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Industry 4.0, with the widespread use of IoT, is a significant opportunity to improve the reliability of industrial equipment through
problem detection. It is difficult to utilize a unified model to depict the working condition of devices in real-world industrial
scenarios because of the complex and dynamic relationship between devices. -e scope of this research is that it can detect
equipment defects and deploys them in a natural production environment. -e proposed research is describing an online
detectionmethod for system failures based on long short-termmemory neural networks. In recent years, deep learning technology
has taken over as the primary method for detecting faults. A neural network with a long short-term memory is used to develop an
online defect detection model. Feature extraction from sensor data is done using the curve alignment method. Based on long-term
memory neural networks, the fault detection model is built (LSTM). In the end, sliding window technology is used to identify and
fix the problem: the model’s online detection and update.-emethod’s efficacy is demonstrated by experiments based on real data
from power plant sensors.

1. Introduction

-e purpose of equipment failure detection is to help detect
equipment failures so as to arrange equipment repair and
maintenance and reduce the phenomenon of equipment
over-repair. In Industry 4.0, fault detection plays a vital role
in reducing production costs in modern industries. Fault
detection is mainly used to evaluate the health status of
equipment [1]. -e online fault detection method plays a
crucial role to detect fault in IoT-based industrial equip-
ment. In this method, sliding window technique is used to
integrate equipment failure detection and online model
updating, enabling the model to react to changes in the
condition of the equipment, enhancing accuracy of the
model, and decreasing false alarm rate. -e retrieved

characteristics are input into the defect detection model to
determine the model’s projected value.

Due to the fast growth of the Internet of -ings, nu-
merous sensors are being put on industrial equipment to
monitor its health. As a result, a defect detection model may
be built using the sensor data obtained to assess the
equipment’s probable flaws. -e usage of IoT provides a
great potential to increase the dependability of industrial
equipment by detecting problems. -e current method of
IoT can adjust to changes in the equipment’s operational
condition and increase the model’s detection performance.
-e limitation of IoT is that due to the complexity of the data
models, training is quite costly. With the advancement of
deep learning in recent years, defect detection approaches
based on deep understanding have gained popularity [2–4],
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and feature extraction is critical to this strategy. -is is
because manually selecting reliable sensor data as input
characteristics from a large number of sensors is difficult.
Additionally, because the model requires a vast quantity of
data to learn, it cannot be put directly into the model if we
compare the original feature extraction method with the
proposed method. -e method given in this study reduces
the dimension of the feature vector while keeping the
original data. It can also accurately judge the equipment’s
operating position by analyzing the equipment’s valuable
data.

Numerous academics have employed feature extraction
algorithms in recent years to extract relevant characteristics
from raw sensor data [5–8]. In high-dimensional data,
feature extraction techniques may be used to extract non-
redundant variables [9]. It can convert a collection of cor-
related datasets into a collection of mutually independent
characteristics by computing the eigenvectors of the original
input’s covariance matrix. Previously published work [10]
offered a delay correlation-based feature extraction ap-
proach for efficiently extracting features from high-di-
mensional data using delay correlation.

However, in the actual industrial production environ-
ment, the equipment is affected by various factors (external
environment and self-deterioration), and the sensor data
generated by it are also time-varying. -e predictive model
of the equipment cannot learn all the data at one time.-at is
to say, models known using historical sensor data have been
unable to predict current device state information accu-
rately. For example, large and medium-sized units in
thermal power plants are in a high-load state of long-term
operation, and equipment deterioration will reduce equip-
ment performance. Using the model trained with historical
data will increase the false alarm rate and issue incorrect
early warning information to allow professionals to conduct
inspections on power plant equipment. Overhaul increases
the cost of power plant equipment maintenance.

-e model must also react to changes in the operational
status of the power plant’s equipment over time. As a result,
this article presents an online detection approach for
equipment failures based on long short-termmemory neural
networks. Its primary contributions are as follows: a delay-
related feature extraction algorithm is used in the data
preprocessing stage to further reduce the cost of model
training; and the sliding window technology is used to
implement equipment fault detection and online model
update, allowing the model to adapt to changes in the state of
the equipment, thereby improving the model’s accuracy and
lowering its false alarm rate. -e sliding window approach
identifies the ongoing detection data stream and updates the
model by sensing the device’s condition. In this research, the
authors have used two types of sliding windows: fixation
sliding window and a dynamic sliding window.

