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Abstract

A prominent feature of many intracellular compartments is a large membrane surface area relative to their luminal volume,
i.e., the small relative volume. In this study we present a theoretical analysis of discoid membrane compartments with a
small relative volume and then compare the theoretical results to quantitative morphological assessment of fusiform
vesicles in urinary bladder umbrella cells. Specifically, we employ three established extensions of the standard approach to
lipid membrane shape calculation and determine the shapes that could be expected according to three scenarios of
membrane shaping: membrane adhesion in the central discoid part, curvature driven lateral segregation of membrane
constituents, and existence of stiffer membrane regions, e.g., support by protein scaffolds. The main characteristics of each
scenario are analyzed. The results indicate that even though all three scenarios can lead to similar shapes, there are values of
model parameters that yield qualitatively distinctive shapes. Consequently, a distinctive shape of an intracellular
compartment may reveal its membrane shaping mechanism and the membrane structure. The observed shapes of fusiform
vesicles fall into two qualitatively different classes, yet they are all consistent with the theoretical results and the current
understanding of their structure and function.

Citation: Derganc J, Božič B, Romih R (2011) Shapes of Discoid Intracellular Compartments with Small Relative Volumes. PLoS ONE 6(11): e26824. doi:10.1371/
journal.pone.0026824

Editor: Katharina Gaus, University of New South Wales, Australia

Received June 30, 2011; Accepted October 3, 2011; Published November 21, 2011

Copyright: � 2011 Derganc et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: JD and BB were supported by Slovenian Research Agency through Grant P1-0055. RR was supported by Slovenian Research Agency through Grant
P3_0108. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jure.derganc@mf.uni-lj.si

Introduction

Many intracellular compartments, such as the Golgi apparatus

and the endoplasmic reticulum, exhibit flattened shapes with a

large membrane surface area relative to the luminal volume, i.e.,

they have a small relative volume. Since the small relative volume

may well be intertwined with the function of these organelles,

understanding the mechanisms of their shape generation is of great

interest. Different organelles often show similar morphological

features despite expressing very different sets of proteins. A large

part of the morphological analyses of organelles has thus focused

on the mechanisms of shaping of the lipid membrane, which is

their universal structural backbone [1]. It was recognized that one

of the central aspects of shaping of organelles with small relative

volumes is generation of high membrane curvature [2,3] and

several qualitative scenarios that could lead to the coexistence of

highly curved and flat membrane have been proposed (Fig. 1).

Theoretical studies of membrane shapes have proved fruitful, yet

they were primarily focused to lipid membrane compartments of

relatively large relative volumes, e.g., lipid vesicles and red blood

cells [4]. Systematic theoretical studies of shapes of membrane

compartments with very small relative volumes, which are

particularly relevant for intracellular compartments, have been

rather scarce so far. Such studies would not only assist with

unraveling the relation between the organelle function, their shape

and the molecular structure, but also greatly facilitate the

interpretation of EM micrographs of organelles, which are

extremely fragile objects and very sensitive to a slightest exper-

imental disturbance.

A remarkable example of intracellular compartments with a

small relative volume are the fusiform vesicles (FVs) of urinary

bladder umbrella cells, which constitute the blood-urine barrier

tissue (Fig. 2). In the central part, FVs are lined by asymmetric

thickened membrane domains, called urothelial plaques, which

are connected by unthickened hinge regions at the rims of vesicles

[5]. Urothelial plaques are composed of hexagonally arranged 16-

nm intramembrane particles, which contain four major integral

proteins, uroplakins Ia, Ib, II and IIIa [6,7]. Since urothelial

plaques cover also 70–90% of the apical surface of umbrella cells,

it is believed that FVs play a central role in adjusting the urothelial

surface area that is needed in the course of large changes of the

bladder volume during micturition cycles [8–10]. Atomic force

microscopy measurements showed that the urothelial plaques on

the apical surface have a slightly curved profile [11]. According to

their appearance in transmission electron microscope, FVs were

described either as biconvex discs with a fusiform profile [12], or

as flattened, pancake like shapes [10].

In this study we present a systematic theoretical analysis of

discoid membrane shapes with small relative volumes, and then we

quantify the morphology of FVs and compare it to the theore-

tical results. Specifically, we build on three existing extensions

of the standard approach to lipid membrane shape calculation and

determine the shapes that could be expected according to

three proposed scenarios of membrane shaping, i.e., membrane
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adhesion, curvature driven lateral segregation of membrane

constituents and emergence of stiffer membrane regions with a

defined spontaneous curvature. We find that both classes of

observed FV shapes are consistent with the theoretical results and

the current understanding of FV structure.

Methods

Experimental
Animals were treated in accordance with European guidelines

and Slovenian legislation. The experimental protocol was

approved by the Veterinary Administration at the Ministry of

Agriculture, Forestry and Food of Republic of Slovenia (permit

number: 34401–5/2009/4).

