The Limits of Medical Trust in Mitigating COVID-19 Vaccine Hesitancy among Black Americans

J Gen Intern Med 36(11):3629–31 DOI: 10.1007/s11606-021-06743-3 © Society of General Internal Medicine 2021

INTRODUCTION

A highly anticipated COVID-19 vaccine has the potential to slow the pandemic in 2021. But a preponderance of misinformation, including conspiracy theories spreading through social media, has left much of the American public skeptical of vaccine candidates, and may undermine vaccine adherence. Up to 40% of Americans either do not intend to be vaccinated, or are unsure. ²

Black Americans have borne a particularly disproportionate share of COVID-19 infections.³ and surveys have revealed higher rates of COVID-19 vaccine hesitancy among Black Americans relative to other racial/ethnic groups.² Centuries of medical racism and subsequent medical mistrust among racial/ethnic minorities³ has left COVID-19 vaccine trials struggling to achieve diverse participation. This casts doubt on many communities' ability to eventually achieve herd immunity. Efforts to increase trust among Black Americans may help alleviate these problems, but the relationships between race, COVID-19 beliefs, trust, and vaccine hesitancy are complicated.² A richer understanding of these dynamics is crucial for diversifying participation in clinical trials and reducing vaccine hesitancy. We used nationally representative survey data from June 2020 to test the hypothesis that Black race would interact with medical trust to undermine COVID-19 vaccine willingness.

METHODS

The study was deemed exempt by the University of Miami institutional review board. Qualtrics, partnering with Lucid, administered a survey from June 4 to 17, 2020 (just before US COVID-19 cases spiked in July), to a nationally representative quota sample of n=1040 Americans that matched 2010 US Census records on sex, age, race, and income. The survey assessed participant demographics, political ideology, religiosity, and health and economic impacts of COVID-19, and contained psychometric scales used as unidimensional

measures of perceived stress, conspiracy thinking (CT), denialism, and trust in health institutions (THI). Vaccine willingness was measured using a 5-point Likert scale, strongly disagree to strongly agree, to the question, "If a vaccine for COVID-19 becomes available I would be willing to take it." We did not ask about factors that might increase vaccine willingness. We used Stata 16 to fit a multivariable mixed effects Tobit regression model of COVID-19 vaccine willingness with errors clustered by US state. A 2-sided *P*-value less than .05 was considered significant.

RESULTS

Only 63.5% of participants strongly agreed (36.6%) or agreed (26.8%) with being willing to take a COVID-19 vaccine, consistent with other surveys conducted in spring 2020, with significant variation by race/ethnicity: 70.4% for White, 61.5% for Hispanic/Latinx, and 44.3% for Black respondents (Fig. 1a). In the multivariable model, age-squared, household income, education, self-reported stress, and THI were all positively associated with vaccine willingness, while age, Black race, conservative political ideology, and CT were negatively associated with vaccine willingness (Table 1). Given the strong effect sizes for Black race, THI, and CT, we included interaction terms for Black and THI, and Black and CT. The Black-THI interaction term was negatively associated with vaccine willingness, meaning that the effect of THI on vaccine willingness was qualified by Black race. The marginal effects plot of vaccine willingness by THI (Fig. 1b) revealed that even at the highest levels of THI, Black respondents were significantly less willing to take a COVID-19 vaccine (i.e., more vaccine hesitant) than White respondents.

DISCUSSION

This study expands our knowledge of how race is related to COVID-19 vaccination hesitancy by adjusting for personal traits such as stress, conspiracy thinking, and medical trust. Higher medical trust was associated with lower vaccine hesitancy, but public health officials and the media risk conflating demographics, conspiracy thinking, and medical trust in understanding public COVID-19 vaccine perceptions. The COVID-19 vaccine hesitancy expressed by Black respondents

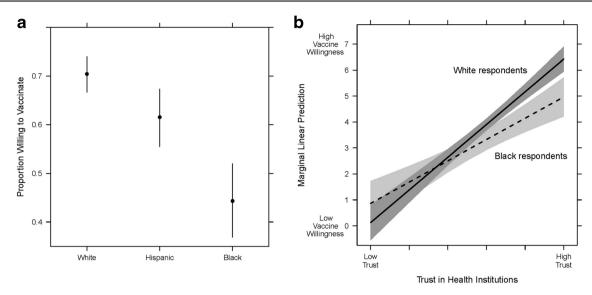


Fig. 1 a Proportion of White, Hispanic, and Black respondents who *strongly agreed* or *agreed* with the statement, "If a vaccine for COVID-19 becomes available I would be willing to take it" in June 2020, and b marginal linear prediction of vaccine willingness at different levels of trust in health institutions (THI) for Black and White respondents. In b, at the lowest levels of THI, everyone expressed low vaccine willingness, while at the highest levels of THI, Black respondents expressed significantly less willingness than White respondents.

is much greater than other racial immunization disparities across the life-course.⁴ The difference is likely attributable to structural racism, which requires the medical establishment to demonstrate its trustworthiness to Black Americans⁵ and recognize medical mistrust as a rightful adaptation to historical dehumanization in order to begin to mitigate vaccine hesitancy.³ Health education programs focused on building medical

trust may underperform if they do not address structural racism. Because third-party survey respondent pools may be less generalizable to the Black and Hispanic population, the interaction between trust and vaccine willingness may be stronger than we detected. Difficult community dialogues may be a crucial first step toward engaging communities of color and promoting COVID-19 vaccine acceptance.