-e present article has been planned into six sections.
Section 1 describes the introduction of the proposed re-
search. Section 2 puts light on related work, and the problem
analyses are mentioned in Section 3. Online fault detection
methods have described in Section 4. -e experiment and
evaluation has described in Section 5, and finally, Section 6

portrays the conclusion and possible future works based on
the proposed framework.

2. Related Work

2.1. Equipment Fault Diagnosis. Machine learning tech-
niques are the most often used in fault detection, ranging
from simple linear discrimination to more complicated
logistic regression and neural networks used to problem
detection in equipment [9]. -e transfer factor analysis
approach (TCA) is based on the Gaussian latent factor
model for extraction of features, on this basis, developed a
linear model for fault identification. -is is a way of com-
bining machine learning models in which the accurate
output of one model is employed to train the second model
to train a higher-precision classifier tomeet the goal of defect
detection. Gu et al. [11] used the vibration analysis method
to obtain user input features for the sensor data collected
from wind turbines. It then uses a support vector machine to
build a classification model to detect equipment failures.
Nayak et al. [12] proposed a transfer factor analysis algo-
rithm (TCA) based on the Gaussian latent factor model for
feature extraction, and this basis trained a linear classifier for
fault detection. Lang et al. [13] proposed a method of mixing
machine learning models, that is, constructing two machine
learning models simultaneously, and the correct output of
one model is used to train the other machine learning
models to train a higher-precision classifier to achieve the
purpose of fault detection. -e goal of equipment fault
detection method is to assist in detecting equipment failures
in order to schedule equipment repair and maintenance and
prevent the problem of equipment over-repair. -is method
plays an important role in reducing production costs in
modern industries.

Li et al. [14] analyzed the sensor data of the wind turbine
with professional knowledge and, after feature extraction,
uses the hyperparameter search method to train the support
vector machine model to diagnose faults. Finally, Yokouchi
and Kondo [15] introduced a single-class SVM model to
learn the boundary of the common data space by collecting
the equipment’s average data and applying it to the fault
detection of the equipment.

To a certain extent, the preceding research discusses
defect detection, but their approaches cannot be directly
applied to predictive maintenance in large-scale companies.
-is is primarily because the data volume generated by the
power plant is enormous and there is a delayed correlation
between the data from different sensors, and the operation
state of the power plant equipment changes over time, and
the above methods are incapable of responding to this
change in time. We refresh the model. -e model’s per-
formance will deteriorate with time.

2.2.OnlineDetectionofEquipmentFaults. In recent years, an
increasing number of researchers have focused on the
problem of not being able to learn all failure modes across
the equipment’s life cycle when training samples are limited
or missing, and have presented several solutions. In the

2 Computational Intelligence and Neuroscience



absence of fault samples and the difficulty to identify new
problems owing to the independence of the training and
testing phases, the author [16] presented an anomaly de-
tection and fault diagnosis approach based on online
adaptive learning. -e technique incorporates classification
and clustering algorithms, disrupting the typical mapping
between anonymous data and fault kinds. In the testing
phase of the AHr detector, samples of known kinds are
classified and instances of unknown types are grouped to-
gether. -e light-weighted deep learning model is different
from the traditional deep learning model in term to their
performance. -e most significant distinction with deep
learning and regular machine learning is its effectiveness as
information scale expands. Deep learning techniques do not
perform well if the information is limited. -e author [17]
proposed the use of an online sequence extreme learning
machine (OS-ELM) for failure identification based on signal
reconstruction, recognizing that the existing training set
does not adequately reflect all possible conditions en-
countered during the equipment declaration cycle. OS-ELM
possesses a significant capacity for learning, rapid training,
and online learning. -e implementation of an actual in-
stance indicates that the detection model based on OS-ELM
may continually learn and improve detection performance
in a developing environment. However, it is still missing a
set of decision criteria for when to invoke OS-update ELM’s
function in response to changing operating conditions. -e
author [18] suggested a unique hybrid technique for iden-
tifying chiller subsystem failures by training on average data
and using available failure training data to compensate for
the lack of accessible failure training data. -e most critical
feature variables are chosen using a hybrid feature selection
approach. By integrating an extended Kalman filter (EKF)
model and a recursive one-class support vector machine, it is
integrated into an online classification system (ROSVM).
-e deployment of an actual example shows that an OS-
ELM-based detection model can improve and enhance
detection performance and efficiency in a changing envi-
ronment. -e online sequence extreme learning machine
(OS-ELM) provides a specific capacity for learning, rapid
training, and online learning [19]. However, the approaches
outlined above do not take into account sensor datasets with
latency correlations and need specialized empirical
expertise.

