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Abstract: Many measures to quantify the nonlinear dynamics of a time series are based on estimating
the probability of certain features from their relative frequencies. Once a normalised histogram
of events is computed, a single result is usually derived. This process can be broadly viewed as
a nonlinear IRn mapping into IR, where n is the number of bins in the histogram. However, this
mapping might entail a loss of information that could be critical for time series classification purposes.
In this respect, the present study assessed such impact using permutation entropy (PE) and a diverse
set of time series. We first devised a method of generating synthetic sequences of ordinal patterns
using hidden Markov models. This way, it was possible to control the histogram distribution and
quantify its influence on classification results. Next, real body temperature records are also used
to illustrate the same phenomenon. The experiments results confirmed the improved classification
accuracy achieved using raw histogram data instead of the PE final values. Thus, this study can
provide a very valuable guidance for the improvement of the discriminating capability not only of
PE, but of many similar histogram-based measures.

Keywords: permutation entropy; hidden Markov models; k-means clustering; signal classification;
relative frequency estimation; feature selection; body temperature

1. Introduction

Classification of time series is one of the main applications of pattern recognition and machine
learning [1]. From a collection of features extracted from each time series, a varied and diverse set
of methods have been proposed to assign a class label to a group considered homogeneous using a
certain dissimilarity criterion [2]. These methods have been applied to any scientific or technological
field where a temporal sequence of data is generated [3–8].

The present paper is focused specifically on the classification of time series using signal complexity
features. Such features exhibit a very high discriminating power, and that is why they have been
successfully employed in many applications [9–11]. However, there are ongoing efforts to further
improve this discriminating power with new complexity estimation algorithms or by tweaking current
ones [12–17], as is the case in this paper.

Many measures or methods have been described in the scientific literature so far to quantify
time series complexity, irregularity, uncertainty, predictability or disorder, among other similar terms
devised to characterise their dynamical behaviour [18]. The present study deals specifically with the
concept of entropy, one of the previous terms related to expected information, and often employed as
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a single distinguishing feature for time series classification. Entropy, as an information gauge, has also
been defined in many forms, with higher entropy values accounting for higher uncertainty.

The concept of entropy was first applied in the context of thermodynamics [19]. A few decades
later, other scientific and technological areas adapted and customised this concept to information
theory [20]. The Shannon entropy introduced in [21] soon became one of the most used and successful
of these measures. In its discrete and generic form, it is given by

hS = − ∑
ω∈Ω

p (ω) log p (ω) (1)

where ω is a random variable with probability distribution p (ω) over the probability space Ω, and log
is usually a base 2 logarithm, although natural logarithms are fairly common too.

For the focus of interest of the present paper, classification of time series, Equation (1) must be
customised for sequences of numerical values. Assuming a stationary ergodic time series, x, containing
amplitude values of a continuous process with a sampling period of T, this time series can be written as
the discrete time vector x = {x[0T], x[1T], x[2T], . . . , x[(N − 1)T]}, or, in a more compact and simple
form, as x = {x0, x1, x2, · · · , xN−1}, with length N. At this point, Equation 1 could be applied to the
samples in x. However, as in most real applications p is unknown and N is finite, an estimation, p̂,
based on event counting or relative frequency has to be used instead.

There are many possible available choices as for the event type related to x from which to obtain
p̂. We adopted a block approach, but instead of directly using samples or subsequences from the
time series, we used associated ordinal patterns (more details in Section 2.1) from consecutive m
overlapping windows, xm

i = {xi, xi+1, xi+2, · · · , xi+m−1}. This way, the number of different blocks
is finite and known in advance, and the relative frequencies can be estimated robustly provided the
length of the blocks m is significantly shorter than the length of the time series, m << N [18]. If each
possible ordinal pattern is referred to as Πm

j , with 0 ≤ j < m!, Equation (1) takes the form

ĥm
S = −

m!−1

∑
j=0

p̂
(

Πm
j

)
log p̂

(
Πm

j

)
(2)

where p̂ (Πm
i ) is the relative frequency of the ordinal pattern Πm

i . For example, for subsequences of
length 3, with sample position indices ranging from 0 to 2, the ordinal patterns Π3

j that can be found
are (0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,1,0) and (2,0,1).