Three albino ICR mice (CD-1) were fed standard laboratory

chow and water was available ad libitum. At the age of five weeks,

they were killed with CO2, abdominal cavities were opened and

bladders were cut into pieces with 2 mm diameter to fit freezing

disks, and immediately frozen with liquid nitrogen at 2100 bar in a

Balzers HPM 010 apparatus. Samples were freeze-substituted and

embedded in Leica AFS (Leica Microsystems, Wetzlar, Germany)

apparatus according to Monaghan et al. [13]: warming of samples

to {900C, freeze substitution in acetone containing 2% OsO4 at

{900C for 8 h, at {600C for 8 h and at {300C for 8 h.

Substitution solution was changed with 100% acetone, warmed to

z200C and embedded in Epon. From samples of each animal,

two Epon blocks were selected and ultrathin sections (70 nm thick)

were cut perpendicular to the urothelial surface. Sections were

counterstained with lead citrate and uranyl acetate and viewed in

Philips CM100 transmission electron microscope. Five micro-

graphs of umbrella cells were taken from each section at a

magnification 28500. In each micrograph 2–3 FVs were selected

with longest profiles and clearly seen thickening of the limiting

membrane. This yielded 50 vesicle profiles, which were analyzed

with the ImageJ software (http://imagej.nih.gov/ij/). On each FV

we measured the maximum length of the vesicle profile, thickness

of the vesicle lumen in the central part of the vesicles, the lengths

of thickened and unthickened membranes.

Standard theoretical framework
In this section, we present the standard theoretical framework of

lipid membrane shapes and discuss the challenges related to

assessing shapes with small relative volumes. In the next three

sections we will then employ three established extensions of the

Figure 2. EM micrographs of fusiform vesicles in urothelial umbrella cells. A) Apical region of an umbrella cell with numerous FVs with
small relative volumes. Apical plasma membrane of the cells is composed of urothelial plaques (big arrows) and hinge regions (small arrows). In B–E,
the plaque regions of analyzed FVs are highlighted by light red lines, and the hinge regions by light blue lines. The relative volumes of FVs are
approximately 0.1 (B–D) and 0.3 (E). The relative sizes of plaque regions with respect to the total FV surface area are: 50% (B), 63% (C), 88% (D), and
58% (E). Bars: 1 mm (A), 100 nm (B–E).
doi:10.1371/journal.pone.0026824.g002

Figure 1. Schematic representation of three scenarios of mem-
brane shaping. A) The discoid shape can be stabilized by adhesion
between the membranes in the central part, possibly mediated by
interacting luminal domains of transmembrane proteins (red). B) Weak
lateral segregation of mobile membrane constituents, e.g., lipids,
proteins or membrane microdomains. Segregation of wedge-shaped
constituents (blue) into the rim and cylindrical constituents (red) into
the flat membrane parts relaxes the bending stress in the membrane.
Within the weak lateral segregation scenario, the membrane material
properties vary continuously across the membrane and no distinct
membrane regions with defined boundaries are observed. C) Formation
of stiffer membrane regions with a defined spontaneous curvature and
defined boundaries, e.g., formation of protein scaffolds that support the
membrane (red). The central discoid part can be supported by a
scaffold with a small spontaneous curvature (top) and the discoid rims
can be supported by a highly curved scaffold (bottom).
doi:10.1371/journal.pone.0026824.g001

Shapes of Discoid Intracellular Compartments
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standard theory which will serve to describe the discoid shapes

according to three scenarios that have been proposed for organelle

membrane shaping (Fig. 1).

The shapes of closed lipid membrane compartments in

equilibrium are the shapes that correspond to the minimum of

the elastic energy of the membrane at given values of external

parameters, e.g., the compartment volume. According to the

standard model of elasticity of the lipid bilayer, the area difference

elasticity (ADE) model [14,15], the elastic energy of the membrane

can be expressed as the sum of the membrane bending energy,

Gaussian bending energy and the non-local bending energy:

Wel~

ð
kc

2
(C1zC2{C0)2dAz

ð
kGC1C2dAz

kr

2Ah2
(DA{DA0)2,ð1Þ

where kc is the local mean curvature bending modulus, C1 and C2 are

the membrane principal curvatures, C0 is the membrane spontaneous

curvature, kG is the Gaussian bending modulus, kr is the nonlocal

bending modulus, A is the membrane surface area, h is the distance

between the neutral surfaces of the two bilayer leaflets, DA is the

difference in the surface areas of the two leaflets, and DA0 is the area

difference between the leaflets when both leaflets are stress-free. The

value of DA0 is closely related to the difference in the number of

molecules in the membrane leaflets, and thus depends on the

membrane lipid flip-flop and flippase activity.

