in regulating macrophage polarization
and function. Several miRNAs have been identified as
key regulators of M1 polarization, including miR-155,
miR-125b, and miR-146a.210–212 miR-155 is upregulated in
M1 macrophages and promotes the expression of proin-
flammatory genes by targeting negative regulators of
NF-κB signaling, such as suppressor of cytokine signal-
ing 1 (SOCS1) and Src homology 2 domain-containing
inositol-5-phosphatase 1.213,214 miR-125b, on the other
hand, inhibits M1 polarization by targeting the transcrip-
tion factor IRF4, which is involved in the induction of
proinflammatory cytokines.215 miR-146a acts as a neg-
ative feedback regulator of M1 responses by targeting
key components of the NF-κB signaling pathway, such
as IL-1 receptor-associated kinase 1 and TNF receptor-
associated factor 6.216 Similarly, several miRNAs have
been implicated in regulating M2 polarization, includ-
ing miR-21, miR-124, and miR-223.217 miR-21 promotes
M2 polarization by targeting programmed cell death
4 (PDCD4), a negative regulator of IL-10 production.
miR-124 is upregulated in M2 macrophages and pro-
motes the expression of M2-associated genes, such as
ARG-1 and FIZZ1, by targeting the transcription fac-
tor CCAAT/enhancer-binding protein-α.218 miR-223 has
been shown to promote M2 polarization by targeting
Pknox1, a transcription factor that suppresses the expres-
sion of M2-associated genes.219,220 The therapeutic poten-
tial of targeting miRNAs to modulate macrophage polar-
ization has been explored in various disease models.
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For example, inhibition of miR-155 has been shown to
attenuate M1 polarization and promote M2-like phe-
notypes in models of inflammatory diseases, such as
rheumatoid arthritis and.221,222 Conversely, overexpression
of miR-21 or miR-124 has been investigated to promote M2
polarization and resolve inflammation in conditions such
as sepsis and spinal cord injury.223

3.5 Metabolic regulation of macrophage
polarization

Macrophage polarization is closely linked to metabolic
reprogramming, with distinct metabolic profiles associ-
ated with M1 and M2 phenotypes.5,224,225 M1 macrophages
rely on glycolysis and the pentose phosphate pathway
to meet their energy demands and support their proin-
flammatory functions.226 In contrast, M2 macrophages
primarily utilize oxidative phosphorylation and fatty
acid oxidation for energy production.227 The mecha-
nistic target of the rapamycin (mTOR) pathway is a
central regulator of macrophage metabolism and polar-
ization. mTOR complex 1 (mTORC1) is activated in
M1 macrophages and promotes glycolysis through the
induction of hypoxia-inducible factor-1α (HIF-1α) and
the expression of glycolytic enzymes.228–231 Inhibition
of mTORC1 by rapamycin or genetic deletion of its
component Raptor skews macrophages toward an M2
phenotype.232 Adenosine monophosphate-activated pro-
tein kinase (AMPK), a key energy sensor, is crucial in reg-
ulatingmacrophage polarization.233 AMPK activation pro-
motesM2 polarization by inhibitingmTORC1 and enhanc-
ing oxidative metabolism.234,235 Metformin, an AMPK
activator, has been shown to promote M2 polarization
and alleviate inflammatory responses in various disease
models.236,237 Recent studies have also highlighted the role
of lipid metabolism inmacrophage polarization. Fatty acid
synthesis is upregulated in M1 macrophages, while fatty
acid oxidation is associated with M2 polarization.238,239
PPARs, particularly PPARγ and PPARδ, are key regulators
of lipidmetabolismandhave been implicated in promoting
M2 polarization.240

3.6 Epigenetic regulation of
macrophage polarization

Epigenetic modifications, such as DNA methylation
and histone modifications, are crucial in regulating
macrophage polarization by modulating the accessibil-
ity of polarization-associated genes.4,240 M1 and M2
macrophages exhibit distinct epigenetic signatures con-
tributing to their phenotypic stability and plasticity. His-

tone deacetylases (HDACs) have emerged as essential reg-
ulators ofmacrophage polarization.241,242 HDAC3has been
shown to promote M1 polarization by deacetylating and
activating NF-κB, while its inhibition skews macrophages
toward an M2 phenotype.243–245 In contrast, HDAC4 and
HDAC5 have been implicated in promoting M2 polar-
ization through the deacetylation of STAT6.246–249 DNA
methylation also plays a role in macrophage polariza-
tion. The DNAmethyltransferase DNMT3b is upregulated
in M1 macrophages and mediates the silencing of M2-
associated genes.250,251 Conversely, the demethylase TET2
promotes M2 polarization by demethylating and activat-
ing M2-associated genes.252 Noncoding RNAs, such as
miRNAs and long noncoding RNAs (lncRNAs), have also
emerged as critical epigenetic regulators of macrophage
polarization.253 For example, miR-21 promotes M1 polar-
ization by targeting the anti-inflammatory cytokine IL-10,
while miR-146a promotes M2 polarization by inhibit-
ing NF-κB signaling.216,254 LncRNAs, such as lncRNA-
Cox2 and lncRNA-Mirt2, have been shown to regulate
macrophage polarization by modulating the expression of
polarization-associated genes255,256 (Table 2).

3.7 Polarization of macrophages in
some pathological processes

Macrophage polarization is crucial in various physiolog-
ical and pathological processes, including host defense,
tissue homeostasis, inflammatory diseases, and can-
cer. Understanding the signaling pathways that govern
macrophage polarization can provide valuable insights
into disease pathogenesis and guide the development
of targeted therapies. In inflammatory diseases, such as
rheumatoid arthritis and inflammatory bowel disease, an
imbalance between M1 and M2 macrophages contributes
to chronic inflammation and tissue damage.295–298 Target-
ing the signaling pathways that promote M1 polarization,
such as TLR and NF-κB signaling, has shown promise
in alleviating inflammatory responses in preclinical
models. Conversely, promoting M2 polarization through
activating STAT6 or PPARγ has been explored as a strategy
to resolve inflammation and promote tissue repair. In
cancer, TAMs often exhibit an M2-like phenotype and
contribute to tumor progression by promoting angiogene-
sis, immunosuppression, and metastasis.299 Targeting the
signaling pathways that drive M2 polarization in TAMs,
such as colony-stimulating factor (CSF)-1/CSF-1R and
IL-4/IL-13 signaling, has emerged as a promising ther-
apeutic approach.300,301 Reprogramming TAMs toward
an M1-like phenotype through TLR or STING signaling
activation has also shown potential in enhancing antitu-
mor immunity.302,303 In tissue regeneration and wound
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healing, M2 macrophages are crucial in promoting
tissue repair and resolving inflammation. Harnessing
the signaling pathways that promote M2 polarization,
such as IL-4/STAT6 and IL-10/STAT3 signaling, has
been explored to enhance tissue regeneration and limit
fibrosis.304–306
In summary, macrophage polarization is a dynamic