Figure 1 depicts the histograms for a few popular synthetic time series, as an example of the
distribution of these relative frequencies. Specifically, the histogram in Figure 1a belongs to a random
time series with a uniform distribution, as can be inferred from the equality of the bins. At the opposite
end of the spectrum of randomness, Figure 1b shows the histogram of a sinusoidal time series, with
a more polarised distribution of motifs, some of them forbidden (zero probability) [22]. Figure 1c,d
shows the histograms of other time series with a different degree of determinism, a Logistic (coefficient
3.5) and a Lorenz (parameters 10, 8/3 and 28) time series, respectively [23,24]. When computing the
associated entropy to the relative frequencies shown in Figure 1, the single value obtained will be
arguably very different in each case.
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(a) Relative frequencies of motifs for a random time
series with m = 3. All the bins reach an almost equal
height.
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(b) Relative frequencies of motifs for a sinusoidal time
series with m = 3. Most of the motifs correspond to
(0,1,2) and (2,1,0), the rising and falling edges of the
signal, respectively. Motifs (0,2,1) and (1,2,0) are more
scarce, and (1,0,2) and (2,0,1) are never found.
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(c) Relative frequencies of motifs for a logistic time series
with m = 3. The height of the bins is almost equal, but
two motifs are never found, (0,1,2) and (2,1,0).
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(d) Relative frequencies of motifs for a Lorenz time
series with m = 3. Motifs (0,1,2) and (2,1,0) almost
monopolise the histogram, whereas the other ones have
a negligible contribution.

Figure 1. Examples of histograms from well-known synthetic time series. Some features of these series
are clearly reflected in the histograms, with a clear correlation between the distribution of the motifs
and the determinism degree of the records.

However, the mapping of relative frequencies into a single scalar (in the sense of a size 1 vector)
may entail a significant information loss, as there are infinite vectors of estimated probabilities
p̂ =

{
p̂ (Πm

0 ) , p̂ (Πm
1 ) , . . . , p̂

(
Πm

m!−1
)}

that can yield the same ĥm
S . One of the most successful

applications of entropy statistics is time series classification, and this information loss could have a
detrimental impact on the accuracy achieved in these applications.

The present paper is aimed at characterising those situations where a single entropy measure
may fail in providing discriminating information due to histogram compensation. This study will
be based on a specific Shannon entropy embodiment: permutation entropy (PE) [25]. Despite the
good results achieved using this measure, there are still cases where the histogram differences are
lost when computing the final PE value. We illustrate this situation with synthetic records generated
using hidden Markov models (HMM), and with real body temperature records that exhibit this same
behaviour. We then propose a different approach based on a clustering scheme that uses all the
relative frequencies as time series features to overcome this problem. The results for both types of
experimental time series demonstrate how critical this information loss may become, and how the
proposed clustering method can solve it.

There is no similar study in the scientific literature, as far as we know. However, there are a few
works that could use a multidimensional classification approach as ours. For example, it is worth
describing the approach taken by [26]. This paper presents a method to classify beat-to-beat intervals
data series from healthy and congestive heart failure patients using classical RR features, a symbolic
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(a) Relative frequencies of motifs for a random time
series with m = 3. All the bins reach an almost equal
height.
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(b) Relative frequencies of motifs for a sinusoidal time
series with m = 3. Most of the motifs correspond to
(0,1,2) and (2,1,0), the rising and falling edges of the
signal, respectively. Motifs (0,2,1) and (1,2,0) are more
scarce, and (1,0,2) and (2,0,1) are never found.
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(c) Relative frequencies of motifs for a logistic time series
with m = 3. The height of the bins is almost equal, but
two motifs are never found, (0,1,2) and (2,1,0).
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(d) Relative frequencies of motifs for a Lorenz time
series with m = 3. Motifs (0,1,2) and (2,1,0) almost
monopolise the histogram, whereas the other ones have
a negligible contribution.