Membrane elastic energy is scale invariant, i.e., it does not

depend on the actual size of a compartment but rather on its

relative shape [16]. Hence, the notion of a relative volume of a

compartment is introduced as a dimensionless parameter describ-

ing the ratio between the actual volume of the compartment and

the volume of a sphere having the same surface area as the

compartment, v~6
ffiffiffi
p
p

V=A3=2. In this representation, the sphere

has the largest relative volume of all shapes and it equals unity,

vsphere~1. Furthermore, it has been shown that the equilibrium

shapes of an axisymmetric homogeneous membrane can be

calculated by solving the Euler-Lagrange equations derived from

the dimensionless functional g [16]:

g~
1

4

ð
(c1zc2)2daz

kG

2kc

ð
c1c2da{NDa{Mv{La: ð2Þ

Here all the dimensionless variables, written in lowercase, are

rescaled with respect to a spherical membrane compartment of the

given surface area. The unit of length in this representation is

R0~
ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
, the unit of surface area is 4pR2

0 (a~A=4pR2
0), the

unit of volume is 4pR3
0=3 (v~3V=4pR3

0), the unit of bilayer leaflet

area difference is 8pR0h (Da~DA=8pR0h) and the unit of energy

is 8pkc. Dimensionless Lagrange multipliers (N, M and L)

represent the relative difference between the lateral tensions of the

bilayer leaflets, the relative pressure difference across the

membrane, and the relative membrane lateral tension, respec-

tively. The Lagrange multiplier N is proportional to the area

difference and thus to the so called bilayer-couple effect of the lipid

bilayer:

N~{2q(Da{Da0), ð3Þ

where q is the ratio between the bending constants q~kr=kc,

and Da0 is an effective dimensionless area difference

Da0~(DA0zhAC0=q)=8pR0h. Note that the membrane sponta-

neous curvature C0 and the relaxed leaflet area difference DA0 are

not explicitly present in the functional g (Eq. 2), rather they

influence the value of the Lagrange multiplier N (Eq. 3). In the

studies of equilibrium shapes on long time scales, a small relative

difference between the lateral tensions of the bilayer leaflets is

often assumed (jNjƒ1), due to the membrane lipid flip-flop and

due to a small relative membrane spontaneous curvature.

The Gaussian bending term is not explicitly present in the

Euler-Lagrange equations, rather it is a part of the boundary

conditions that arise from the variation of the functional g. Thus,

in the case of closed free homogeneous membrane compartments,

the equilibrium membrane shape does not depend on the

Gaussian term, and the Gaussian bending energy depends only

on the compartment’s topology. Moreover, there are only two

independent parameters, say v and N, and a comprehensive phase

diagram of possible ADE shapes can be represented in the v{Da
plane [16].

The homogeneous membrane ADE model was a basis for a

number of successful studies of membrane shapes with a very good

agreement between theoretically calculated shapes and experi-

mentally observed shapes of giant lipid vesicles and red blood cells,

which have relative volumes vw0:6 [4]. However, in the case of

discoid shapes at physiological values of N, the discoid poles touch

each other at lower volumes, and the membrane comes into

contact (Fig. 3). At relative volumes corresponding to small relative

volume membrane compartments (v&0:1) all discoid shapes have

a large contact surface area. Moreover, the flattened discoid

shapes with adjoining central parts are not stable, but tend to wrap

up into a cup-like shape, where the surface area of the highly

Figure 3. Shape features of discoid compartments with
homogeneous membrane. A) Shape transformations due to a
decreasing relative volume v at a vanishing relative difference between
the lateral tensions of the bilayer leaflets (N~0). At v~0:6, the shape is
the well-known biconcave shape of a red blood cell (shape a).
Decreasing the volume leads to a contact of the membrane at the
discoid center (shape b, v&0:5) and then to an increase of the contact
surface area (shape c, v~0:1). B) Phase diagram describing the values of
v and N at which the membrane of a discoid compartment comes into
contact with itself. The positions of the shapes a, b and c are presented.
doi:10.1371/journal.pone.0026824.g003
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curved rim is minimized [17]. Also, as it has been shown in the

case of starfish vesicles, the energy differences between different

possible shapes at small relative volumes are very small, with no

clear global energy minimum [18].

Adhesion between membranes in the central discoid
part

Adhesion between flat membrane regions has been proposed as

one of the possible stabilizing mechanisms for the flattened

compartment geometry in the Golgi [19] and ER [1] (Fig. 1A). In

general, the membrane adhesion can result from various long

range attraction forces, e.g. electrostatic or Van den Walls forces

[20], as well as from molecular bridging mediated by adhesion

molecules, e.g. CLIMP-63 in the ER [1]. In the first approxima-

tion, the adhesion can be modeled as an effective contact

attraction. Thus, the two adhering membranes are at a constant

distance and the adhesion energy is proportional to the adhesion

constant c:

Wa~{cAc, ð4Þ

where Ac is the contact surface area (the surface area of membrane

in contact is twice Ac).

Minimization of the total energy, WelzWa, leads to two

coupled sets of the standard ADE Euler-Lagrange equations, one

for the free membrane in the discoid rim and the other for the

adhered membrane in the central discoid part [21]. In the latter

set of equations, the Lagrange multiplier L is changed to

L?Lzc, where c is the relative adhesion constant,

c~c4pR2
0=kc: ð5Þ

The two sets of equations are coupled via an additional boundary

condition imposing a discontinuous jump in the membrane

curvature in the meridian direction along the line of adhesion

contact: DCm~
ffiffiffiffiffiffiffiffiffi
c=kc

p
[21–23]. Also, there is an additional

boundary condition for the radial force, resulting from a fixed

distance between the adhered membranes. The standard ADE

model extended by membrane adhesion has only two additional

parameters: the distance between the adhered membranes, which

is defined by the size of adhesion molecules, and the relative

adhesion constant c.