3. Problem Analyses

First, the historical data are preprocessed, and the effective
feature offline training model is obtained through the delay-
related feature extraction algorithm [20]. -en, the online
detection of faulty equipment and the online update of the
model are realized using a sliding window. Finally, the fault
detection model uses the sensor data after feature extraction
as the practical input of the model to obtain the predicted
value. -e method used in this research is more accurate
than existing methods. Because the current method can
adjust to changes in the equipment’s operational condition
and increase the model’s detection performance, it also

analyzes the training effectiveness of different methods in
terms of training time. -e purpose of fault detection is to
accurately judge the equipment’s operating status by ana-
lyzing the equipment’s relevant information. First, the
definition of fault detection in this study is given as follows.

Model training using supervised learning, given a set of
data R � ((y1, x1), (y2, x2), . . ., (ym, xm)). yi is a set of input
sensor data vectors, and xi is the predicted sensor value label
during training. We train a neural network model such that

N ≈ Fund(y, x). (1)

Among them, N represents the network model, and
Fund represents the mapping relationship between y and x
learned by the network model. Given a set of data yi, we
output the predicted value x∧i according to the model N and
calculate the difference between the expected value and the
actual value:

e � x
∧
i − xi


. (2)

A threshold ε is set for judging the state of the equipment
if e≤ ε, the equipment is considered regular operation, and
vice versa.

But when the equipment runs for some time, the op-
erating state of the equipment may change over time,
making the model:

N ≠ Fund(y, x). (3)

-e proposed model is used that has been trained with
historical data, which can result in a higher percentage of
false alarms and erroneous advance warning signals, making
it difficult for specialists to conduct audits on power plant
equipment. -e cost of power plant equipment maintenance
rises as a result of overhaul.

-e model trained using historical data can no longer
accurately describe the running state of the current device.
-erefore, at this time, it is necessary to detect the running
state of the device and consider using the newly generated
sensor data to train the model to update the model pa-
rameters to adapt to the current running state of the device.

We use a real case to explain the phenomenon of
equipment state change. For example, hundreds of power
generation equipment in thermal power plants runs con-
tinuously [21]. More than 7,000 sensors are deployed on
each generator set to produce real-time sensing data to
reflect the operating status of the equipment.

Figure 1 shows the operating principle of the wind and
smoke system in a power plant, showing the actual and
model-predicted values of the primary fan motor current. In
the early stage of equipment operation, a model with better
performance has been trained based on historical sensor
data. However, as the power generation equipment operates
for a long time, it will deteriorate, and the trend of the sensor
data generated by it will also change. As a result, the previous
model’s output is difficult to represent the current state of
the equipment. As shown in addition in Figure 1, the system
will continuously issue early warning information according
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to the production of the model and the current data trend,
which increases the false alarm rate of the model. At this
point, the model itself needs to be updated.

-erefore, when the model predicts the device state, if
the model is relearned and updated in time without con-
sidering the state change of the device, the device state will be
misjudged, resulting in a decrease in the model’s accuracy
and an increase in the false alarm rate high [22].-erefore, it
is crucial to consider the change of equipment operating
state when constructing the fault detection model.

4. Online Fault Detection Methods

-e structure for the online fault detection model developed
in this article is shown in Figure 2. It is broken into three
sections: (1) feature extraction for delay correlation: pri-
marily for delay correlation between power generation
equipment, extracting features from sensor data, and con-
verting high-dimensional data to low-dimensional data [10];
(2) fault detection model: primarily using long short-term
memory neural networks, developing an equipment fault
detection model; (3) online fault detection method: pri-
marily using sliding windows, enabling online fault
monitoring.

4.1. Sliding Window. A sliding window is an algorithm that
updates the collected data in real time. -e adjacent data are
defined as a window. -e latest data are added to the sliding
window when new data are obtained, and the older data are
eliminated. As time goes on, the window continues to in-
corporate new data and discard the old data, thereby real-
izing the online detection of faults. In this study, the sliding
window consists of a fixed-size FSW (fixation sliding win-
dow) and a dynamic sliding window DSW (dynamic sliding
window), as shown in Figure 3.