and finely tuned process orchestrated by a complex net-
work of signaling pathways. The integration of signals
from TLRs, cytokines, and metabolic pathways shapes
the functional phenotype of macrophages, allowing them
to adapt to various microenvironmental cues. Recent
advances in understanding the molecular mechanisms
governing macrophage polarization have provided valu-
able insights into the role of these cells in health and
disease. However, several challenges and opportunities
remain in the field of macrophage polarization. The
dichotomous M1/M2 classification, while applicable as
a conceptual framework, oversimplifies the spectrum of
macrophage activation states. Future studies should focus
on delineating the complex heterogeneity of macrophage
phenotypes and their functional implications in specific
tissue contexts. Moreover, the crosstalk between signal-
ing pathways and the influence of the tissue microen-
vironment on macrophage polarization warrants further
investigation. Integrating multiomics approaches, such as
transcriptomics, proteomics, and metabolomics, can pro-
vide a comprehensive understanding of the regulatory
networks governing macrophage polarization. Translating
the knowledge of macrophage polarization signaling into
clinical applications remains a major challenge. Devel-
oping targeted therapies that modulate specific signaling
pathways in macrophages while minimizing off-target
effects is crucial. Nanoparticle-based drug delivery sys-
tems and engineered exosomes have shown promise in
selectively targeting macrophages and modulating their
polarization state.

4 MACROPHAGES: ORCHESTRATORS
OF TISSUE REPAIR AND REGENERATION

Tissue injury triggers a highly coordinated cascade of
events aimed at restoring tissue integrity and function.
At the forefront of this intricate process are macrophages,
versatile immune cells that exhibit remarkable plastic-
ity and functional diversity. These cells play pivotal
roles throughout the distinct phases of tissue repair and
regeneration, seamlessly transitioning between proinflam-
matory and anti-inflammatory phenotypes to facilitate
the progression from initial injury to complete tissue
restoration.

4.1 The inflammatory phase: M1
macrophages as first responders

4.1.1 Initiation of the inflammatory
response

The inflammatory phase is initiated by recognizing
DAMPs and PAMPs by PRRs on macrophages and other
immune cells.307,308 This recognition triggers a rapid phe-
notypic transformation of macrophages from a resting
state to an activated, proinflammatory state, known as the
M1 phenotype. The activation of M1 macrophages is medi-
ated by a diverse array of PRRs, including TLRs, NLRs, and
RLRs.309,310 TLRs, such as TLR4 andTLR2, are particularly
crucial in this process, initiating signaling cascades that
converge on the activation of transcription factors like NF-
κB and AP-1, driving the expression of proinflammatory
genes.309,311 Upon activation,M1macrophages rapidly pro-
duce and secrete various proinflammatory cytokines and
chemokines, including IL-1β, IL-6, IL-12, IL-23, and TNF-
α.22,312,313 These mediators orchestrate the inflammatory
response, recruiting additional immune cells to the injury
site and amplifying the inflammatory cascade.

4.1.2 Pathogen clearance and antimicrobial
effector mechanisms

During the inflammatory phase, a primary function of
M1 macrophages is the clearance of pathogens through
various antimicrobial effector mechanisms. Phagocytosis,
the process by which macrophages engulf and internal-
ize pathogens or cellular debris, is a critical component
of the innate immune response.314–316 M1 macrophages
express receptors such as Fc and complement recep-
tors, facilitating the recognition and binding of opsonized
pathogens for efficient phagocytosis.317,318 Once internal-
ized, pathogens are subjected to a range of intracellular
killing mechanisms within the phagolysosome, a special-
ized compartment formed by the fusion of the phagosome
with lysosomes. These mechanisms include: (a) ROS pro-
duction: M1 macrophages generate a potent oxidative
burst through the activity of NADPH oxidase, produc-
ing superoxide radicals and other ROS that can directly
damage and kill pathogens.309,311 (b) NO production: iNOS
in M1 macrophages catalyzes the production of NO,
a highly reactive free radical that can directly kill or
inhibit the growth of pathogens.319–321 (c) Antimicrobial
peptides and enzymes: M1 macrophages produce antimi-
crobial peptides, such as defensins and cathelicidins,
and lysosomal enzymes, like cathepsins and lysozymes,
which can disrupt and degrade microbial cell walls and
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membranes.322–324 (d) Acidification: The phagolysosome
provides an acidic environment, with a pH ranging from
4.5 to 5, which can directly inhibit the growth and sur-
vival of many pathogens.325,326 In addition to intracellular
killing mechanisms, M1 macrophages employ extracellu-
lar strategies to combat pathogens, such as neutrophil
extracellular trap formation, antimicrobial peptide and
enzyme secretion, and cytokine and chemokine produc-
tion to recruit and activate additional immune cells.327–330

4.1.3 Debris removal and tissue remodeling

M1 macrophages are crucial in removing cellular debris
and initiating tissue remodeling during the inflammatory
phase.331 They are essential for the clearance of apoptotic
cells, a process known as efferocytosis, which prevents
the release of potentially harmful intracellular contents
and promotes the resolution of inflammation.314,332 Fur-
thermore, M1 macrophages initiate the remodeling of
the extracellular matrix (ECM) by producing proteolytic
enzymes, such as MMPs, and cytokines that regulate ECM
turnover.333 This ECM degradation facilitates the removal
of damaged or necrotic tissue and creates space for the
subsequent influx of new cells and the deposition of a pro-
visional ECM.334,335 M1macrophages also contribute to the
initiation of angiogenesis, the formation of new blood ves-
sels, by producing proangiogenic factors like VEGF, bFGF,
and TNF-α.336,337 These factors stimulate endothelial cell
proliferation, migration, and the assembly of functional
vascular structures (Figure 1).

4.2 The proliferation and remodeling
phase: M2 macrophages facilitate tissue
regeneration

4.2.1 Anti-inflammatory signaling and
resolution of inflammation

Following the initial inflammatory phase, the tissue repair
process transitions into the proliferative and remodeling
phases, characterized by the resolution of inflammation,
angiogenesis, and ECM deposition and remodeling.62,68
During this stage, M2 macrophages, also known as alter-
natively activated or anti-inflammatorymacrophages, play
a crucial role in orchestrating these processes and facili-
tating tissue regeneration. One of the critical functions of
M2 macrophages is to promote the resolution of inflam-
mation and create an environment conducive to tissue
repair. They achieve this through the production of var-
ious anti-inflammatory mediators and the suppression
of proinflammatory pathways. M2 macrophages secrete