Weak curvature driven lateral segregation of membrane
constituents

The coexistence of a highly curved membrane in the rim and a

relatively flat membrane in the central discoid part can be stabilized

by a nonhomogeneous distribution of membrane constituents. For

example, segregation of conical molecules into the rim and

cylindrical molecules into the central membrane regions leads to a

local spontaneous membrane curvature that matches the actual

membrane curvature and thus relaxes the bending stresses in the

membrane (Fig. 1B). In the case of weak lateral segregation, the

membrane composition varies continuously across the membrane

and so do all the membrane material properties [24], i.e., the

membrane bending constants kc and kG, and the membrane

spontaneous curvature C0 (the relaxed leaflet area difference DA0 is

an integral rather than local membrane property and does not

depend on the local membrane composition).

Here, we will focus on the dependence of the local membrane

spontaneous curvature on the intrinsic shape of membrane

constituents, which can vary considerably among different lipid

species [3]. In such a case, the standard ADE model has to be

extended by assuming the coupling between the membrane

composition and its spontaneous curvature, and by taking into

account the free energy of mixing of the constituents [24]. By

simplifying the problem to binary mixing, the latter can be

described by the Flory-Huggins term for mixing of constituents

which have different sizes:

FFH~kBTr

ð
½w1

a
ln w1z(1{w1) ln (1{w1)zxw1(1{w1)�dA, ð6Þ

where kBT is the thermal energy, w1 is the local surface area

fraction occupied by the first species (for the second species,

w2~1{w1), a is the ratio between the molecular surface areas of

the two species a~A1=A2, where A1 and A2 are surface areas of

one molecule of the two species, respectively, and r is the

molecular surface density of the molecules of the second species,

r~1=A2. Parameter x is the standard Flory interaction param-

eter. For regular solutions, where both species have the same

surface area (a~1), the system reaches the spinodal decomposition

(e.g., spontaneous phase separation) at x equal to 2.

The coupling between the membrane composition and its

spontaneous curvature can be described as C0(w)~C0zDC0w,

where w is the deviation of the local area fraction w1 from its

homogeneous value w0, w~w1{w0, and DC0 is the coupling

constant, related to the intrinsic shapes of membrane constituents

[24].

A seminal study of the curvature driven segregation [25] showed

that in the case of binary mixing and small deviations in the local

membrane concentration, the free energy of the system can be

mapped onto the standard ADE model with a pronounced bilayer

couple effect (for details see Supplementary Text S1). Hence, the

equilibrium shapes can be calculated from the standard ADE

dimensionless functional g (Eq. 2) by using large values of the

Lagrange multiplier N. In the case of the homogeneous ADE model,

such large values of N are not considered physiological as they are

related to an extremely large effective area difference (Eq. 3).

Note that although no additional parameters are needed to

describe the membrane shapes within the weak lateral segregation

scenario, the calculation of the shapes with large N requires a

careful numerical approach, with an expansion of shape equations

around the discoid poles [16].

Membrane composed of distinct regions
The third scenario addressed in the present analysis involves

membranes that are composed of distinct regions with markedly

different mechanical properties and well-defined boundaries. For

example, large proteins accumulating in certain regions of the

membrane may act as a protein scaffold and impose their intrinsic

curvature to the membrane [2,3], e.g., large flat protein scaffolds

may support the central discoid part, while curved protein

scaffolds may support the curved rim (Fig. 1C). In general, the

proteins can be intrinsic membrane proteins, e.g., uroplakins in

the fusiform vesicles [26], or externally bound to the membrane,

e.g. proteins with BAR domains [27]. A similar situation may

emerge if a macroscopic phase separation occurs within the

membrane, e.g., if one part of the membrane is in the liquid

ordered phase and the other in the liquid disordered phase.

Within this scenario, the discoid membrane compartments can

be described by two connected ADE regions, one being stiffer with

a defined spontaneous curvature, and the other being normal with

a vanishing spontaneous curvature. The minimization of the total

elastic energy of the membrane then leads to two coupled sets of

the standard ADE Euler-Lagrange equations with separate sets of

ADE parameters. It turns out, that the shape is not affected by the

Shapes of Discoid Intracellular Compartments
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absolute stiffness of the two regions but rather by the relative

stiffness of the stiffer one kc,stiff =kc,soft. Additionally, the coupling

between the two membrane regions involves the line tension

between the two membrane regions and the Gaussian bending

constants [28,29].

Clearly, the parameter space in this case is rather large, and

therefore the present analysis will focus to the effects of the three

most relevant parameters: the relative stiffness of the stiffer

membrane region, its relative size and its spontaneous curvature.

All other parameters will be held in their plausible range, e.g., the

value of the Gaussian bending constant will be kG~{kc [30], line

tension will be zero, and spontaneous curvatures of the stiffer

regions will correspond to the actual curvatures of those regions.

