Received 16 October 2014
Accepted 5 November 2014

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

Keywords: crystal structure; hydrates; O$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions; benzofuran

CCDC reference: 1032887
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of ethyl (6-hydroxy-1-benzofuran-$3-y l)$ acetate sesquihydrate

G. Krishnaswamy, ${ }^{\text {a }}$ P. A. Suchetan, ${ }^{\text {a }}$ S. Sreenivasa, ${ }^{\text {a }}$ S. Naveen, ${ }^{\text {b }}$ N. K. Lokanath ${ }^{\text {c }}$ and D. B. Aruna Kumar ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, India, ${ }^{\mathbf{b}}$ Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570006 , India, and ${ }^{\text {c }}$ Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India. ${ }^{*}$ Correspondence e-mail: nirmaldb@rediffmail.com

1. Chemical context

Furan heterocycles are of interest for synthetic chemists as they possess various pharmacological and biological activities including antituberculosis (Tawari et al., 2010), anti-inflammatory (Shin et al., 2011) and antibacterial (Kirilmis et al., 2008) activity. Substituted benzofurans have found applications as fluorescent sensors (Oter et al., 2007), anti-oxidants, brightening agents and drugs. Moreover, benzofuran carboxylic acid ethyl ester also exhibits selective cytotoxicity against a tumorigenic cell line (Hayakawa et al., 2004). In view of the above facts, and as a continuation of our structural studies on benzofurans (Arunakumar, Krishnaswamy et al., 2014; Arunakumar, Desai Nivedita et al., 2014), the title compound has been synthesized, characterized by FT IR, ${ }^{1} \mathrm{H}$ NMR and LC-MS methods and its crystal structure determined.

2. Structural commentary

The title compound crystallizes as a 1.5-hydrate with one of the symmetry-independent water molecules occupying a special position of C_{2} symmetry. The molecular structure of the title compound is shown in Fig. 1. The molecule is almost planar (r.m.s. deviation for the non-H atoms $=0.021 \AA$) and the ethyl acetate fragment adopts a fully extended conformation.

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supramolecular features

Hydrogen bonds (Table 1) between two hydroxy groups and four water molecules generate a centrosymmetric $R_{6}^{6}(12)$ ring motif. The rings are fused at the position of the O5 atoms, i.e. through water molecules located at special positions. In effect, two antiparallel chains of hydrogen bonds are formed that are fused at every fourth O atom and which propagate along the crystallographic c-axis (Fig. 2). In the crystal, the components are connected into a three-dimensional network through additional hydrogen bonds between the water molecule in a general position and the ester carbonyl group. In addition to strong hydrogen bonds, weaker $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are observed between the methylene group H atoms and the benzene and furan rings (Fig. 3 and Table 1).

4. Synthesis and crystallization

2-(6-Hydroxy-1-benzofuran-3-yl)acetic acid (2.0 g, 0.010 mmol) was taken in a round-bottomed flask containing ethanol (10 mL). Concentrated sulfuric acid (1 mL) was added and the reaction mixture was refluxed for 4 h at 353 K . After completion of the reaction, the reaction mixture was poured into ice-cold water and extracted to an ethyl acetate layer. The organic layer was washed with water followed by brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated under vacuum, giving a reddish residue. The residue was purified by column chromatography using silica gel ($60-120$ mesh) and ethyl acetate/petroleum ether (2:8) as eluent, affording a colourless

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 7 / \mathrm{C} 13 / \mathrm{C} 9 / \mathrm{C} 8 / \mathrm{C} 11 / \mathrm{C} 14$ benzene ring and $C g 2$ is the centroid of the O16/C6/C10/C7/C13 furan ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots \cdot$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.82	1.88	2.692 (4)	170
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.85	1.96	2.788 (4)	164
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 5^{\text {ii }}$	0.85	2.00	2.844 (4)	174
O5-H5 . ${ }^{\text {O }} 1^{\text {iii }}$	0.85 (4)	2.09 (4)	2.870 (3)	152 (4)
C17-H17B $\cdots \mathrm{Cg} 1^{\text {iv }}$	0.97	2.68	3.485 (3)	140
$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A} \cdots \mathrm{Cg}^{\text {v }}$	0.97	2.99	3.889 (3)	154

[^0]

Figure 2
Hydrogen-bonding interactions (dashed lines) featuring a fused $R_{6}^{6}(12)$ ring motif.
crystalline product. Crystals suitable for X-ray analysis were formed by slow evaporation of the solution of the compound in ethyl acetate and petroleum ether (3:2) at room temperature. As the product had been water worked-up, water might have entered in the solid interstices during work-up.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of water molecules

Figure 3
The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines) in the title compound.

