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Abstract

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic, hormonal, and
environmental influences. In Western Europe and North America, individuals of West African descent have a 3–4
fold greater incidence of SLE than Caucasians. Paradoxically, West Africans in sub-Saharan Africa appear to have a
low incidence of SLE, and some studies suggest a milder disease with less nephritis. In this study, we analyzed sera
from African American female SLE patients and four other cohorts, one with SLE and others with varying degrees of
risk for SLE in order to identify serologic factors that might correlate with risk of or protection against SLE.

Methods: Our cohorts included West African women with previous malaria infection assumed to be protected from
development of SLE, clinically unaffected sisters of SLE patients with high risk of developing SLE, healthy African
American women with intermediate risk, healthy Caucasian women with low risk of developing SLE, and women with
a diagnosis of SLE. We developed a lupus risk index (LRI) based on titers of IgM and IgG anti-double stranded DNA
antibodies and levels of C1q.

Results: The risk index was highest in SLE patients; second highest in unaffected sisters of SLE patients; third highest in
healthy African-American women and lowest in healthy Caucasian women and malaria-exposed West African women.

Conclusion: This risk index may be useful in early interventions to prevent SLE. In addition, it suggests new therapeutic
approaches for the treatment of SLE.

Background
Systemic lupus erythematosus (SLE) is a chronic sys-
temic autoimmune disease characterized by defects in B
cell tolerance leading to the production of multiple auto-
antibodies. In particular, SLE is characterized by high af-
finity IgG anti-nuclear autoantibodies including anti-
double stranded (ds) DNA antibodies.
Anti-dsDNA antibodies are found in 70% of patients, are

pathogenic and are frequently used to monitor disease activ-
ity (Pavlovic et al. 2010; Linnik et al. 2005). Published data
demonstrate a ‘preclinical’ period of disease characterized by

the presence of IgG autoantibodies with increasing titers and
number of auto- specificities heralding the onset of clinical
SLE (Deane and El-Gabalawy 2014; Arbuckle et al. 2003).
However, reports of elevated autoantibody titers in first de-
gree relatives suggest that the presence of autoantibodies
alone does not confer disease (Ramos et al. 2010).
While the etiology SLE is not known, data suggest that

susceptibility requires both a genetic predisposition and
environmental triggers. The genetic predisposition is
highlighted by the observed familial clustering of SLE
and a concordance rate of approximately 30% in identi-
cal twins. Over 50 risk alleles for SLE have been identi-
fied and disease severity and age of onset relates, in part,
to the number of risk alleles present in an individual
(Teruel and Alarcon-Riquelme 2016). Disease is 8–10
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times more prevalent in women than men and 3–4
times more prevalent in women of African descent in
Europe or North America than in Caucasian women
(Gilkeson et al. 2011). In Caribbean populations, an in-
creasing number of African genes rather than genetic
admixture is a risk factor for disease (Molokhia et al.
2003; Molokhia and McKeigue 2000). The prevalence of
SLE in West African women is not fully established, but
several studies have suggested a lower prevalence in Af-
rican countries (George and Ogunbiyi 2005; McGill and
Oyoo 2002; Molokhia et al. 2001). Moreover, disease
manifestations appear to be less severe in West African
patients, with a lower incidence of renal disease (Zomal-
heto et al. 2014). It is reasonable to assume that the gen-
etic predisposition to SLE is at least as high in West
Africans as in African-Americans and Afro-Caribbeans
and the discrepancy in disease prevalence reflects the
impact of environmental factors (Molokhia et al. 2001).
Malaria, an endemic infection in sub-Saharan Africa,