anti-inflammatory cytokines that counteract the proin-
flammatory effects of M1 macrophages and other immune
cells. The primary anti-inflammatory cytokine produced
by M2 macrophages is IL-10, which has potent immuno-
suppressive properties.338,339 IL-10 inhibits the production
of proinflammatory cytokines, such as TNF-α, IL-1β, and
IL-6, by M1 macrophages and other immune cells and
downregulates the expression of MHC class II molecules
and costimulatory molecules on antigen-presenting cells,
thereby suppressing the activation and proliferation of T
cells.340–342 In addition to IL-10, M2 macrophages pro-
duce TGF-β, which has anti-inflammatory and immuno-
suppressive effects.343 TGF-β inhibits the activation and
proliferation of T cells, suppresses the production of proin-
flammatory cytokines, and promotes the differentiation of
regulatory T cells, which play a crucial role in maintain-
ing immune homeostasis and resolving inflammation.344
M2 macrophages employ various mechanisms to sup-
press proinflammatory signaling pathways and attenuate
the inflammatory response. One key mechanism is the
upregulation of negative regulators of inflammation, such
as SOCS proteins and A20 (TNFAIP3). SOCS proteins
inhibit the JAK–STAT signaling pathway, which produces
proinflammatory cytokines, while A20 negatively regu-
lates the NF-κB signaling pathway, a central regulator of
inflammation.345–347 Additionally, M2 macrophages pro-
duce anti-inflammatory lipid mediators, such as lipoxins,
resolvins, and protectins, which can actively suppress
proinflammatory signaling pathways and promote the
clearance of apoptotic cells and debris.348

4.2.2 Angiogenesis and vascular remodeling

M2 macrophages promote angiogenesis and vascular
remodeling during tissue repair.349,350 They secrete var-
ious proangiogenic factors that stimulate endothelial
cell proliferation, migration, and differentiation, facilitat-
ing the formation of new blood vessels. These factors
include: (a) VEGF: a potent proangiogenic factor that
induces endothelial cell proliferation, migration, and tube
formation.351,352,87 (b) bFGF: stimulates endothelial cell
proliferation and migration, as well as the production of
proteolytic enzymes that facilitate cell invasion and ECM
remodeling, essential processes for angiogenesis.353,354 (c)
Placental growth factor: a member of the VEGF family
that is crucial in promoting the recruitment and differen-
tiation of endothelial progenitor cells, contributing to the
formation of new blood vessels.355,356 (d)Angiopoietins: M2
macrophages produce angiopoietins, such as Ang-1 and
Ang-2, which regulate the maturation, stabilization, and
remodeling of newly formed blood vessels.357 In addition
to producing proangiogenic factors, M2 macrophages can
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F IGURE 1 The effects of M1 macrophages in wound healing. While early in the repair process, their inflammatory actions are essential.
Different PRRs form a complex network after being activated by corresponding signals, precisely coordinate the secretion of inflammatory
factors, and induce the phenotype of M1 macrophages, such as stimulating microbicidal, inflammatory activation, phagocytosis, cellular
burial, and other biological effects. In addition, M1 macrophages can regulate ECM degradation and initiate angiogenesis. Prolonged M1
response can lead to chronic inflammation and impaired healing. Created with BioRender.com.

directly interactwith endothelial cells and facilitate the for-
mation of new blood vessels through a process known as
vascular mimicry. This involves the physical association
of M2 macrophages with endothelial cells, forming mul-
ticellular structures resembling vascular networks.358,359
M2 macrophages express adhesion molecules and recep-
tors, such as integrin αvβ3 and the Tie2 receptor,mediating
their interaction with endothelial cells and enabling the
exchange of proangiogenic signals and the coordination of
cellular processes involved in angiogenesis. Furthermore,
M2 macrophages can transdifferentiate into endothelial-
like cells, directly contributing to forming new blood
vessels. This transdifferentiation is mediated by various
transcription factors, such as Prox1 and Coup-TFII, which
are involved in endothelial cell differentiation and vascular
development.360,361

4.2.3 Extracellular matrix remodeling and
tissue regeneration

The proliferation and remodeling phase is characterized
by the deposition and remodeling of the ECM, a com-
plex network of proteins and polysaccharides that provide
structural support and signaling cues for cell migration,
proliferation, and differentiation.362–366 M2 macrophages
play a crucial role in regulating ECM remodeling and pro-
moting tissue regeneration through the production of ECM
components, regulation of ECM-remodeling enzymes, and
modulation of fibroblast and stem cell behavior.367–370
M2 macrophages contribute to the deposition and

remodeling of the ECM by producing various ECM com-
ponents, including: (a)Collagens: M2macrophages secrete
different types of collagens, such as collagen I, III, and IV,



14 of 42 YAN et al.

which are essential for the formation of the provisional
ECM and the subsequent deposition of the mature ECM
during tissue repair.371 (b) Fibronectin: a glycoprotein that
plays a crucial role in cell adhesion, migration, and ECM
assembly. M2 macrophages produce fibronectin, which
helps create a provisionalmatrix for cellmigration andpro-
liferation during tissue repair.371 (c) Tenascin-C: an ECM
glycoprotein highly expressed during tissue repair that
promotes cell migration, proliferation, and angiogenesis.
M2 macrophages secrete tenascin-C, which modulates the
activity of various growth factors and cytokines, thereby
regulating cellular processes in tissue regeneration.372,373
(d)GAGs:M2macrophages produce variousGAGs, such as
hyaluronic acid, heparan sulfate, and chondroitin sulfate,
essential ECM components. GAGs interact with growth
factors, cytokines, and ECM proteins, modulating their
activity and regulating cellular processes in tissue repair
and regeneration.97,374 The deposition of a provisional
ECM provides a scaffold for the recruitment and organi-
zation of various cell types, including endothelial cells,
fibroblasts, and stem cells, enabling the formation of new
tissue and restoring tissue integrity.375–377 Furthermore,
the ECM components produced by M2 macrophages play
a crucial role in modulating the behavior of other cells
involved in tissue repair, such as cell migration, pro-
liferation, and differentiation, through interactions with
integrin receptors and themodulation of growth factor and
cytokine activity.
M2 macrophages modulate the activity of various ECM-

remodeling enzymes, such as MMPs and tissue TIMPs,
essential for ECM turnover and remodeling.378 During the
proliferation and remodeling phase, M2macrophages pro-
duce specific MMPs, such as MMP-2 and MMP-9, which
facilitate the breakdown of existing ECM components, cre-
ating space for the deposition of new ECM and the migra-
tion of cells involved in tissue regeneration.379,380 However,
excessive and uncontrolledMMPactivity can lead to exces-
sive ECM degradation and impair tissue repair. To main-
tain a balance between ECM degradation and deposition,
M2 macrophages also produce TIMPs, which are endoge-
nous inhibitors of MMPs. TIMPs bind to and inactivate
MMPs, regulating their proteolytic activity and prevent-
ing excessive ECM breakdown.381,382 The production of
specific MMPs and TIMPs by M2 macrophages is tightly
controlled and depends on the stage of tissue repair and
themicroenvironmental cues present. For example, during
the early stages of the proliferation and remodeling phase,
M2 macrophages may produce higher levels of MMPs to
facilitate the initial breakdown of the ECM and create
space for new tissue formation.383,384 As the tissue repair
process progresses,M2macrophagesmay shift toward pro-
ducing higher levels of TIMPs to stabilize the newly formed
ECM and promote tissue maturation.385 In addition to reg-

ulating MMPs and TIMPs, M2 macrophages modulate the
activity of other ECM-remodeling enzymes, such as lysyl
oxidases (LOXs) and transglutaminases. LOXs catalyze the
cross-linking of collagen and elastin fibers, increasing the
stability and mechanical strength of the ECM. In con-
trast, transglutaminases catalyze the formation of covalent
cross-links between ECM proteins, further contributing to
ECM stabilization and maturation386–388 (Figure 2).