Two qualitatively different scenarios are considered. First, the

stiffer membrane has a small spontaneous curvature and supports

the flat discoid sides, and second, the stiffer membrane has a large

spontaneous curvature and supports the discoid rim.

The analysis presented does not take into account two

properties that generally play a role in the mechanics of protein

scaffolding and multicomponent membranes. First, a possible

shear rigidity of the protein scaffold has been neglected. It can be

shown theoretically that the shear rigidity does not influence the

equilibrium membrane shape in the limit of small deformations of

a nearly flat scaffold (see Supplementary Text S1). Also, it is

known that the membrane spectrin skeleton, which contributes the

shear rigidity to the erythrocyte membrane, does not significantly

affect the equilibrium discocyte shape of the erythrocyte [4]. Still,

the possible role of the shear rigidity in the highly curved rims

remains to be analyzed. Second, the study neglects the effects of a

line tension between the two membrane regions. A line tension

between the two membrane regions could lead to a) a contact

angle between the membrane regions [29,31,32], and b) to

instability of the discoid shapes caused by a tendency to decrease

the length of the contact line between the two regions [33]. If these

effects are not present in a membrane compartment, the omission

of the line tension is justified.

Results

Shape of fusiform vesicles
The superficial layer of urothelium contained large umbrella

cells. They were covered with the apical plasma membrane,

formed by concave asymmetrically thickened membrane regions

(urothelial plaques) and slightly raised unthickened membrane

(hinge) regions. The cytoplasm of umbrella cells contained

numerous flattened FVs (Fig. 2A). We analyzed the shape of 50

clearly distinguishable FVs, which were cut approximately through

their perimeter. FVs had two opposing urothelial plaques and

slightly dilated hinge regions at rims. The plaques were 12 nm

thick and had diameters 680–850 nm in FVs that measured

850–1100 nm along their long axis (Table 1). Along the urothelial

plaque, the thickness of FV was 30 nm on average. The rims had

the radius between 13 and 42 nm. The length of the hinge region

varied from 214 nm to 433 nm. Some variation in the vesicle

profiles was observed. In vesicles with relative volumes close to 0.1,

the space between two plaques was narrow and measured

6+2 nm (Fig. 2B–D). Vesicles with relative volumes larger than

0.1 had a more convex shape of plaques (Fig. 2E).

Calculated shapes
In order to obtain an insight into the variety of possible shapes

at small relative volumes, we will focus to the discoid shapes

calculated at the relative volume v~0:1 and within representative

parameter ranges. The shapes calculated according to the three

proposed scenarios will be compared to the shape obtained by the

standard homogeneous ADE model (shape c, Fig. 3A). Typical

values of geometrical parameters will correspond to a typical FV

with a surface area of 1.7 mm2, the rim curvature radius of 26 nm

and the plaque region comprising approximately 60% of the total

membrane surface area. The spontaneous curvature of the

plaques, which can be observed on the apical plasma membrane

in Fig. 2A, was not measured in this study. However, the cross-

sectional curvature of the plaques was previously measured to be

approximately 1/(460 nm) [11], which yields the spontaneous

curvature of the plaques to be on order of 1/(230 nm). Thus, in

the dimensionless relative notation, the unit of length R0 will be

approximately 365 nm, the relative curvature in the rim

approximately 15 and the relative spontaneous curvature of the

plaque on the order of unity.

We start by examining the effects of adhesion and curvature

driven lateral segregation, as these two models are straightforward

extensions of the standard homogeneous ADE model. Fig. 4

compares the effects of adhesion (top, shapes d and e) and lateral

segregation (bottom, f and g) on the standard ADE shape (shape c).

The main effect of adhesion (Fig. 4, shapes d and e) is an increase

in the membrane contact surface area. While the surface area of

membrane in contact within the standard ADE model in absence of

intermembrane adhesion is approximately 32% of the total

membrane surface area, it reaches approximately 49% in the limit

of strong adhesion. Correspondingly, an increasing adhesion makes

the shape of the rim more and more round. The maximal contact

surface area could increase further with a decreased relative volume.

Fig. 4 shows the shapes with zero gap between the adhering

membranes, yet the qualitative picture does not alter even if the gap

is set to a finite distance (e.g. to 10 nm), which could be the case if

the adhesion is mediated by molecular bridging.

The effect of weak lateral segregation of membrane constituents

is presented in the bottom part of Fig. 4 (shapes f and g). Weak

lateral segregation effectively increases the bilayer couple effect in

the membrane, i.e., increases the effective difference in lateral

Table 1. Data from measurements of fusiform vesicles.

max
length

lumen
thickness

thickened
membrane
length

plaque
area1

unthickened
membrane
length

hinge
radius

AVERAGE 960* 6 765 0.46** 308 26

ST. DEV. 112 2 84 0.10 49 7

1plaque surface area is calculated as plaque being a round structure,
*all measures are in nm, except areas,
**which are in mm2 .
doi:10.1371/journal.pone.0026824.t001
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tensions between the membrane leaflets, described by the

dimensionless parameter N (Eq. 3). Larger values of N correspond

to more convex discoid shapes with a smaller contact surface area

in the central part. The separation of the two sides in the central

part occurs at N~484 (see Fig. 3B, and shape f in Fig. 4). A

further increase of N corresponds to even more convex shapes, yet

the membranes in the center remain relatively close together even

at very large values of N ; for example, even at N~850, the

distance between the two membranes in the center is 0.03 R0, i.e.,

approximately 10 nm (shape g).