has long been suggested to mitigate the impact of SLE
(Greenwood 1968). That malaria protects against devel-
opment of SLE has been clearly demonstrated in spon-
taneously lupus-prone mice (Greenwood et al. 1970).
Because it is frequently fatal, it likely has exerted signifi-
cant pressure on the genome, resulting in the retention
of alleles that diminish the severity of infection. Several
risk alleles for SLE protect against severe malaria infec-
tion. The FcRllb risk allele for SLE (T232) leads to a
non-functional molecule which cannot move through
the plasma membrane to associate with the B cell recep-
tor (Floto et al. 2005). Decreased inhibitory function as-
sociated with this risk allele results in increased B cell
and myeloid cell activation. While this may increase risk
for SLE, it can be beneficial for a response to infection.
In humans, FcRllb T232 increases phagocytosis of P. fal-
ciparum by monocyte-derived macrophages in vitro
(Clatworthy et al. 2007). Moreover, FcRllb-deficient mice
are resistant to severe disease following infection with
Plasmodium Chabaudi (Clatworthy et al. 2007). Notably,
polymorphisms predisposing to low TNF levels protect
against cerebral malaria. Several lupus-prone strains
show reduced levels attributable to a promoter region
polymorphism in the NZB, BXSB and MRL strains.
(Jiang et al. 1999; Pritchard et al. 2000) and administer-
ing TNF to these mice can prevent the onset of SLE.
The repertoire of immunocompetent B cells develops as

a consequence of tolerance mechanisms that censor a ma-
jority of autoreactive B cells during their maturation
process. Approximately 75% of immature B cells have an
autoreactive BCR compared to 20% of naïve immunocom-
petent B cells (Hoffman et al. 2016). These B cells are crit-
ical for immune homeostasis as they produce IgM
antibodies capable of binding to and removing apoptotic
debris in a non-immunogenic fashion (Gronwall et al.

2012). Lack of these autoreactive IgM antibodies results in
uptake of apoptotic material in dendritic cells (DCs) and
DC activation (Ehrenstein et al. 2000). In NZB/W lupus-
prone mice, production of pathogenic IgG anti-dsDNA
autoantibodies coincides with diminished production of
IgM autoantibodies, and administration of IgM anti-
dsDNA autoantibodies prevents development of renal
disease in mice (Werwitzke et al. 2005).
Although malaria infection may protect against the de-

velopment of SLE in spontaneous murine models of SLE,
an association between malarial infection and autoanti-
bodies is well recognized (Daniel-Ribeiro and Zanini 2000).
Many of the autoantibodies present in malaria patients are
IgM and are not known to be pathogenic (Wozencraft et
al. 1990). The ability of IgM autoantibodies to maintain im-
mune quiescence occurs through a C1q dependent mech-
anism (Gronwall and Silverman 2014).
C1q is a complement component that is important in

clearance of apoptotic debris and promotes immune tol-
erance through regulation of immune cell differentiation
and cytokine release (Son et al. 2015). Ninety percent of
individuals with severe hereditary C1q deficiency have
SLE (Manderson et al. 2004).
We hypothesized that an enhanced ratio of IgG:IgM

anti-DNA antibodies and a diminished level of C1q would
predispose to SLE. We further hypothesized that exposure
to malaria results in increased titers of protective IgM
autoantibodies and increases in C1q that retard or prevent
onset of SLE in genetically predisposed individuals.
We, therefore, evaluated IgM and IgG anti-dsDNA anti-

body titers and assessed C1q levels in women with varying
risk for SLE based on genetic risk and malaria exposure:
African-American SLE patients (SLE); healthy Caucasian
women (CHC); healthy African-American women (AAHC);
unaffected sisters of SLE patients (SIS); and women from
Mali with a history of malaria infection (MAL). We gener-
ated a lupus risk index (LRI) based on serum IgG:IgM anti-
DNA antibody ratio and C1q level. The a priori hypothesis
was that the LRI would be lowest in CHC, then increase
through groups MAL, AAHC, SIS, and SLE, in that order.
The development of an LRI may prove useful in following
at risk individuals over time to identify those that may
profit from early intervention and diagnosed SLE patients
who might be at risk for an impending flare.

Methods
Samples
Serum samples were obtained from 40 Malian women,
(MAL) aged 18 to 65. Inclusion criteria included a
known history of malaria infection, no history of auto-
immune disease or first degree relative with autoimmune
disease and no known infection with HIV. Additional
serum samples were obtained from 51 SLE patients of
African American descent (SLE). All SLE subjects met
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1997 ACR revised criteria and were enrolled in the pro-
spective SLE cohort at the Feinstein Institute. Serum
samples from 80 healthy African American women
(AAHC), age 20 to 68, with no use of immunosuppressive
agents in the year prior, and 16 Caucasian healthy controls
(CHC), age 28 to 50, were purchased from Bioreclamatio-
nIVT. Serum from 98 unaffected sisters of SLE patients
(SIS), age 14–46, was obtained from the Feinstein Institute
SisSLE cohort. The SIS cohort included 67 Caucasian, 11
Hispanics, 7 African-Americans and 12 Asians, (one un-
known). The study was approved by the Institutional Re-
view Board at the Northwell Health, Manhasset, NY and
the Comité d’Ethique de la FMPOS, Bamako, Mali.