Table 2
Experimental details.

Crystal data	
Chemical formula	$2 \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	494.48
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
$a, b, c(\AA)$	29.191 (6), 7.3291 (17), 12.587 (3)
$\beta\left({ }^{\circ}\right.$)	113.074 (13)
$V\left(\mathrm{~A}^{3}\right)$	2477.4 (9)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.89
Crystal size (mm)	$0.47 \times 0.34 \times 0.26$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}, T_{\text {max }}$	0.730, 0.793
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8441, 1968, 1132
$R_{\text {int }}$	0.114
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.584
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.067, $0.224,1.06$
No. of reflections	1968
No. of parameters	168
No. of restraints	1
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.40, -0.54

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).
were located from a difference Fourier map. The H atom bound to O 5 was freely refined and those bound to O 2 had the $\mathrm{O}-\mathrm{H}$ distances restrained to 0.85 (2) \AA. The remaining $\mathrm{C} / \mathrm{O}-$ bound H atoms were fixed geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97$
and $\mathrm{O}-\mathrm{H}=0.82 \AA$) and allowed to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for methyl and hydroxy H atoms, and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Acknowledgements

The authors are thankful to the Department of Science and Technology, New Delhi, Government of India, for providing financial assistance under its DST FAST TRACK scheme [SR/FT/CS-81/2010 (G)]. The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

References

Arunakumar, D. B., Krishnaswamy, G., Sreenivasa, S., Pampa, K. J., Lokanath, N. K. \& Suchetan, P. A. (2014). Acta Cryst. E70, o87.
Arunakumar, D. B., Nivedita, R. D., Sreenivasa, S., Madan Kumar, S., Lokanath, N. K. \& Suchetan, P. A. (2014). Acta Cryst. E70, o40.
Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Hayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H., Naruto, S. \& Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 455-458.
Kirilmis, C., Ahmedzade, M., Servi, S., Koca, M., Kizirgil, A. \& Kazaz, C. (2008). Eur. J. Med. Chem. 43, 300-308.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Oter, O., Ertekin, K., Kirilmis, C., Koca, M. \& Ahmedzade, M. (2007). Sens. Actuators B Chem. 122, 450-456.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shin, J.-S., Park, S.-J., Ryu, S., Kang, H. B., Kim, T. W., Choi, J.-H., Lee, J.-Y., Cho, Y.-W. \& Lee, K.-T. (2011). Br. J. Pharm. 165, 19261940.

Tawari, N. R., Bairwa, R., Ray, M. K., Rajan, M. G. R. \& Degani, M. S. (2010). Bioorg. Med. Chem. Lett. 20, 6175-6178.

supporting information

Crystal structure of ethyl (6-hydroxy-1-benzofuran-3-yl)acetate sesquihydrate

G. Krishnaswamy, P. A. Suchetan, S. Sreenivasa, S. Naveen, N. K. Lokanath and D. B. Aruna

Kumar

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINTPlus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Ethyl (6-hydroxy-1-benzofuran-3-yl)acetate sesquihydrate
Crystal data
$2 \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=494.48$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=29.191$ (6) \AA
$b=7.3291$ (17) \AA
$c=12.587$ (3) \AA
$\beta=113.074(13)^{\circ}$
$V=2477.4$ (9) \AA^{3}
$Z=4$
$F(000)=1048$

Data collection

Bruker APEXII

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.730, T_{\text {max }}=0.793$
prism
$D_{\mathrm{x}}=1.326 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 447 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 125 reflections
$\theta=6.3-64.2^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colourless
$0.47 \times 0.34 \times 0.26 \mathrm{~mm}$

8441 measured reflections
1968 independent reflections
1132 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.114$
$\theta_{\text {max }}=64.2^{\circ}, \theta_{\text {min }}=6.3^{\circ}$
$h=-31 \rightarrow 33$
$k=-8 \rightarrow 8$
$l=-13 \rightarrow 13$

Refinement

Refinement on $F^{2} \quad$ Primary atom site location: structure-invariant
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.224$
$S=1.06$
1968 reflections
168 parameters
1 restraint
direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
w=1/[\mp@subsup{\sigma}{}{2}(\mp@subsup{F}{0}{2})+(0.1328P\mp@subsup{)}{}{2}]
    where }P=(\mp@subsup{F}{\textrm{o}}{2}+2\mp@subsup{F}{\textrm{c}}{2}\mp@subsup{}{}{2})/
(\Delta/\sigma) max }<0.00
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.40 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}
\end{aligned}
$$