4.2.4 Macrophage plasticity and phenotypic
transitions

While the M1 and M2 phenotypes represent the extremes
of the macrophage activation spectrum, it is crucial
to recognize that macrophages exhibit a remarkable
degree of plasticity, capable of adopting a wide range
of functional states along a continuum. This plasticity
allows macrophages to adapt dynamically to the chang-
ing microenvironmental cues encountered during tissue
repair and regeneration.389–391 Recent studies have sub-
divided M2 macrophages into subgroups, including M2a,
M2b, M2c, and M2d, based on their upstream activa-
tors and downstream gene expression patterns.103,104,392
For example, M2a macrophages are activated by IL-4 and
IL-13, exhibiting increased expression of IL-10, TGF-β,
and chemokines like CCL17, CCL18, and CCL22. In con-
trast, M2c macrophages are activated by glucocorticoids,
IL-10, and TGF-β and exhibit increased transcription of
IL-10, TGF-β, CCL16, and CCL18.393–395 This classifica-
tion highlights macrophages’ complex nature and ability
to modify their gene transcription profiles along a contin-
uous spectrum, especially in pathological situations. It is
important to note that the M1 and M2 phenotypes repre-
sent simplified extremes of a heterogeneous and dynamic
functional continuum rather than distinct and mutu-
ally exclusive populations. Furthermore,macrophages can
undergo phenotypic transitions in response to changing
microenvironmental signals, allowing them to adapt their
functional programs to the evolving needs of the tissue
repair process. For example, M1 macrophages may tran-
sition to an M2-like phenotype during the later stages of
tissue repair, facilitating the resolution of inflammation
and promoting tissue regeneration396–398 (Figure 3).

4.3 Macrophages in tissue-specific
repair and regeneration

While the general principles of macrophage involvement
in tissue repair and regeneration are consistent across
various organ systems, some tissue-specific nuances and
mechanisms highlight the versatility and adaptability of
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F IGURE 2 The role of M2-type macrophages in wound healing. After the inflammatory period, macrophages are polarized into the M2
phenotype, which exerts anti-inflammatory functions. In addition, the M2-type-Macrophages promote skin cell regeneration by releasing a
range of cytokines and shaping the immune microenvironment, acting as key immune cells in tissue regeneration, including epidermal
regeneration, vascularization, and ECM remodeling mediated by activated fibroblast. AREG, amphiregulin; CCL2, C-C motif chemokine
ligand 2; ECM, extracellular matrix; FGF2, fibroblast growth factor 2; IGF-1, insulin-like growth factor 1; IL-6, interleukin-6; MMPs, matrix
metalloproteinases; MMT, macrophage-myofibroblast transition; Nrf2, NF-E2-related factor 2; PDGF, platelet-derived growth factor; TGF-β1,
transforming growth factor-beta1; TIMPs, tissue inhibitor of metalloproteinases; VEGF, vascular endothelial growth factor. Created with
BioRender.com.

these cells. Here, we will briefly discuss the roles of
macrophages in the repair and regeneration of selected
tissues, including skeletal muscle, liver, heart, and skin.

4.3.1 Skeletal muscle repair and
regeneration

In skeletal muscle injury, macrophages are crucial in
coordinating the inflammatory response, promoting
myogenesis, and facilitating tissue remodeling.399–401

M1 macrophages are the first to infiltrate the injured
muscle, where they phagocytose debris and release
proinflammatory cytokines to initiate the repair
process.402,403 Subsequently, a phenotypic switch
occurs, and M2 macrophages become predominant.
These anti-inflammatory macrophages secrete factors
like IGF-1 and TGF-β that stimulate myoblast prolifer-
ation and differentiation.404–406 M2 macrophages also
produce MMPs that degrade the extracellular matrix,
allowing myoblast migration and fusion into multinu-
cleated myotubes.407 Recent studies have revealed that
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F IGURE 3 Distinctive roles of M1 and M2 in normal and pathological wound healing. M1 and M2 types of macrophages switch
according to a chronological phenotype in the wound and work together concertedly to regulate routine wound healing. Tissue repair is
completed as the four overlapping events of hemostasis, inflammation, and remodeling occur. During this process, monocytes can repair the
wound by recognizing damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Patterns
(PAMPs) and differentiate into M1-type macrophages stimulated by specific signals from the inflammatory microenvironment, producing
cytotoxic mediators (ROS, RNS), proteases (MMP, TIMPS), lipid mediators (PGE2, PAF) proinflammatory factors (TNF-α, IL-1, IL-6 IL-12,
IL-18) chemokines, phagocytosis and clearance of pathogens and tissue debris. Macrophages then polarize from the M1 to the M2 phenotype,
promoting angiogenesis, extracellular matrix (ECM) deposition, and re-epithelialization with their anti-inflammatory properties. The M1 and
M2 types of macrophages remain in unison and coordination, with excessive M1 macrophage activation leading to tissue damage and chronic
inflammation and, conversely, excessive M2 macrophage activation leading to scarring and fibrosis. Created with BioRender.com.
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macrophages can directly interact with muscle stem cells
(satellite cells) through cell–cell contacts and paracrine
signaling.408–410 These interactions regulate satellite cell
quiescence, activation, proliferation, and differentiation,
ensuring proper muscle regeneration. Furthermore,
macrophages contribute to the revascularization of the
regenerating muscle by producing proangiogenic fac-
tors like VEGF and promoting the formation of new
blood vessels.87,411 This process is essential for delivering
nutrients and oxygen to the newly formed muscle fibers.