According to the third proposed scenario, the discoid shapes are

stabilized by regions of stiffer membrane with a defined spontaneous

curvature. The results will focus to the three parameters: the relative

stiffness, the relative size and the spontaneous curvature of the stiffer

membrane region. Some of the typical calculated shapes are

presented in Fig. 5. Not surprisingly, a much wider parameter space

results in a much more complicated shape behavior. To assist the

orientation in the parameter space, Fig. 6 shows the calculated

values of the relative stiffness and size of the stiffer region at which

the membrane in the central part is not in contact.

The impact of a very stiff membrane region in the central

discoid part is presented in Figs. 5A (shapes h through m) and 5A.

If the stiff region is small, the membranes in the central part are in

contact, just as with the homogeneous membrane. As the stiff

region grows in size, the central discoid part first separates when

the stiffer region occupies 46% of the total membrane, comes into

contact again at 68%, only to detach once more at 85%. Finally,

as the stiff membrane region grows towards 100% of the total

membrane, the membrane comes back in contact and the shape

approaches the standard homogeneous ADE shape. The point of

contact is always in the discoid center. Fig. 6A shows that the

behavior is less complicated at smaller stiffness. If the stiffer

membrane region is less than 400 times stiffer than the soft region,

the membranes lose contact only at relative sizes larger than 80%.

If the stiffer membrane region is less than 60 times stiffer than the

soft region, the membrane in the central part remains in contact at

all sizes of the stiff region. At a small relative size and stiffness of

the stiffer region, the shapes have a large contact area and

resemble the shape of a homogeneous membrane.

The effects of a stiffer membrane region with a large spontaneous

curvature supporting the discoid rim are presented in Fig. 5B and

6B (shapes n through p). As the size of the stiffer region increases,

the central discoid sides first separate at the discoid center (shape n)

and then come into contact again away from the center (shape p). In

other words, the curved rim forces the central discoid part to

undulate. Interestingly, Fig. 6B shows that in order to have a

marked effect on the shape, the stiffer region does not need to be any

stiffer at all, it only needs to have a large enough spontaneous

curvature (at this relative volume, it has to be larger than appro-

ximately 10=R0, calculation not shown). Also, the larger the

spontaneous curvature of the stiffer membrane, the smaller region it

needs to occupy. A closer inspection of the shapes reveals that the

actual curvature in the rim is up to 10% smaller than the

spontaneous curvature imposed by the stiffer region.

Finally, Fig. 5C shows the shapes obtained if the stiff region is in

the central discoid part and has a small but non-vanishing spon-

taneous curvature, a case relevant for FVs. Here, the undulation in

the central discoid part is noticeable again: the central discoid part

Figure 5. Examples of shapes with two distinct membrane
regions. The stiffer membrane regions are presented by thick red lines
and the soft membrane regions by thin black lines. The relative stiffness
(kc,stiff =kc,soft), the spontaneous curvature (c0) and the relative size of
the stiffer regions, and the relative volume of the compartment (v) are
denoted. The spontaneous curvature of the soft region is zero. A)
Effects of an increasing size of a very stiff region with c0~0 in the
central discoid part. B) Effects of an increasing size of a curved (c0~15)
stiffer region supporting the discoid rim. C) Effects of an increasing
relative volume in the case corresponding to the observed FV: the stiffer
region is in the central discoid part, it occupies 60% of the total
membrane surface area and has c0~1. The relative stiffness of the
stiffer region is chosen to be 40.
doi:10.1371/journal.pone.0026824.g005

Figure 4. Shape changes due to adhesion in the central discoid
part (top, shapes d and e) and lateral segregation of
membrane constituents (bottom, shapes f and g). Shape c is
the shape from the standard homogeneous model (Fig. 3A). The
adhesion strength is represented by the relative adhesion constant c; an
increase of c increases the contact surface area. The impact of the
lateral segregation is described by parameter N ; an increase in N
corresponds to more convex shapes with a smaller contact surface area.
The relative volume of all shapes is 0.1.
doi:10.1371/journal.pone.0026824.g004
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comes in contact in its center due to the small relative volume,

and, in addition, it comes in contact near the rim due to its

spontaneous curvature. The biconvex ‘‘fusiform’’ shape can only

be obtained at larger relative volumes.

Discussion

The aim of this work was to theoretically analyze three scenarios for

membrane shaping in discoid intracellular compartments at small

relative volumes [1–3] (i.e., membrane adhesion in the central discoid

part, weak lateral segregation of membrane constituents and formation

of distinct membrane regions) and to explore the implications of the

theory on current understanding of the shape and structure of fusiform

vesicles (FVs) in urinary bladder umbrella cells.