Special details
Experimental. Thin-layer chromatography (TLC) was carried out on Merck pre-coated silica gel plates to monitor the progress of the reaction. The FT-IR spectra were recorded as KBr pellets using JASCO FT-IR- 4100 spectrophotometer in the range $4000-400 \mathrm{~cm}^{-1}$ at a resolution of $2 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} and DMSO-d ${ }_{6}$ on a JEOL- 400 MHz NMR instrument. Chemical shifts are reported in δ values in parts per million relative to TMS. Mass spectral data were obtained on an Agilent LC-MS column C-18 instrument.
The IR spectrum of (I) exhibits strong bands at $1686 \mathrm{~cm}^{-1}$ and $1193 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ stretchings, respectively. A single band appearing at $3340 \mathrm{~cm}^{-1}$ is due to OH group stretching. Appearance of bands in the range $3011-2907 \mathrm{~cm}^{-1}$ is due to aromatic stretching and bands in the range $2970-2815 \mathrm{~cm}^{-1}$ are due to $\mathrm{C}-\mathrm{H}$ stretching, thus confirming the presence of the saturated hydrocarbons in (I).
The ${ }^{1} \mathrm{H}$ NMR spectrum of (I) shows peaks at $\delta 9.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{OH}), 6.69(\mathrm{~s}, 1 \mathrm{H}$, furan-H), 7.35-7.33 (d, 1H, Ar-H), 6.88$6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.75-6.72(\mathrm{q}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.12-4.07\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.12-1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. The LC-MS spectrum shows the appearance of molecular ion peaks at $\mathrm{m} / \mathrm{z} 221$ and 222 values, confirming the structure of the compound.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O16	$0.74036(8)$	$0.9708(4)$	$0.7193(2)$	$0.0605(10)$
C7	$0.71590(10)$	$0.9610(4)$	$0.5264(3)$	$0.0378(10)$
C8	$0.61898(11)$	$0.8688(4)$	$0.4921(3)$	$0.0391(11)$
C9	$0.65308(11)$	$0.8957(4)$	$0.6055(3)$	$0.0448(11)$
H9	0.6444	0.8846	0.6689	0.054^{*}
C10	$0.76857(11)$	$1.0071(4)$	$0.5752(3)$	$0.0389(10)$
C11	$0.63322(12)$	$0.8851(4)$	$0.3998(3)$	$0.0458(11)$
H11	0.6097	0.8646	0.3255	0.055^{*}
C12	$0.92468(12)$	$1.1583(5)$	$0.5340(3)$	$0.0523(12)$
H12A	0.9449	1.0616	0.5824	0.063^{*}
H12B	0.9307	1.2693	0.5793	0.063^{*}
C13	$0.70057(11)$	$0.9401(4)$	$0.6160(3)$	$0.0405(11)$
C14	$0.68085(12)$	$0.9305(4)$	$0.4142(3)$	$0.0427(11)$
H14	0.6897	0.9409	0.3510	0.051^{*}
C15	$0.93746(14)$	$1.1861(6)$	$0.4312(4)$	$0.0680(15)$
H15A	0.9289	1.0786	0.3839	0.102^{*}
H15B	0.9725	1.2092	0.4564	0.102^{*}
H15C	0.9191	1.2884	0.3873	0.102^{*}
C17	$0.79811(11)$	$1.0380(4)$	$0.5048(3)$	$0.0420(11)$
H17A	0.7819	1.1334	0.4495	0.050^{*}
H17B	0.7967	0.9275	0.4612	0.050^{*}