Due to the delay correlation between sensors, the period
of FSW is set asΔu, andΔu is the time deviation calculated in
the curve alignment algorithm during data preprocessing,
which can ensure that in the real-time detection stage, the
data in the window can be do alignment and get useful
features as input to the model after feature extraction. -e
period of DSW is σ, σ is a variable value, and its primary
purpose is to save historical data. When the model runs well,
we increase the σ value, and then, the sliding window can

contain more system state areas, making the model pre-
diction more accurate; when the model false alarm rate is
higher than the baseline value, we decrease the σ value to
discard the relatively long history data so that the sliding
window only contains recent data for the online update of
the model to adapt to the current operating state of the
equipment.

4.2. Online Detection Method Based on Sliding Window.
In the detection process, when the data stream fills the
sliding window, data processing starts: the data in the
window are extracted and calculated by the curve alignment
feature to obtain valuable features, the extracted features are
used as the input of the fault detection model to obtain the
predicted value of the model, calculate the absolute value of
the difference between the predicted value and the measured
value of the sensor to determine whether the fault occurs,
calculate the false alarm rate of the data in the current sliding
window, and the current false alarm rate is compared with
the baseline false alarm rate, if it increases, it reduces the size
of the sliding window and reacquires data for online model
updating; otherwise, we increase the sliding window so that
the sliding window can contain more device states.

5. Experiment and Evaluation

5.1. Experimental Environment and Experimental Data.
-e experimental environment is a cluster with eight nodes;
each node is a machine with an 8-core Intel Xeon (E312xx)
CPU, 32GB memory, 1GB bandwidth, and Ethernet con-
nection. Each node runs in a virtual machine, using the
CentOS6.4 operating system and Java 1.8. With the help of
the Spark platform, the SparkMlib library can be used to run
the PCA feature extraction algorithm in a distributed
manner.

-e data used in the experiments come from accurate
sensor data from thermal power plants. Five essential types
of equipment in the smoke and wind system were selected,
and a total of 290 sensors were deployed on them, and the
data generated by the sensors were sampled every 3 minutes.
-e data collection time was from 00:00:00 on 2018-07-01 to
2020-01-31 at 23:59:59. Table 1 provides some of the datasets
in the experiments. -e fault log files are derived from the

Air outlet
Bearing

Primary Fan

Hot air inlet

Cold air inlet

Air preheater

Coal mill

Pulverized coal export

Coal inlet

Figure 1: Example of sensor flow data for the wind and smoke system [20].
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DCS log files and are used to verify the accuracy of fault
detection results.

5.2. Experimental Indicators. -is article trains a predictive
model for defect detection using deep learning techniques
and converts it to a binary classification issue by comparing
the difference between the anticipated and actual values and
a threshold. As a result, there are four possible consequences
when a problem is detected. True positive (TP) and true
negative (TN) results indicate that the classification was
right, but false positive (FP) and false negative (FN) results
indicate that the classification was erroneous.

Precision, recall, false positive rate (FPR), F1 score, and
receiver operating characteristic (ROC) curves are employed
to evaluate experimental outcomes in this research.

5.3. Experimental Setup. -e fault detection model detects
equipment anomalies and deploys them in a natural pro-
duction environment. For example, we compare our method
with the following form for detecting anomalies in power
plants.

R-model (rule model): traditional rule-based anomaly
detection methods are based on experience accumu-
lation and implemented rule-based statistical control
charts. A fault is found as soon as the sensor data exceed
the upper or lower limit.
P-model (PCA model): input the sensor data after
feature extraction by the PCA algorithm into LSTM to
detect equipment failure
SWCP model (sliding window curve registration CA-
model): use a sliding window to record the data in the
recent period, use the curve to align the data in the
window, and then use PCA for feature extraction, input
into the model for fault diagnosis, when the false alarm
rate is high. At baseline values, the model is updated to
fit the current device state.

Both the P-model and SWCP model are neural network
models based on LSTM. -e LSTM network model used in
this study is a fully connected LSTM neural network model,
which includes four hidden layers, each with 50 neurons,
and its structure is shown in Figure 4. HLi: 50 means the ith
hidden layer, and it has 50 neuron nodes.