dsDNA ELISA
To detect IgM and IgG anti-dsDNA antibodies, 96-well
plates (Costar, 3690, Corning, Kennenbunk, ME) were
coated with calf thymus DNA that had been filtered
through a 0.45 um cellulose filter (Millipore, Darmstadt,
Germany) to remove ssDNA (#2618, Calbiochem, San
Diego, CA) at 2μg/ml in PBS. Plates were dry-coated
overnight at 370 C and blocked in 3% FBS/PBS for 1 h
at room temperature (RT). Plates were washed 3 times
and then incubated with serum samples diluted 1:100 in
0.3% FBS/PBS and assayed in triplicate. Plates were
washed 5 times in PBS 0.05% Tween, and then incubated
with secondary anti-IgM or IgG alkaline phosphatase
conjugated antibodies (SouthernBiotech, Birmingham,
AL) diluted 1:000 in 0.3% FBS/PBS for 1 h at 370C,
washed 3 times, and developed with alkaline phosphat-
ase substrate (Sigma, St. Louis, MO) at room
temperature. Plates were read at 405 nm using a Perki-
nElmer Victor 3 ELISA reader.

C1q ELISA
Murine monoclonal anti-human C1q (#A201, Quide San
Diego, CA) (25 μl/well of 2μg/ml) in PBS was dry-coated
into 96-well polystyrene microtiter plates (Costar, 3690,
Corning) overnight at 4 °C. Wells were blocked 3% non-
fat dry milk with 50ul/well (# M0841, LabScientific High-
lands, NJ) in PBS for 4 h at room temperature. After rins-
ing the wells three times with PBS-0.05%Tween, 25 μl of
serum samples diluted in PBS were added to each well.
The serum dilutions were obtained by first making a 1:100
dilution and serially re-diluting this solution until it was 1:
10,000. Samples were incubated overnight at 4 °C. Wells
were then washed 3 times with PBS- Tween. Goat anti-
serum to human C1q (#A301, Quidel) was diluted 1:1000
in 0.3% non-fat milk in PBS and added (25 μl/well) for 2 h
at room temperature. After washing 3 times in PBS-
Tween, plates were incubated for 1 h at room temperature
with rabbit anti-goat IgG antibody conjugated to alkaline
phosphatase (#A-4062, Sigma) diluted in 0.3% non-fat milk
in PBS at 1:500. The wells were washed 3 times with PBS-

Tween and incubated with 50 μl of alkaline phosphatase
substrate (Sigma) in solution (.5 M Na2CO3 and .01 M
MgCl2) (check). The absorbance of each well was read at
30 min at 405 nm. The standard curve of purified human
C1q was linear in the 2 ng to 250 ng range. Both the stan-
dards and serum samples were assayed in triplicate.

Statistical methods
The primary objective was to compare potential bio-
markers of SLE among women grouped by risk for SLE
based on race and malaria exposure: healthy Caucasian
(CHC) and African American (AAHC) women, African
women with past exposure to malaria (MAL), unaffected
sisters of lupus patients (SIS), and lupus patients (SLE).
Since a high IgG:IgM anti-dsDNA antibody ratio and a
low level of C1q are associated with SLE, and a low IgG:
IgM anti-dsDNA antibody ratio and high level of C1q are
associated with healthy controls, the LRI was calculated

by IgG
IgM x C1q . For this analysis, original measurement units

were used and plotted on log axis which resulted in data
that were consistent with the usual assumptions of nor-
mality and equal variance across groups. One-way analysis
of variance was used to compare each of these five
markers separately across the groups. Upon finding a sig-
nificant difference, Tukey’s method of pairwise compari-
sons was used, separately for each marker, to determine
which groups’ means differed from one another on that
marker. All statistical tests, including the Tukey test, were
performed at the 5% significance level.