4.3.2 Liver regeneration

The liver has a remarkable capacity for regeneration, and
macrophages play a pivotal role in this process.412 Follow-
ing partial hepatectomy or liver injury, Kupffer cells (liver-
resident macrophages) and infiltrating monocyte-derived
macrophages orchestrate the regenerative response.413–415
Initially, M1 macrophages promote hepatocyte prolifer-
ation by producing TNF-α and IL-6. They also phago-
cytose debris and apoptotic cells, creating space for the
regenerating liver tissue.416–418 As regeneration progresses,
M2 macrophages dominate and secrete factors like Wnt
proteins, EGF, and MMPs that support hepatocyte pro-
liferation, migration, and matrix remodeling.419–421 M2
macrophages also produce anti-inflammatory cytokines
like IL-10 to resolve inflammation and prevent excessive
tissue damage.416,422 Recent studies have highlighted the
importance of macrophage–hepatocyte crosstalk in regu-
lating liver regeneration. Macrophages respond to signals
from hepatocytes andmodulate their phenotype and func-
tion accordingly, creating a feedback loop that fine-tunes
the regenerative process.423,424

4.3.3 Cardiac repair and regeneration

While the adult mammalian heart has limited regener-
ative capacity, macrophages play a crucial role in reg-
ulating the inflammatory response and facilitating car-
diac repair following myocardial infarction (MI).425,426
After MI, M1 macrophages infiltrate the infarcted area
and initiate the inflammatory response by producing
proinflammatory cytokines and chemokines.427 They also
phagocytose necrotic cardiomyocytes and debris, prepar-
ing the area for subsequent repair. As inflammation
resolves, M2 macrophages become predominant and pro-
mote angiogenesis, extracellular matrix deposition, and
scar formation. They secrete factors like VEGF, TGF-β,
and PDGF that stimulate endothelial cell proliferation,
fibroblast activation, and collagen deposition.428,429 Inter-
estingly, recent studies have suggested that macrophages

may also play a role in cardiac regeneration by mod-
ulating the behavior of cardiac progenitor cells and
cardiomyocytes.430,431 M2macrophages can secrete factors
like oncostatin M and IL-33 that promote cardiomyocyte
proliferation and survival, potentially contributing to new
cardiac muscle.432,433 However, excessive inflammation
and prolonged M1 macrophage activation can lead to
adverse cardiac remodeling and heart failure.434,435 There-
fore, modulating macrophage phenotypes and functions
may represent a therapeutic strategy for improving cardiac
repair and regeneration.

4.3.4 Skin wound healing

Macrophages are essential for proper skin wound healing,
involving inflammation, tissue formation, and remodeling.
During the inflammatory phase, M1 macrophages infil-
trate the wound site and phagocytose pathogens, debris,
and apoptotic cells. They also release proinflammatory
cytokines and chemokines to recruit additional immune
cells and initiate the repair process.1,2 As the inflammatory
phase resolves, M2 macrophages become predominant
and promote tissue formation and remodeling.63 They
secrete growth factors like VEGF, TGF-β, and PDGF
that stimulate angiogenesis, keratinocyte migration and
proliferation, and extracellular matrix deposition.436 M2
macrophages also play a role in wound contraction and
scar formation by producing factors that activate fibrob-
lasts and promote collagen deposition.437–439 Addition-
ally, they secrete anti-inflammatory cytokines like IL-10
to resolve inflammation and prevent excessive tissue
damage.440 Recent studies have highlighted the impor-
tance of macrophage-keratinocyte crosstalk in regulating
skinwound healing.441,442 Macrophages respond to signals
from keratinocytes, modulate their phenotype, and func-
tion accordingly, creating a feedback loop that fine-tunes
the repair process.

4.4 Macrophage dynamics in chronic
wounds

Chronic wounds, characterized by their persistent inflam-
matory state and impaired healing, pose a significant
challenge in clinical settings. Among the various types of
chronicwounds, diabetic wounds stand out as a significant
concern due to their increasing prevalence and the unique
microenvironment that hinders the healing process.443
In recent years, the role of macrophages in the patho-
genesis and resolution of diabetic wounds has garnered
significant attention.62,444 This section delves into the
complex interplay between macrophages and the diabetic
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wound microenvironment, highlighting the mechanisms
that influence macrophage phenotype and function and
exploring potential therapeutic strategies targeting these
interactions.
Diabetic wounds, particularly diabetic foot ulcers, are

a common and severe complication of diabetes mellitus.
The global prevalence of diabetic foot ulcers is estimated
to be 6.3%, with a lifetime incidence of up to 25% among
diabetic patients.445,446 These wounds are characterized
by a prolonged inflammatory phase, impaired angiogene-
sis, and delayed re-epithelialization, leading to a chronic
nonhealing state. The unique microenvironment of dia-
betic wounds, shaped by hyperglycemia, oxidative stress,
and the accumulation of advanced glycation end products
(AGEs), significantly influences the behavior and function
of macrophages, which are critical players in the wound
healing process.447,448

4.4.1 The influence of the diabetic wound
microenvironment on macrophage phenotype

In diabetic wounds, the local microenvironment is skewed
toward factors promoting a persistent M1 phenotype, lead-
ing to chronic inflammation and impaired healing. High
glucose levels, a hallmark of diabetes, have been shown
to directly influence macrophage polarization.449 In vitro,
studies have demonstrated that exposure to high glucose
concentrations enhances the expression of proinflamma-
tory cytokines, such as TNF-α and IL-1β, in macrophages
while suppressing the expression of anti-inflammatory
markers, such as IL-10 and ARG-1.450,451 This shift toward
anM1 phenotype is mediated through the activation of sig-
naling pathways, including NF-κB and MAPK, which are
known to regulate inflammatory responses.452–454
Oxidative stress, another key feature of the diabetic

woundmicroenvironment, also plays a crucial role inmod-
ulating macrophage phenotype. ROS, such as superoxide
and hydrogen peroxide, are elevated in diabetic wounds
due to hyperglycemia-induced mitochondrial dysfunction
and the activation of NADPH oxidase.455,456 Excessive ROS
levels contribute to the persistent activation of proinflam-
matory signaling cascades, such as the NF-κB pathway,
in macrophages.452,457 Moreover, ROS can directly dam-
agemacrophages, impairing their phagocytic function and
ability to transition toward an M2 phenotype, which is
essential for wound resolution.54,458
AGEs, formed by the nonenzymatic glycation of proteins

and lipids under hyperglycemic conditions, accumulate
in the diabetic wound bed and contribute to impaired
healing.459,460 AGEs interact with their receptor (RAGE)
on macrophages, triggering proinflammatory signaling
pathways, such as NF-κB and MAPK, and inducing the

production of ROS and proinflammatory cytokines.461–463
The AGE–RAGE interaction also impairs macrophage
efferocytosis, a process critical for the clearance of apop-
totic cells and the resolution of inflammation.464 Conse-
quently, the accumulation of AGEs in diabetic wounds
perpetuates a state of chronic inflammation and hinders
the transition of macrophages toward an M2 phenotype.