The first conclusion of the theoretical analysis is that all three

scenarios of membrane shaping can lead to qualitatively similar

shapes with a flattened central part and a drop-like cross-section at

the rim, a shape comparable to the shape theoretically associated

with simple homogeneous membrane (shape c in Figs. 3 and 4).

This type of shape has been indeed observed in cellular systems, e.g.,

in the Golgi [34], in the discs in the eye rod outer segment [35], and

FVs [36]. This shape can be therefore regarded as a generic small

relative volume discoid shape resulting from the membrane

tendency to minimize its overall bending at a given small relative

volume. In addition, this configuration can be further enhanced by

a variety of nonspecific interactions which emerge between two

nearby membranes [20]. As a consequence, if a intracellular

compartment has a flattened central part with adjacent membranes

and a drop-like rim, its shape cannot straightforwardly reveal the

shaping mechanisms or the material properties of its membrane.

On the other hand, at certain values of model parameters the

three scenarios can also yield different shapes. In these cases, the

shape of the compartment can in fact indicate its underlying

shaping mechanism. For example, with an increasing adhesion

between the membranes in the central part, the rim becomes more

and more round (shape e in Fig. 4), making it possible to estimate

the interaction strength between the membranes. The value of the

adhesion strength corresponding to the calculated shapes depends

on the actual size of the compartment and its membrane bending

constant (Eq. 5). Taking that the membrane bending constant is

within typical values of lipid membranes (kc&20 kT) and the size

of the compartment compares to the size of a FV, the strong

adhesion limit (shape e) corresponds to an adhesion strength of

approximately 10000 kT per mm2. If the adhesion is mediated by

molecular bridges with the binding energy of 5 kT, this leads to

approximately 2000 adhesion molecules per mm2.

Curvature driven lateral segregation of membrane constituents

generally drives the membrane into more convex shapes (shapes f
and g in Fig. 4). While the actual extent of this kind of segregation

in cellular organelles is not yet characterized, theoretical analyses

and experimental studies of synthetic lipid bilayers have shown

several interesting aspects of this phenomenon. First, the larger the

membrane constituents the more easily they segregate, which

indicates one of the possible advantages of membrane micro-

domain formation [37]. Second, an extensive segregation can take

place only in the presence of large intermolecular interactions in

the membrane, i.e., in the proximity of the phase segregation of

the membrane constituents [38,39]. A closer inspection of the

model in this study reveals that large values of the parameter N
(Eq. 3) and therefore noticeable effect on the shape can be realized

even when the local membrane composition does not vary

considerably across the membrane, provided there is strong

coupling between the membrane composition and its spontaneous

curvature (Supplementary Text S1).

According to the third scenario, the membrane shaping is

driven by the emergence of distinct membrane regions, which can

in general result from a variety of mechanisms, e.g. from protein

scaffolding or from large scale lipid phase separation. Theoretical

analysis presented shows that this scenario can lead to a wide

range of different membrane shapes, depending notably on the

relative size and stiffness of the membrane regions and their

spontaneous curvature. Characteristically, certain values of these

parameters result in shapes where the membrane does not touch

itself in the discoid center but rather closer to the rim, e.g., shape p
in Fig. 5B. Also, there is a strong dependence of the shape on the

relative size of the membrane regions: in Fig. 5B the stiffer region

in the rim grows from only from 16% to 19% of the overall

membrane surface area, and consequently the shape changes

dramatically from shape o to shape r. Thus, unless the key

parameters are regulated by the cell, this shaping mechanism can

result in compartments with many qualitatively different shapes.

The values of model parameters for the third scenario in

biological membranes are yet to be determined. While it is known

that the liquid ordered lipid phase is several times stiffer than a

liquid disordered phase [30,32,38], we are not aware of quantitative

data on membrane stiffening by protein scaffolds. The theoretical

analysis in this study clearly shows that spontaneous curvature of

protein scaffolds supporting the rim may be even more important

than their relative stiffness (Fig. 6). For example, the spontaneous

curvature of the BAR domain was found to be on the order of

Figure 6. Phase diagrams showing the regions where the
compartment’s membrane is not in self-contact (dashed
regions). The calculated dependence on the relative stiffness and
the relative size of the stiffer membrane region is presented. The
diagrams correspond to the shapes presented in Fig. 5 A and B. A) The
stiffer membrane region has zero spontaneous curvature and supports
the central discoid parts, shapes h through m in Fig. 5A. B) The stiffer
region is curved and supports the discoid rim, shapes n through p in
Fig. 5B. The diagram is given for two values of the spontaneous
curvature in the rim (c0~15 and c0~30). The crossed circles correspond
to the shapes presented in Fig. 5.
doi:10.1371/journal.pone.0026824.g006
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1/(10 nm) [27], and therefore these proteins could easily provide

the curvature needed to support the curved rim regardless of their

possible stiffening effect on the membrane. We found that the actual

curvature of the membrane in the highly curved rim can differ from

its spontaneous curvature up to approximately 10% (the softer the

region, the larger the difference), which indicates that a protein

scaffold supporting the curved rim may well be under the strain

imposed by the membrane.