Results
Anti-dsDNA antibodies
As IgM antibodies precede the generation of IgG anti-
bodies and protect against SLE onset, we assessed IgM
anti-DNA antibodies in all 5 cohorts (Fig. 1). Titers were
lowest in the SLE, SIS, and AAHC cohorts. Titers were
significantly higher in the CHC cohort and highest in
the MAL cohort.
We next assessed IgG anti-DNA antibodies in all co-

horts (Fig. 2). CHC, AAHC and SIS had similar titers of
these antibodies. The MAL cohort exhibited significantly
increased IgG anti- dsDNA titers and the SLE cohort
exhibited the highest titers.

IgG:IgM ratio
While significant differences in IgG and IgM anti-DNA ti-
ters were present, we reasoned that IgM and IgG anti-
bodies compete for antigen, leading us to ask whether the
IgG: IgM ratio was more critical to disease progression
than the titer of either alone (Fig. 3). As expected, the SLE
cohort had the highest ratio compared to all other
cohorts. The MAL, SIS and AAHC cohorts had an inter-
mediate ratio while the CHC cohort had the lowest ratio.
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C1q levels
C1q levels were assessed in all cohorts (Fig. 4). Not only
is C1q deficiency among the greatest risk factors for
SLE, but C1q inversely correlates with disease activity
(Horak et al. 2006). Anti-C1q antibodies have also corre-
lated with disease activity (Bock et al. 2015). C1q levels
were lowest in the SLE cohort, slightly higher but still
low in the SIS cohort, intermediate within the CHC and
AAHC cohorts and highest in individuals exposed to
malaria, the MAL cohort.

Lupus risk index
Based on the putative protection conferred by a low
IgG/IgM anti-dsDNA antibody ratio and a high C1q
level, the LRI was developed to measure propensity for
development of SLE for each individual (Fig. 5). The LRI

was defined as IgG
IgM x C1q . The SLE patients exhibited the

highest mean LRI, followed by the SIS cohort, and then
the AAHC cohort, while the CHC and the MAL cohorts
exhibited the lowest LRI.

Discussion
In this study, we examined serologic markers in 5 co-
horts with variable risk for SLE to understand pathways
that might predispose to or prevent disease onset. As an-
ticipated, we observed high titers of IgM anti-DNA anti-
bodies in the MAL cohort and high titers of IgG anti-
DNA antibodies in the SLE cohort. Analysis of the IgG/
IgM anti-DNA antibody ratio showed a high ratio in
SLE patients, a low ratio in the CHC cohort and inter-
mediate ratios within the SIS, MAL and AAHC cohorts.

Fig. 2 The SLE and MAL cohort had significantly higher mean IgG
anti-DNA levels than all other cohorts. The CHC, AAHC and SIS cohorts
did not differ from one another and had lower titers than the MAL and
SLE cohorts

Fig. 3 SLE had the highest mean IgG/IgM anti-DNA antibody ratio. The
mean ratios of the SIS, AAHC, and MAL cohorts did not significantly differ
from each other. The mean ratio for the CHC cohort was significantly
lower than all other groups

Fig. 4 The MAL cohort had the highest mean C1q level. The mean
C1q levels of the CHC and AAHC cohorts did not differ from each
other. The SIS cohort had a lower mean C1q level and the SLE
cohort had the lowest level

Fig. 1 The cohorts are organized in order of the presumed risk from
lowest (left) to highest (right). The MAL cohort had the highest mean
IgM anti-DNA level, followed by the CHC cohort. The mean of the SIS
cohort did not differ from the mean of the AAHC and the SLE cohorts
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The protective properties of IgM antibodies are
known. IgM immune complexes engage C1q which will
bind LAIR-1, an inhibitory surface receptor on
hematopoietic cells (Son and Diamond 2015). IgM pre-
cedes IgG anti-dsDNA antibodies in mouse models of
SLE and it has been shown in the NZB/W model that
administration of IgM anti-DNA antibody will delay on-
set of disease. IgM, especially pentameric IgM, competes
with IgG for antigen and thereby diminishes the load of
IgG immune complexes including IgG anti-DNA im-
mune complexes that bind to activating Fc receptors on
myeloid cells to initiate an inflammatory cascade. Con-
sistent with the model that IgM is protective against
autoimmunity and IgG engages inflammatory pathways,
mice genetically engineered to secrete IgG but not IgM
will develop SLE (Marshak-Rothstein 2006; Boes et al.
2000). Moreover, B6.Sle1 mice which carry the sle 1 risk
locus from NZM mice produce more antigen-specific
IgG and total IgG and exhibit enhanced IgM to IgG
class switching (Rahman et al. 2007), suggesting that
part of the genetic risk for SLE may include a propensity
to high IgG levels.
Malaria exposed individuals harbor anti-nuclear anti-