Based on the network structure in Figure 4, all weight
parameters are uniformly initialized in the range of [−0.08,
0.08]. -e model can remember all memories in the initial
stage of training. -e initial bias value of the LSTM for-
getting gate is set to 1.0, and the input gate and the initial
value of the output gate are a random floating-point number
on the interval [0, 1]. -e network was then trained using
microbatch stochastic gradient descent with a learning rate

DSW
PSW

e0 e1 e2 en en+y ei

Figure 3: Framework of the method in this study.
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of 0.001 and a decay factor of 0.95.-emean squared error is
used as the loss function.-e model is trained for 50 epochs,
and the learning rate is multiplied by a decay factor of 0.95
for each period after ten generations. We choose 80% as the
training set and the rest as the test set.

Table 2 provides the dimensions of input feature vectors
for different devices. -e L value in the table represents the
data dimension after feature extraction, which is also the
dimension of the input vector of the neural network. Based
on the training data of the input vector in Table 2 and the
experimental environment set in Section 5.1, the initialized
LSTM network is trained to obtain the final model pa-
rameters, and the effectiveness of the proposed method is
verified on the test set.

5.4. Experimental Results and Analysis. -e findings dem-
onstrate the efficacy of the approach used in this research.
-is research uses deep learning techniques to develop a
model for detection of defects and then transforms it to a
binary classification problem by comparing the difference
between expected and actual values against a criterion. In
this study, each experiment is carried out ten times, and the
average value of the ten times results is given in Table 2.

Figure 5 with Table 3 show the accuracy of different
methods applied to other devices. -e average precision of
the rule-based approach was 0.554, and the highest precision
was 0.66. -e average precision of the P-model is 0.736, the
maximum accuracy is 0.79, the average precision of the
SWCP model is 0.79, and the utmost precision is 0.82.

Figure 6 and Table 4 show the recall rates of different
methods applied on other devices. -e rule-based approach

has an average recall of 0.488 and a maximum of 0.52. -e
average memory of the P-model is 0.807 with a maximum of
0.82; the average recall of the SWCP model is 0.862 with a
maximum of 0.88.

In addition, for the method proposed in this study, when
building the network model, this study tries to reduce the
number of hidden layers of the neural network model (3
hidden layers and 45 neurons in each layer), the trained
model, and the output prediction results. -e average
precision is 0.65, and the average recall is 0.74. When the
number of hidden layers is increased (6 hidden layers and 60
neurons in each layer), the average accuracy of the output
prediction results of the trained model is 0.791 45, and the
average recall rate is 0.856 98, which will not improve the
prediction. -e precision and recall rate of the output is
good, but the average training time is 3.4 h.

Figure 7 and Table 5 show the false positive rate of
different methods applied on other devices. -e rule-based
method has an average false positive rate of 0.44 and a
minimum of 0.416. -e average false positive rate for the
P-model approach was 0.157, with a minimum of 0.13. -e

Table 1: Experimental data table.

Equipment Number of sensors Data record Number of equipment failures
Steam turbine body 111 278400 28
Secondary fan 37 278400 21
Coal mill B 49 278400 18
Primary fan 44 278400 14
Air preheated 49 278400 12

X1

X2

XL

b

Input
layer

Hidden
layer

Output
layer

HL1 : 50 HL2 : 50 HL4 : 50

y

...

... ... ...

...

Figure 4: LSTM neural network model structure diagram [12].

Table 2: -e input feature vector L is the final experimental result.

Equipment L value
Steam turbine body 28
Secondary fan 11
Coal mill B 12
Primary fan 13
Air preheated 13
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Air preheater

Figure 5: Accuracy of different methods.
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SWCPmodel has an average false positive rate of 0.136 and a
minimum of 0.118.

Figure 8 and Table 6 show the F1 scores of different
methods applied on other devices. For example, the mean F1
score of the P-model process was 0.77 with a maximum of

0.805; the mean F1 score of the SWCPmodel was 0.82 with a
maximum of 0.84.

Since the LSTM model in this study is a binary classi-
fication model, the ROC curve is used to verify the classi-
fication effect. -e curve area of the SWCP model is more

Table 3: Accuracy of different methods.