The theoretical analysis has focused on the calculation of the

discoid shapes and did not explore the global energy landscape of

all possible shapes and did not consider cup-like shapes. In effect, a

simple argument suggests that the discoid shapes calculated

according to the adhesion scenario are not necessarily the global

minima: in the limit of small adhesion they would wrap up into

cup shapes (as within the standard homogeneous membrane

model), and in the limit of strong adhesion, the lumen of the

compartment would become spherical with all the excess

membrane adhered and wrapped up. In addition, one can expect

small energy differences between different shapes at small relative

volumes [18]. As a consequence, the existence of other non-discoid

shape classes cannot be ruled out. In fact, cup-like shapes have

been indeed observed in some vesicles of urothelial cells [40] and

also in the Golgi [41]. Thus, for a critical assessment of the global

stability of shapes of intracellular compartments, all the model

parameters should be carefully identified as well as possible

interaction with other cellular structures nearby.

The shape of FVs in umbrella cells can be best studied by

transmission electron microscopy. We aimed to prepare mouse

urothelium in a way that preserved the ultrastructure closest to its

native state. Therefore we applied high pressure freezing for tissue

fixation, which immobilized cellular structures within a few

milliseconds [42]. Transmission electron microscopy images show

that the limiting membrane of FVs is composed of two distinct

regions, the asymmetrically thickened region in the central region

and the unthickened membrane in the rims. The first region

corresponds to urothelial plaques while the other to the hinge.

Previous studies indicate that the curvature of urothelial plaques in

the apical plasma membrane is on the order of 1/(250 mm), with the

curvature center on the urine side [11]. A majority of large FVs with

a small relative volume, however, has a flattened appearance, with

the two opposing plaques nearly parallel to each other. As the

plaque is approximately twice as thick as bare membrane, it can be

expected that its stiffness is at least an order of magnitude larger

than the stiffness of bare membrane.

The shapes of FVs with a small relative volume (v&0:1) fall into

the ‘‘generic’’ shape category, i.e., they have adjoining membranes

in the central part and a drop like rim (Fig. 2B–D). Generally these

shapes cannot be linked to a particular membrane shaping

mechanism. On the other hand, the shapes of FVs with larger

relative volumes show the distinct fusiform profile (Fig. 2E).

However, both classes of the observed FV shapes are consistent

with the model assuming that the plaque regions form a scaffold

with a defined spontaneous curvature. Specifically, at larger relative

volumes the plaques retain their spontaneous curvature and FVs

exhibit the characteristic fusiform biconvex shape (shapes s and t in

Fig. 5C). In contrast, if the FV volume is sufficiently small, the two

opposing plaques are being pushed one against the other and

flattened out (shape r in Fig. 5C).

Within the experimental resolution in this study, the observed

shapes of FVs at small relative volumes correspond to the calculated

shapes obtained with a wide range of values of the model

parameters (e.g., compare shapes i and r in Fig. 5). Consequently,

the study does not allow for a quantitative assessment of FV

membrane material properties, such as that performed on synthetic

giant lipid vesicles [29,31,32]. In addition, in order to describe

properly the shape with a flattened plaque, the theoretical modeling

has to be extended beyond the analysis presented in this work, i.e.,

by combining the adhesion and the protein scaffold scenarios into

one computational model [43]. On the other hand, the analysis

indicates a promising direction for future research, i.e., the largest

differences between different shaping mechanisms and a better

resolution for fitting the model parameters to the observed shapes

can be expected at varying experimental conditions. For example, if

the relative volume of FVs is controllably changed at a fixed plaque

relative size, one can expect a series of FV shapes similar to Fig. 5C.

Likewise, an altered uroplakin expression could lead to a non-

symmetrical organization of the plaque in the membrane, revealing

its spontaneous curvature and relative stiffness.

Since FVs are cell compartments for the transport of membranes

only, their small volume-to-surface area ratio has important

biological implications. First, the urothelium as blood-urine barrier

forming tissue synthesize large amounts of urothelial plaques

without secretory products. In this case, FVs represent a cytoplasmic

pool of membrane, which can be inserted into the apical surface

[44]. Second, if FVs are retrieved from the apical surface during

bladder contraction [10], their small relative volume ensures

minimal internalization of toxic substances from the urine.

To conclude, the study presented is aimed at bridging the gap

between the standard physical theory of membrane shapes and

biology of intracellular compartments. It provides an overview of

theoretical modeling of membrane shaping, and the application of

the theory to a real biological system. The analysis shows good

consistency between the observed shapes of fusiform vesicles, the

current understanding of their molecular structure, their function

and the theory. In addition, the study can serve as a basis for

studies of other systems, e.g., the discs in the eye rod outer

segment, where protein spacers seemingly mediating inter-

membrane interaction have been observed [35].

Supporting Information

Text S1 Supplementary Text S1 provides a detailed discussion

on combining the ADE model of membrane elasticity with Flory-

Huggins free energy of mixing and an analysis of shear rigidity in

nearly flat, axisymmetric membranes.
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16. Svetina S, Žekš B (1989) Membrane bending energy and shape determination of
phospholipid vesicles and red blood cells. Eur Biophys J 17: 101–111.
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