4.4.2 Mechanisms underlying the effects of
glucose, ROS, and AGEs on macrophages

The mechanisms by which high glucose, ROS, and AGEs
influence macrophage function in diabetic wounds are
complex andmultifaceted. High glucose levels can directly
alter macrophage metabolism, shifting it toward a more
glycolytic phenotype associated with the M1 polariza-
tion state.96,465 This metabolic reprogramming is mediated
through the activation of HIF-1α and the upregulation
of glycolytic enzymes, such as hexokinase and pyruvate
kinase466–468 The increased glycolytic flux in macrophages
promotes the production of proinflammatory cytokines
and impairs their ability to engage in oxidative phospho-
rylation, which is necessary for the M2 phenotype.
Oxidative stress, driven by elevated ROS levels, con-

tributes to the persistent activation of redox-sensitive
transcription factors, such as NF-κB and AP-1, in
macrophages.469,470 These transcription factors regu-
late the expression of proinflammatory genes, including
TNF-α, IL-1β, and IL-6, perpetuating the inflammatory
response in diabetic wounds. ROS can also directly
damage macrophages by inducing lipid peroxidation,
protein carbonylation, and DNA damage, impairing their
function and survival.471–473 Furthermore, ROS-mediated
oxidative modifications of proteins can generate new
AGEs, amplifying the AGE–RAGE signaling loop and
exacerbating inflammation.474
AGEs interact with RAGE on macrophages, trigger-

ing a cascade of signaling events that promote the M1
phenotype.475,476 The AGE–RAGE interaction activates
NF-κB and MAPK pathways, leading to the transcription
of proinflammatory genes and the production of ROS.477
Additionally, AGEs can induce epigeneticmodifications in
macrophages, such as histone acetylation andDNAmethy-
lation, which regulate gene expression in inflammation
and wound healing.478,479 For example, AGEs have been
shown to increase the acetylation of histone H3 at the
promoter regions of proinflammatory genes, such as TNF-
α and IL-1β, enhancing their transcription.480 AGEs also
impair macrophage efferocytosis by downregulating the
expression of efferocytosis receptors, such as MerTK and
CD36, and by inducing the production of “don’t eat me”
signals, such as CD47, on apoptotic cells.481,482
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4.4.3 Targeting macrophage-
microenvironment interactions for diabetic
wound treatment

Understanding the complex interactions between
macrophages and the diabetic wound microenviron-
ment provides valuable insights for developing targeted
therapeutic strategies. One promising approach is modu-
lating the ROS levels in the wound bed. Antioxidants, such
as N-acetylcysteine and vitamin E, have reduced oxidative
stress and improved wound healing in diabetic animal
models.483–485 These antioxidants scavenge ROS, attenuate
the activation of proinflammatory signaling pathways, and
promote the polarization of macrophages toward an M2
phenotype. Clinical studies have also demonstrated the
potential of topical antioxidant application in improving
diabetic wound healing, highlighting the translational
relevance of targeting ROS.486,487
Another strategy is inhibiting AGE formation and accu-

mulation of AGEs in the wound bed. Pharmacological
agents, such as aminoguanidine and pyridoxamine, have
been shown to reduce AGE formation and improve wound
healing in diabetic animal models.488,489 These com-
pounds trap reactive carbonyl intermediates and prevent
their condensation with proteins to form AGEs. Addition-
ally, targeting the AGE–RAGE signaling axis using RAGE
antagonists or soluble RAGE (sRAGE) has shown promise
in preclinical studies.490 sRAGE acts as a decoy recep-
tor, sequestering AGEs and preventing their interaction
with cell surface RAGE, thus attenuating proinflammatory
signaling in macrophages.491,492
Modulating macrophage metabolism is another poten-

tial therapeutic approach. Compounds that promote
oxidative phosphorylation and mitochondrial biogenesis,
such as resveratrol and metformin, have been shown
to skew macrophages toward an M2 phenotype and
improve wound healing in diabetic animal models.493–496
These compounds activate AMPK to promote the expres-
sion of anti-inflammatory genes and suppress glycol-
ysis. Clinical trials investigating the effects of met-
formin on diabetic wound healing have shown promising
results, with improved wound closure rates and reduced
inflammation.497
In conclusion, macrophages are versatile and dynamic

cells that play pivotal roles throughout the various tis-
sue repair and regeneration phases. Their remarkable
plasticity and ability to adapt to changing microenviron-
mental cues allow them to orchestrate various processes,
from initiating inflammation and pathogen clearance to
promoting angiogenesis, extracellular matrix remodel-
ing, and tissue regeneration. As our understanding of
macrophage biology continues to deepen, these cells hold
great promise as therapeutic targets for enhancing tissue

repair and regenerative processes in various pathological
conditions.

5 HARNESSINGMACROPHAGES:
TARGETING PATHWAYS FOR TISSUE
REPAIR AND REGENERATION

Macrophages, the versatile cells of the innate immune
system, have emerged as pivotal players in the intricate
tissue repair and regeneration process. Recent advance-
ments in regenerative medicine and molecular biology
have shed light on the critical role of macrophages in
promoting the regeneration of various tissues, including
the heart, liver, kidney, muscle, and nerves. The ability
of macrophages to adopt diverse phenotypes in response
to microenvironmental cues has made them attractive
therapeutic targets for enhancing tissue repair and regen-
eration. This section explores the current strategies for
harnessing macrophages to promote tissue repair and
regeneration, focusing on the latest research findings from
the past decade. We discuss targeting specific pathways,
such as the CSF-1/CSF-1R signaling pathway, and the
modulation of macrophage function through signaling
pathways and transcription factors. Additionally, we high-
light the potential of relay transfer and cell transplantation
of macrophages and biomaterial-based strategies for pre-
cise regulation of macrophage polarization phenotypes
(Figure 4).

5.1 Targeting the CSF-1/CSF-1R
signaling pathway

The macrophage CSF-1 and its receptor (CSF-1R) signal-
ing pathway play a crucial role in the maturation and
transformation of TrMΦ, making it an attractive target
for therapeutic498–501 interventions. Stutchfield et al.502
demonstrated that the administration of CSF1-Fc, an
exogenous form of CSF-1, enhanced the recruitment
and conversion of monocytes into protective hepatic
macrophages, facilitating liver recovery after acute injury
and partial hepatectomy. Furthermore, a systematic review
and meta-analysis by Wei et al.503 provided robust evi-
dence supporting the efficacy and safety of CSF in
accelerating wound healing. In addition to CSF-related
approaches, targeting chemokine receptors on monocytes
and macrophages has shown promise in altering their
migration patterns and impacting their function in tissue
repair.169,504 Promoting the survival of M2 macrophages,
which play an essential role in tissue repair and angiogen-
esis, represents another promising strategy for enhancing
tissue healing.
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F IGURE 4 Therapeutic strategies for wound healing targeting macrophages. There are currently the following potential therapeutic
strategies for wound healing targeting macrophages: (A) Promote monocyte recruitment to increase the number of macrophages in the
wound. (B) Promote the timely polarization of proinflammatory M1 macrophages in the wound into an anti-inflammatory and prorepair M2
phenotype. (C) Macrophages were induced to express the M2 phenotype in vitro, and the macrophages promoting repair were transplanted
into the wound tissue site. (D) The use of biosynthetic materials to precisely regulate the surface transformation of macrophages, such as
hydrogels, can promote wound repair through different substances synthesized by hydrogels or drugs supported by them. Created with
BioRender.com.