bodies, some of which cross react with malarial antigens.
The ANA pattern in malaria is different from patterns ob-
served in SLE, suggesting fine specificity differences, but
anti-DNA antibodies have been reported (Hommel et al.
2014; Hirako et al. 2015). That these anti-DNA antibodies
are primarily IgM is consistent with reports of high IgM
antibodies in response to malarial infection (Pleass et al.
2016; Czajkowsky et al. 2010). Interestingly, the Fulani
population in Mali experiences less severe malarial disease
than the Dogon population; IgM anti-malarial titers are
higher in the Fulani than the Dogon and may in part

account for the less severe disease (Maiga et al. 2013). Why
malaria exposure leads to high IgM levels and whether this
reflects activation of “innate” B1 or marginal zone B cells or
impaired class switching in malaria patients is not known,
but may relate to high BAFF levels which are seen in mal-
aria exposed individuals (Scholzen and Sauerwein 2013).
We analyzed serum levels of C1q as low C1q correlates

with disease severity and absence of C1q is a strong gen-
etic risk factor for SLE. C1q opsonizes apoptotic cells to
remove debris in a non-inflammatory fashion in an IgM-
mediated pathway. C1q binds the collagen receptor LAIR-
1 through its collagen-like tail to maintain monocyte qui-
escence and prevent monocyte to DC differentiation (Son
et al. 2012). The interaction of C1q with LAIR- 1 prevents
activation of endosomal TLRs in DCs by nucleic acid li-
gands. Finally, C1q blocks the transfer of an IFN signature
transfer to healthy PBMCs by SLE serum. Thus, IgM anti-
bodies function in conjunction with C1q to mitigate in-
flammatory pathways.
As expected, C1q levels were diminished in the SLE, and,

to a lesser degree, in the SIS cohort. There was no differ-
ence between the CHC and AAHC cohorts. C1q levels
were highest in the MAL cohort. Mechanisms increasing
serum C1q levels are unknown but C1q is produced by
anti-inflammatory M2-like macrophages (Fraser et al.
2015). While these have not been specifically shown to be
increased in malaria infection, they are increased by hel-
minthic infections (Fairweather and Cihakova 2009). Ele-
vated C1q may also relate to the binding of IgM to Pfem1,
a molecule expressed on the membrane of parasite-infected
erythrocytes. The interaction of IgM with Pfem prevents
the binding of IgM to C1q and may thus raise levels of sol-
uble C1q (Czajkowsky et al. 2010). Based on the IgG:IgM
anti-DNA antibody ratio and the C1q level, we generated
an LRI. This score confirmed the known risk of SLE; the
highest LRI was present in the SLE cohort. Among the
non-SLE cohorts, LRI was highest in SIS followed by
AAHC, while the CHC and MAL cohorts exhibited the
lowest LRI. Although the MAL cohort exhibited relatively
high IgG anti-dsDNA antibody titers, the high IgM anti-
dsDNA antibody and C1q levels reduced the LRI. These
serologic features may contribute to the protection malaria
confers against the development of SLE. Understanding
how malaria, even when recurrent, blocks the IgM to IgG
switch has important therapeutic implications.

Conclusion
In summary, we have studied populations with different
risk for developing SLE to propose a metric to assess that
risk. A risk score is as robust as its components are patho-
physiologically relevant. DsDNA IgG, IgM and C1q, which
are the components of the LRI that we propose, are known
to respond to changes in disease activity. A tool such as
this that can predict the risk of developing clinical SLE

Fig. 5 All cohorts were significantly different from each other,
except the CHC and MAL cohorts which showed no
significant difference
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would be useful to assess the effectiveness of early inter-
ventions. Therapy with hydroxychloroquine, for example,
delays disease onset (Virdis et al. 2015); we would antici-
pate that its therapeutic effect would be reflected in the
LRI. Longitudinal studies, including in our unique sisters
cohort are needed to validate our findings. These observa-
tions additionally suggest new therapeutic approaches for
the treatment of SLE.
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