Serial Steam turbine body Secondary fan Coal mill B Primary fan Air preheater
R-model 0.6 0.5 0.55 0.5 0.65
P-model 0.8 0.7 0.8 0.71 0.7
SWCP model 0.8 0.8 0.75 0.8 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Secondary fan
Coal mill B

Primary Fan
Air preheater

Figure 6: Recall of different methods.

Table 4: Recall of different methods.

Serial Steam turbine body Secondary fan Coal mill B Primary fan Air preheater
R-model 0.49 0.51 0.5 0.45 0.43
P-model 0.78 0.8 0.8 0.83 0.8
SWCP model 0.82 0.82 0.81 0.83 0.85

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

R-model P-model SWCP-Model

Steam turbine body
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Primary Fan
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Figure 7: False positive rate of different methods.
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significant than that of the P-model and the R-model. -e
better the classification effect, the better the fault diagnosis
effect.

-e experimental findings in Figures 5–8 show objec-
tively that predictive maintenance based on deep learning is

more successful than traditional rule-based techniques.
Additionally, as seen in Figure 7, the SWCP model suc-
cessfully minimizes the false positive rate, while Figure 8
shows the model’s overall performance, demonstrating that
the SWCP model has a better score. As a result, it is de-
termined that the strategy presented in this article con-
tributes to the enhancement of feature extraction and model
performance in applications.

Additionally, this article analyzes the training effec-
tiveness of various approaches in terms of training time. As
shown in Figure 9, we use the same training data as in
Section 5.1 to train the model on the cluster set and compare
the training times of different models.

-e average training time for the P-model is 2.412 h,
whereas the average training time for the SWCP model is
2.1 h, as shown in Figure 9 and Table 7. Our technique
requires less training time than the P-model. -is demon-
strates that the feature extraction approach employed in this
study is capable of efficiently extracting features from high-
dimensional data, hence drastically reducing the quantity of
training data and lowering the LSTM neural network’s
training cost. As a result, the strategy presented in this article
aids in the development of a lightweight defect detection
model based on LSTM neural networks.

Table 5: False positive rate of different methods.

Serial Steam turbine body Secondary fan Coal mill B Primary fan Air preheater
R-model 0.41 0.42 0.43 0.43 0.45
P-model 0.13 0.15 0.12 0.2 0.14
SWCP model 0.11 0.13 0.13 0.15 0.14
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0.8

0.82

0.84

0.86

P-model SWCP-Model

Steam turbine body
Secondary fan
Coal mill B

Primary Fan
Air preheater

Figure 8: F1 scores of different methods.

Table 6: F1 scores of different methods.

Serial Steam turbine body Secondary fan Coal mill B Primary fan Air preheater
P-model 0.745 0.743 0.802 0.765 0.761
SWCP model 0.803 0.829 0.803 0.84 0.84

0

0.5

1

1.5

2

2.5

3

3.5

4

P-model SWCP-Model

Steam turbine body
Secondary fan
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Figure 9: Training time.
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6. Conclusion

-e online detection method of equipment faults based on
the long short-term memory neural network proposed in
this study considers the changes of equipment operating
status during the online detection phase so that the model
can continuously adapt to the equipment running status
over time. -e light-weighted deep learning has numerous
advantages as well as some limitations. As such, due to the
complexity of the data structures, training is quite costly.-e
equipment’s predictive model cannot be trained all the data
at once, that is, models developed using previous sensor data
have failed to reliably anticipate current device status
information.

-emethod in this study adopts the delay-related feature
extraction method in the data preprocessing part, which
reduces the dimension of the data and reduces the cost of
model training; the sliding window technology detects the
online detection data stream, and the model is updated by
detecting the state of the device. Finally, it is verified by the
actual data analysis of the power plant. -e approach
proposed in this research helps in the creation of a light-
weight defect detection model based on LSTM neural net-
works. -e future scope of the lightweight defect detection
model method is that it will support in the detection of
equipment failures so that equipment repair and mainte-
nance can be handled and the problem of equipment over-
repair can be reduced. In addition, proposed research will be
helpful in future research studies. -e results show the ef-
fectiveness of the method in this study: (1) compared with
the original feature extraction method, the method in this
study further reduces the dimension of the feature vector
while ensuring that the original information is included; (2)
in the online detection stage of faults, it can adapt to changes
in the operating state of the equipment and improve the
detection accuracy of the model.
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