5.2 Modulating macrophage function
through signaling pathways and
transcription factors

Manipulating macrophage function by targeting specific
signaling pathways and transcription factors has emerged
as a promising therapeutic strategy for promoting tissue
repair and regeneration. The TLR9 signaling pathway has
been found to encourage macrophage M2 polarization in
various models.505 Activation of the TLR9 pathway, such
as with the agonist cobitolimod, induces a prohealing phe-
notype in macrophages, enhancing macrophage-mediated
tissue healing in conditions like ulcerative colitis.506 Tran-
scription factors, including NF-κB andMAPK, play critical
roles in macrophage activation and polarization.507,508
Inhibiting these signaling pathways has shown promis-
ing results in promoting M2 polarization and reducing
inflammation. Puerarin, a compound from traditional Chi-
nese medicine, has demonstrated the ability to inhibit
NF-κB and MAPK pathways, leading to decreased pro-
duction of inflammatory cytokines and promotion of M2
polarization in macrophages.99,509,510 Noncoding RNAs,
particularly miRNAs, have also emerged as important
macrophage polarization and activation regulators. Tar-
geting specific noncoding RNAs provides a means to

modulatemacrophage function and influence tissue repair
processes.511,512 For instance, inhibiting the pro-M1 polar-
ization molecule CRMP2 through small interfering RNA
has demonstrated reduced local inflammation and fibrosis
following MI.513

5.3 Relay transfer and cell
transplantation of macrophages

Targeting specific subpopulations ofmacrophages through
relay transfer and cell transplantation has shown great
potential for clinical treatment aimed at tissue repair and
regeneration.514 Lopes et al.515 demonstrated the efficacy
of modifying macrophages to express the M2 pheno-
type in vitro and subsequently transferring these M2
macrophages to a colitis mouse model, reducing inflam-
mation and pathological damage. Similarly, Zheng et al.516
stimulated macrophages to adopt the M2 phenotype using
IL-4 and IL-13. They transplanted these M2 macrophages
into a streptozotocin-induced diabetic mouse model, sig-
nificantly reducing damage in the islets and kidneys.
These studies highlight the potential of relay transfer
and polarized macrophage cell transplantation to pro-
mote tissue repair and regeneration. However, further
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research is needed to fully understand the mechanisms
of macrophage polarization and develop more precise and
effective strategies for modulating macrophage function
in vivo.517 This includes identifying specific markers and
signaling pathways that regulate macrophage polarization
and investigating methods to optimize the survival and
functionality of transplanted macrophages.

5.4 Biomaterial-based strategies for
precise regulation of macrophage
polarization

Recent advancements in biomaterials have enabled pre-
cise regulation of macrophage polarization phenotypes,
specifically M1/M2, leading to enhanced tissue regen-
eration and accelerated wound healing.518–523 Hydrogel-
based constructs, known for their biocompatibility, tun-
able physical properties, and drug-delivery capabilities,
have emerged as valuable tools for tissue repair.524–526
Huang et al.527 developed curcumin-based metal-organic
framework hydrogels that effectively downregulated M1
macrophage-related gene expression while upregulat-
ing anti-inflammatory gene expression, promoting the
polarization of macrophages toward the M2 pheno-
type and facilitating the regeneration of blood vessels
and nerves in chronic wounds. Henn et al.528 investi-
gated xenotransplantation-mediated activation of Trem2+
macrophages, which promoted re-epithelialization and
angiogenesis through growth factor secretion and con-
tributed to collagen remodeling by secreting MMPs.378
By designing a soft pullulan-collagen hydrogel, delivery
of Trem2+ macrophages obtained after vitamin D3 treat-
ment to the wound bed showed great potential for clinical
translation. Biomaterials offer a platform for precise mod-
ulation of macrophage function and polarization through
tailored design and incorporation of specific cues, such
as drug delivery systems or bioactive molecules.529–532
Further research is needed to optimize the design and
functionality of biomaterials to achieve better control over
macrophage polarization and ultimately improve clinical
outcomes in tissue repair and regeneration (Table 3).

5.5 Therapeutic potential and clinical
applications

The therapeutic potential of macrophages in cell-based
therapies has been demonstrated in various clinical tri-
als and preclinical studies.522,559,560 Macrophages have
outperformed stem cells in specific target diseases, show-
casing their outstanding regenerative capacity.561 Condi-
tions such as kidney disease, stroke, arterial disease, and

cancer have been targeted using macrophage-based ther-
apies. Genetic modification of macrophages, such as the
development of chimeric antigen receptor-macrophages
(CAR-M), has further expanded the potential of genet-
ically engineered macrophages for cell therapy.562–564
The use of induced pluripotent stem cell (iPSC)-derived
macrophages, macrophages loaded with nanoparticles, ex
vivo polarization and adoptive transfer of macrophages,
and surface-anchoring engineering of macrophages have
also shown promising results in preclinical studies.565–567
The therapeutic applications of macrophage CSF-1 have
been explored in various contexts, including tissue repair
after ischemia in the kidney and heart, promotion of
angiogenesis, and elimination of amyloid deposits in the
brain.568–570 CSF-1 has been shown to promote a resident-
type macrophage phenotype, making it a potential treat-
ment for tissue repair (Table 4).
In summary, macrophages play a crucial role in tissue

repair, regeneration, and fibrosis, making them attractive
targets for therapeutic interventions. The ability to harness
macrophages through various strategies, such as target-
ing specific signaling pathways, modulating macrophage
function, relay transfer and cell transplantation, and
biomaterial-based approaches, holds great promise for
enhancing tissue repair and regeneration. Future research
should further elucidate the mechanisms that instruct
macrophages to adopt specific phenotypes and identify
novel targets for therapeutic modulation. The develop-
ment of more precise and effective strategies for modu-
lating macrophage function in vivo and optimizing the
survival and functionality of transplanted macrophages
will be crucial for translating these findings into clini-
cal applications. Additionally, the potential of genetically
engineered macrophages, such as CAR-M, and using
iPSC-derived macrophages warrant further exploration.
Combining macrophage-based therapies with other ther-
apeutic modalities, such as biomaterials and drug delivery
systems, may also provide synergistic effects and improve
clinical outcomes.

6 CONCLUSION AND PROSPECTS

Macrophages are remarkably plastic cells that play pivotal
roles in tissue homeostasis, inflammation, repair, and
regeneration. The past decade has witnessed significant
advances in understanding the molecular mechanisms
governing macrophage plasticity and their functional
implications in health and disease. While providing a
helpful framework, the traditional M1/M2 classifica-
tion system has been challenged by the emergence of a
spectrum of activation states revealed by single-cell tech-
nologies. The complex interplay between tissue-specific
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TABLE 4 Clinical study on regulating macrophages to improve wound healing.