Table 1 Multivariable Mixed Effects Tobit Regression Model of COVID-19 Vaccine Willingness among 1032* Nationally Representative Survey Participants in June 2020

Characteristic	β	SE	Z	<i>P</i> -value	95% CI
Individual-level fixed effects					
Gender: male	.038	.139	.27	.786	235 to .311
Age Age ^{-squared}	093	.023	-4.02	< .001	138 to047
Age ^{-squared}	.001	.000	4.51	< .001	.001 to .002
Identify as: Black or African American	505	.208	-2.43	.015	913 to098
Identify as: Hispanic or Latino	071	.163	44	.663	391 to .248
Identify as: Asian American or Pacific Islander	360	.350	-1.03	.304	- 1.046 to .326
Identify as: Native American or American Indian	482	.434	- 1.11	.267	- 1.333 to .369
Identify as: Other	477	.551	87	.386	- 1.556 to .602
Annual household income	.090	.046	1.97	.049	.000 to .180
Education	.151	.052	2.89	.004	.048 to .253
Political ideology (liberal to conservative)	121	.041	-2.93	.003	201 to040
Religiosity	.035	.055	.63	.530	073 to .143
COVID-19 health impact score	.042	.052	.80	.426	061 to .144
COVID-19 economic disruption score	.286	.149	1.92	.054	006 to .578
Perceived stress (PSS-4 score)	.073	.024	3.03	.002	.026 to .120
Denialism scale	063	.084	75	.450	228 to .101
Conspiracy thinking scale	417	.089	-4.71	< .001	591 to244
Trust in health institutions scale	1.171	.089	13.14	< .001	.996 to 1.345
State with Republican Governor	054	.134	40	.689	316 to .209
Interaction term: Black × Conspiracy thinking	.095	.197	.48	.630	291 to .480
Interaction term: Black × Trust in health institutions	351	.165	-2.13	.034	675 to027
Constant	4.875	.620	7.86	< .001	3.660 to 6.090
State-level effects					
State-level constant	3.10×10^{-34}	2.92×10^{-19}			
State-level error Model log likelihood = - 1466.0824	3.591	.252			3.130 to 4.120

^{*}Note: 8 cases from the original 1040 sample had missing covariate data that led to case exclusion

Justin Stoler, PhD, MPH^{1,2} Adam M. Enders, PhD³ Casey A. Klofstad, PhD⁴ Joseph E. Uscinski, PhD⁴

¹Department of Geography and Regional Studies, University of Miami,

Coral Gables, FL, USA

²Department of Public Health Sciences, Miller School of Medicine, University of Miami,

Miami, FL, USA

³Department of Political Science, University of Louisville,

Louisville, KY, USA

⁴Department of Political Science, University of Miami, Coral Gables, FL, USA

Corresponding Author: Justin Stoler, PhD, MPH; Department of Geography and Regional Studies, University of Miami, Coral Gables, FL, USA (e-mail: stoler@miami.edu).

Funding This work was supported by the University of Miami through a 2020 COVID-19 Rapid Response Award by the Office of the Vice-Provost for Research, and a 2020 COVID-19 Rapid Response Award by the College of Arts and Sciences, to Drs. Stoler, Klofstad, and Uscinski (PI). The sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Availability Study protocol, data set, and statistical code: Available from Dr. Justin Stoler (e-mail, stoler@miami.edu).

Declarations:

Conflict of Interest: The authors have disclosed no conflicts of interest.

REFERENCES

- Schaffer DeRoo S, Pudalov NJ, Fu LY. Planning for a COVID-19 vaccination program. JAMA. 2020;323(24):2458-2459.
- Fisher KA, Bloomstone SJ, Walder J, Crawford S, Fouayzi H, Mazor KM. Attitudes toward a potential SARS-CoV-2 vaccine: a survey of U.S. adults. Annals of Internal Medicine. 2020.
- Manning KD. More than medical mistrust. The Lancet. 2020;396(10261):1481-1482.
- Lu P-j, O'Halloran A, Williams WW, Lindley MC, Farrall S, Bridges CB. Racial and ethnic disparities in vaccination coverage among adult populations in the U.S. American Journal of Preventive Medicine. 2015;49(6, Supplement 4):S412-S425.
- Warren RC, Forrow L, Hodge DA, Truog RD. Trustworthiness before trust
 — Covid-19 vaccine trials and the Black community. N Engl J Med. 2020;383(22):e121.
- Kennedy C, Mercer A, Keeter S, Hatley N, McGeeney K, Gimenez A. Evaluating online nonprobability surveys. In. Washington, DC: Pew Research Center; 2016.

Publisher's Note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.