C18	$0.85173(12)$	$1.0893(4)$	$0.5659(3)$	$0.0410(11)$
O1	$0.57017(8)$	$0.8246(4)$	$0.4691(2)$	$0.0512(9)$
H1	0.5667	0.8083	0.5301	0.077^{*}
O2	$0.54997(10)$	$0.7984(4)$	$0.6597(2)$	$0.0639(10)$
H2A	0.5687	0.7310	0.7144	0.096^{*}
H2B	0.5365	0.8790	0.6866	0.096^{*}
O3	$0.87331(9)$	$1.1106(3)$	$0.6691(2)$	$0.0586(9)$
O4	$0.87249(9)$	$1.1095(3)$	$0.4913(2)$	$0.0523(9)$
O5	0.5000	$0.9512(5)$	0.2500	$0.0598(13)$
C6	$0.77984(12)$	$1.0112(5)$	$0.6912(3)$	$0.0526(12)$
H6	0.8114	1.0388	0.7458	0.063^{*}
H5	$0.4849(19)$	$0.879(5)$	$0.194(3)$	$0.104(18)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O16	$0.0473(13)$	$0.0952(19)$	$0.0313(16)$	$-0.0166(11)$	$0.0069(14)$	$-0.0131(13)$
C7	$0.0405(15)$	$0.0324(14)$	$0.036(2)$	$0.0010(10)$	$0.0098(17)$	$0.0003(14)$
C8	$0.0393(15)$	$0.0418(16)$	$0.035(2)$	$0.0035(10)$	$0.0137(17)$	$0.0009(15)$
C9	$0.0420(16)$	$0.0557(18)$	$0.034(2)$	$0.0000(12)$	$0.0121(17)$	$-0.0065(16)$
C10	$0.0428(15)$	$0.0362(15)$	$0.036(2)$	$-0.0021(10)$	$0.0130(17)$	$-0.0033(15)$
C11	$0.0424(16)$	$0.0578(19)$	$0.028(2)$	$0.0010(12)$	$0.0038(18)$	$0.0009(16)$
C12	$0.0406(17)$	$0.060(2)$	$0.054(3)$	$-0.0104(12)$	$0.0155(19)$	$0.0029(19)$
C13	$0.0419(16)$	$0.0455(16)$	$0.029(2)$	$-0.0013(12)$	$0.0082(17)$	$-0.0069(15)$
C14	$0.0474(16)$	$0.0490(17)$	$0.029(2)$	$0.0053(12)$	$0.0125(17)$	$0.0032(15)$
C15	$0.059(2)$	$0.088(3)$	$0.064(3)$	$-0.0184(18)$	$0.032(2)$	$-0.005(2)$
C17	$0.0401(15)$	$0.0410(16)$	$0.038(2)$	$-0.0023(11)$	$0.0077(16)$	$-0.0006(15)$
C18	$0.0442(16)$	$0.0346(15)$	$0.042(2)$	$-0.0033(11)$	$0.0148(19)$	$0.0008(15)$
O1	$0.0382(11)$	$0.0702(15)$	$0.0411(15)$	$-0.0032(9)$	$0.0112(12)$	$0.0030(14)$
O2	$0.0591(15)$	$0.0818(19)$	$0.0477(17)$	$0.0184(11)$	$0.0176(14)$	$0.0097(15)$
O3	$0.0555(14)$	$0.0800(17)$	$0.0344(16)$	$-0.0188(11)$	$0.0114(14)$	$-0.0080(13)$
O4	$0.0423(12)$	$0.0624(14)$	$0.0454(16)$	$-0.0119(9)$	$0.0100(13)$	$0.0003(12)$
O5	$0.0500(18)$	$0.065(2)$	$0.053(3)$	0.000	$0.008(2)$	0.000
C6	$0.0398(17)$	$0.079(2)$	$0.040(2)$	$-0.0127(14)$	$0.0166(18)$	$-0.017(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

O16-C6	$1.364(5)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9700
$\mathrm{O} 16-\mathrm{C} 13$	$1.381(3)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9700
C7-C13	$1.375(5)$	$\mathrm{C} 14-\mathrm{H} 14$	0.9300
C7-C14	$1.399(4)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9600
C7-C10	$1.454(4)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9600
C8-O1	$1.377(4)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	0.9600
C8-C11	$1.385(6)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.496(4)$
C8-C9	$1.397(4)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	0.9700
C9-C13	$1.379(5)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	0.9700
C9—H9	0.9300	$\mathrm{C} 18-\mathrm{O} 3$	$1.211(4)$
C10-C6	$1.365(6)$	$\mathrm{C} 18-\mathrm{O} 4$	$1.309(5)$