Figure 1. Examples of histograms from well-known synthetic time series. Some features of these series
are clearly reflected in the histograms, with a clear correlation between the distribution of the motifs
and the determinism degree of the records.

However, the mapping of relative frequencies into a single scalar (in the sense of a size 1 vector)
may entail a significant information loss, as there are infinite vectors of estimated probabilities
p̂ =

{
p̂ (Πm

0 ) , p̂ (Πm
1 ) , . . . , p̂

(
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)}

that can yield the same ĥm
S . One of the most successful

applications of entropy statistics is time series classification, and this information loss could have a
detrimental impact on the accuracy achieved in these applications.

The present paper is aimed at characterising those situations where a single entropy measure
may fail in providing discriminating information due to histogram compensation. This study will
be based on a specific Shannon entropy embodiment: permutation entropy (PE) [25]. Despite the
good results achieved using this measure, there are still cases where the histogram differences are
lost when computing the final PE value. We illustrate this situation with synthetic records generated
using hidden Markov models (HMM), and with real body temperature records that exhibit this same
behaviour. We then propose a different approach based on a clustering scheme that uses all the
relative frequencies as time series features to overcome this problem. The results for both types of
experimental time series demonstrate how critical this information loss may become, and how the
proposed clustering method can solve it.

There is no similar study in the scientific literature, as far as we know. However, there are a few
works that could use a multidimensional classification approach as ours. For example, it is worth
describing the approach taken by [26]. This paper presents a method to classify beat-to-beat intervals
data series from healthy and congestive heart failure patients using classical RR features, a symbolic
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(a) Relative frequencies of motifs for a random time
series with m = 3. All the bins reach an almost equal
height.
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(b) Relative frequencies of motifs for a sinusoidal time
series with m = 3. Most of the motifs correspond to
(0,1,2) and (2,1,0), the rising and falling edges of the
signal, respectively. Motifs (0,2,1) and (1,2,0) are more
scarce, and (1,0,2) and (2,0,1) are never found.
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(c) Relative frequencies of motifs for a logistic time series
with m = 3. The height of the bins is almost equal, but
two motifs are never found, (0,1,2) and (2,1,0).
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(d) Relative frequencies of motifs for a Lorenz time
series with m = 3. Motifs (0,1,2) and (2,1,0) almost
monopolise the histogram, whereas the other ones have
a negligible contribution.

Figure 1. Examples of histograms from well-known synthetic time series. Some features of these series
are clearly reflected in the histograms, with a clear correlation between the distribution of the motifs
and the determinism degree of the records.

However, the mapping of relative frequencies into a single scalar (in the sense of a size 1 vector)
may entail a significant information loss, as there are infinite vectors of estimated probabilities
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applications of entropy statistics is time series classification, and this information loss could have a
detrimental impact on the accuracy achieved in these applications.

The present paper is aimed at characterising those situations where a single entropy measure
may fail in providing discriminating information due to histogram compensation. This study will
be based on a specific Shannon entropy embodiment: permutation entropy (PE) [25]. Despite the
good results achieved using this measure, there are still cases where the histogram differences are
lost when computing the final PE value. We illustrate this situation with synthetic records generated
using hidden Markov models (HMM), and with real body temperature records that exhibit this same
behaviour. We then propose a different approach based on a clustering scheme that uses all the
relative frequencies as time series features to overcome this problem. The results for both types of
experimental time series demonstrate how critical this information loss may become, and how the
proposed clustering method can solve it.