Treatment
measure Applied disease Effect on macrophages Therapeutic effect References
ON101 DFUs Decreasing inflammatory M1

macrophage activity and
enriching M2 macrophage
populations

ON101 showed significant
efficacy in diabetic ulcers lasting
6 months or larger than 5cm2

522

rhGM-CSF Deep
second-degree burn
wound

Stimulate macrophages’
maturation and rapid
recruitment, save damaged
macrophages, and accelerate
wound repair

The wound healing is
accelerated, the formation of
capillaries is accelerated, and the
scar after healing is reduced.

571

Deep
second-degree
burns of infants

It is beneficial for controlling
infection, accelerating scab
dissolution, and inhibiting
pathological scarring formation.

572

Third-degree
frostbite wound

Improves wound healing and
inflammation levels and reduces
the risk of infection

573

NPWT DFUs to be treated
with STSG

Macrophages were polarized
from M1 to M2

Increased survival of skin grafts 574

TR-987 0.1%
active gel

Wound after laser
resurfacing

Mildly increases the
proinflammatory phenotype
and initiates the wound repair
cascade

Skin quality after healing
(elastosis and wrinkling) is
significantly improved.

575

YaSP DFUs Inhibition of nitric oxide
production in M1 macrophages

Accelerated the speed of diabetic
wound healing

576

Alveofact Human suction
blister wound

The number of M1
macrophages in the wound was
decreased, and the secretion of
inflammatory cytokines was
decreased.

The speed of wound
re-epithelialization and wound
healing were accelerated.

577

Expressive
writing

Punch biopsy
wound

Langerhans cell infiltration
and duration increased, and
macrophage M1 polarization
decreased during healing.

Wound re-epithelialization and
healing were accelerated.

578

Cobitolimod Ulcerative colitis Macrophages are stimulated to
secrete IL-10 by TRL9.

Improve the dysregulation of
intestinal cytokines and excessive
inflammation

506

EGCG Skin scar Macrophage M2 polarization
increased.

Skin scar elasticity increases,
hydration increases, and blood
vessel density decreases.

579,580

MALP-2 Punch biopsy
wound

MALP-2 activates macrophages
to secrete significant growth
factors for wound healing
through TLR-2 and TLR-6.

The induced wound local
inflammation subsided 48h later.

581

Abbreviations: DFUs, diabetic foot ulcers; EGCG, epigallocatechin-3-gallate; EMD, enamel matrix protein derivative, NPWT, negative pressure wound therapy;
rhGM-CSF, recombinant human granulocyte-macrophage colony-stimulating factor; STSG, split-thickness skin graft; YaSP, Ya-Samarn-Phlae.

factors, ontogeny, and microenvironmental cues shapes
macrophages’ transcriptional and epigenetic landscape,
giving rise to a diverse array of functional phenotypes. The
signaling pathways orchestratingmacrophage polarization
have been extensively studied, with TLRs, STAT proteins,
nuclear receptors, and miRNAs emerging as key regula-
tors. The integration of these signaling cascades, along

with metabolic reprogramming and epigenetic modifica-
tions, fine-tunes macrophage responses to various stimuli.
Notably, the crosstalk between these pathways and the
influence of the tissue microenvironment on macrophage
plasticity has been increasingly recognized. The discovery
of TrMΦ with distinct ontogenies and the concept of
trained immunity have further expanded our understand-
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ing of macrophage heterogeneity and their capacity for
long-term functional reprogramming. The functional
significance of macrophage plasticity is exemplified by
their roles in tissue repair and regeneration. Macrophages
orchestrate the inflammatory response, clear cellular
debris, and promote angiogenesis, extracellular matrix
remodeling, and tissue regeneration. The dynamic transi-
tion from proinflammatory to proresolving phenotypes is
crucial for successfully executing the repair process. Dys-
regulation ofmacrophage function contributes to impaired
woundhealing, fibrosis, and chronic inflammation, under-
scoring the therapeutic potential of targeting macrophage
polarization in various pathological conditions.
Despite the significant progress in understanding

macrophage plasticity, several challenges and opportuni-
ties remain. The complex heterogeneity of macrophage
phenotypes in vivo and their functional implications in
specific tissue contexts warrant further investigation.
Developing more sophisticated computational tools and
spatial transcriptomics approaches will enable a more
comprehensive analysis of macrophage diversity and its
interactions with other cells in the tissue microenviron-
ment. Moreover, the mechanisms underlying the crosstalk
between signaling pathways and the long-term epigenetic
reprogramming of macrophages in response to environ-
mental challenges require further elucidation. Translating
the knowledge of macrophage plasticity into clinical
applications is a significant challenge and opportunity.
Targeting specific signaling pathways or transcription
factors to modulate macrophage function holds promise
for treating inflammatory diseases, fibrotic disorders,
and impaired wound healing. However, developing tar-
geted therapies that selectively modulate macrophage
polarization while minimizing off-target effects remains
a significant hurdle. Nanoparticle-based drug delivery
systems and engineered exosomes have shown potential in
delivering therapeutic agents specifically to macrophages,
but their clinical translation requires further optimization
and safety evaluation. The field of macrophage-based cell
therapies is rapidly evolving, with strategies such as adop-
tive transfer of ex vivo polarized macrophages, genetic
engineering of macrophages, and the use of iPSC-derived
macrophages showing promising results in preclinical
studies. However, these engineered macrophages’ long-
term survival, functionality, and safety in vivo need to
be carefully assessed. Combining macrophage-based
therapies with other therapeutic modalities, such as
biomaterials, growth factors, and immunomodulatory
agents, may provide synergistic effects and improve
clinical outcomes.
In conclusion, macrophage plasticity is a fundamen-

tal property that underlies their diverse functions in
tissue homeostasis, inflammation, repair, and regenera-

tion. The past decade has witnessed a paradigm shift in
understanding macrophage heterogeneity and the molec-
ular mechanisms governing their polarization. Integrating
single-cell technologies, spatial transcriptomics, and com-
putational approaches has unveiled the complex landscape
ofmacrophage activation states and their functional impli-
cations. Targeting macrophage plasticity holds immense
therapeutic potential for various diseases, from inflam-
matory disorders to tissue regeneration and cancer. How-
ever, translating these findings into clinical applications
requires a deeper understanding of the context-dependent
roles of macrophages, the development of more precise
and effective strategies for modulating their function, and
rigorous safety and efficacy evaluations. As the field of
macrophage biology continues to evolve, interdisciplinary
collaborations between immunologists, bioengineers, and
clinicians will be crucial in harnessing the power of these
versatile cells to benefit human health. With the rapid
pace of scientific discoveries and technological advance-
ments, the coming years promise to be an exciting era for
macrophage research, with the potential to revolutionize
our approach to treating diseases and promoting tissue
regeneration.
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