supporting information

C10-C17	1.476 (5)
C11-C14	1.371 (6)
C11-H11	0.9300
C12-O4	1.448 (4)
C12-C15	1.494 (6)
C6-O16-C13	106.0 (3)
C13-C7-C14	117.7 (3)
C13-C7-C10	108.0 (3)
C14-C7-C10	134.2 (4)
O1-C8-C11	118.1 (3)
O1-C8-C9	120.8 (4)
C11-C8-C9	121.1 (3)
C13-C9-C8	114.7 (4)
C13-C9-H9	122.6
C8-C9-H9	122.6
C6-C10-C7	103.2 (4)
C6-C10-C17	133.3 (3)
C7-C10-C17	123.5 (3)
C14-C11-C8	122.2 (3)
C14-C11-H11	118.9
C8-C11-H11	118.9
$\mathrm{O} 4-\mathrm{C} 12-\mathrm{C} 15$	107.3 (3)
$\mathrm{O} 4-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	110.3
C15-C12-H12A	110.3
O4-C12-H12B	110.3
C15-C12-H12B	110.3
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.5
C7-C13-C9	125.9 (3)
C7-C13-O16	109.3 (3)
C9-C13-O16	124.9 (4)
O1-C8-C9-C13	-179.7 (3)
C11-C8-C9-C13	0.5 (4)
C13-C7-C10-C6	-0.6 (3)
C14-C7-C10-C6	-178.3 (3)
C13-C7-C10-C17	179.3 (3)
C14-C7-C10-C17	1.6 (5)
O1-C8-C11-C14	179.3 (3)
C9-C8-C11-C14	-0.9 (5)
C14-C7-C13-C9	-1.7 (5)
C10-C7-C13-C9	-179.9 (3)
C14-C7-C13-O16	178.4 (2)
C10-C7-C13-O16	0.2 (3)
C8-C9-C13-C7	0.8 (4)
C8-C9-C13-O16	-179.3 (3)
C6-O16-C13-C7	0.2 (3)

$\mathrm{O} 1-\mathrm{H} 1$	0.8200
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8499
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	0.8500
$\mathrm{O} 5-\mathrm{H} 5$	$0.854(19)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 11-\mathrm{C} 14-\mathrm{C} 7$	
$\mathrm{C} 11-\mathrm{C} 14-\mathrm{H} 14$	$118.4(4)$
$\mathrm{C} 7-\mathrm{C} 14-\mathrm{H} 14$	120.8
$\mathrm{C} 12-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	120.8
$\mathrm{C} 12-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	109.5
$\mathrm{H} 15 \mathrm{~A}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	109.5
$\mathrm{C} 12-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	109.5
$\mathrm{H} 15 \mathrm{~A}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	109.5
$\mathrm{H} 15 \mathrm{~B}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	109.5
$\mathrm{C} 10-\mathrm{C} 17-\mathrm{C} 18$	109.5
$\mathrm{C} 10-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	$118.0(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	107.8
$\mathrm{C} 10-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	107.8
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	107.8
$\mathrm{H} 17 \mathrm{~A}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	107.8
O3-C18-O4	107.1
O3-C18-C17	$124.2(3)$
O4-C18-C17	$125.6(4)$
C8-O1-H1	$110.2(3)$
H2A-O2-H2B	109.5
C18-O4-C12	109.5
O16-C6-C10	$118.5(3)$
O16-C6-H6	$113.5(3)$
C10-C6-H6	123.3
	123.3

123.3

-179.7 (3)
0.0 (4)
1.2 (4)
178.8 (3)
-1.7 (5)
178.5 (3)
-1.1 (5)
179.3 (2)
0.7 (5)
-179.6 (2)
-175.7 (3)
-0.6 (4)
0.7 (4)
-179.2 (3)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 7 / \mathrm{C} 13 / \mathrm{C} 9 / \mathrm{C} 8 / \mathrm{C} 11 / \mathrm{C} 14$ benzene ring and Cg 2 is the centroid of the $\mathrm{O} 16 / \mathrm{C} 6 / \mathrm{C} 10 / \mathrm{C} 7 / \mathrm{C} 13$ furan ring.

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2$	0.82	1.88	$2.692(4)$	170
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.85	1.96	$2.788(4)$	164
$\mathrm{O} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.85	2.00	$2.844(4)$	174
$\mathrm{O}^{\mathrm{i}} \mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.85(4)$	$2.09(4)$	$2.870(3)$	$152(4)$
$\mathrm{C} 17 — \mathrm{H} 17 B \cdots C g 1^{\mathrm{iv}}$	0.97	2.68	$3.485(3)$	140
$\mathrm{C} 17 — \mathrm{H} 17 A \cdots C g 2^{\mathrm{v}}$	0.97	2.99	$3.889(3)$	154

Symmetry codes: (i) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (ii) $x,-y+2, z+1 / 2$; (iii) $-x+1, y,-z+1 / 2$; (iv) $-x+1 / 2,-y+3 / 2,-z$; (v) $-x+1 / 2,-y+1 / 2,-z$.

[^0]: Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x,-y+2, z+\frac{1}{2}$; (iii) $-x+1, y,-z+\frac{1}{2}$; (iv) $-x+\frac{1}{2},-y+\frac{3}{2},-z$; (v) $-x+\frac{1}{2},-y+\frac{1}{2},-z$.