There is no similar study in the scientific literature, as far as we know. However, there are a few
works that could use a multidimensional classification approach as ours. For example, it is worth
describing the approach taken by [26]. This paper presents a method to classify beat-to-beat intervals
data series from healthy and congestive heart failure patients using classical RR features, a symbolic
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series with m = 3. Most of the motifs correspond to
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signal, respectively. Motifs (0,2,1) and (1,2,0) are more
scarce, and (1,0,2) and (2,0,1) are never found.
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(c) Relative frequencies of motifs for a logistic time series
with m = 3. The height of the bins is almost equal, but
two motifs are never found, (0,1,2) and (2,1,0).
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(d) Relative frequencies of motifs for a Lorenz time
series with m = 3. Motifs (0,1,2) and (2,1,0) almost
monopolise the histogram, whereas the other ones have
a negligible contribution.

Figure 1. Examples of histograms from well-known synthetic time series. Some features of these series
are clearly reflected in the histograms, with a clear correlation between the distribution of the motifs
and the determinism degree of the records.
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may entail a significant information loss, as there are infinite vectors of estimated probabilities
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applications of entropy statistics is time series classification, and this information loss could have a
detrimental impact on the accuracy achieved in these applications.

The present paper is aimed at characterising those situations where a single entropy measure
may fail in providing discriminating information due to histogram compensation. This study will
be based on a specific Shannon entropy embodiment: permutation entropy (PE) [25]. Despite the
good results achieved using this measure, there are still cases where the histogram differences are
lost when computing the final PE value. We illustrate this situation with synthetic records generated
using hidden Markov models (HMM), and with real body temperature records that exhibit this same
behaviour. We then propose a different approach based on a clustering scheme that uses all the
relative frequencies as time series features to overcome this problem. The results for both types of
experimental time series demonstrate how critical this information loss may become, and how the
proposed clustering method can solve it.

There is no similar study in the scientific literature, as far as we know. However, there are a few
works that could use a multidimensional classification approach as ours. For example, it is worth
describing the approach taken by [26]. This paper presents a method to classify beat-to-beat intervals
data series from healthy and congestive heart failure patients using classical RR features, a symbolic
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(c) Relative frequencies of motifs for a logistic time series
with m = 3. The height of the bins is almost equal, but
two motifs are never found, (0,1,2) and (2,1,0).
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series with m = 3. Motifs (0,1,2) and (2,1,0) almost
monopolise the histogram, whereas the other ones have
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are clearly reflected in the histograms, with a clear correlation between the distribution of the motifs
and the determinism degree of the records.
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(c) Relative frequencies of motifs for a logistic time series
with m = 3. The height of the bins is almost equal, but
two motifs are never found, (0,1,2) and (2,1,0).
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(d) Relative frequencies of motifs for a Lorenz time
series with m = 3. Motifs (0,1,2) and (2,1,0) almost
monopolise the histogram, whereas the other ones have
a negligible contribution.

Figure 1. Examples of histograms from well-known synthetic time series. Some features of these series
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(a) Relative frequencies of motifs for a random time
series with m = 3. All the bins reach an almost equal
height.
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(b) Relative frequencies of motifs for a sinusoidal time
series with m = 3. Most of the motifs correspond to
(0,1,2) and (2,1,0), the rising and falling edges of the
signal, respectively. Motifs (0,2,1) and (1,2,0) are more
scarce, and (1,0,2) and (2,0,1) are never found.
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(c) Relative frequencies of motifs for a logistic time series
with m = 3. The height of the bins is almost equal, but
two motifs are never found, (0,1,2) and (2,1,0).
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Figure 1. Examples of histograms from well-known synthetic time series. Some features of these series
are clearly reflected in the histograms, with a clear correlation between the distribution of the motifs
and the determinism degree of the records.

However, the mapping of relative frequencies into a single scalar (in the sense of a size 1 vector)
may entail a significant information loss, as there are infinite vectors of estimated probabilities
p̂ =

{
p̂ (Πm

0 ) , p̂ (Πm
1 ) , . . . , p̂

(
Πm

m!−1
)}

that can yield the same ĥm
S . One of the most successful

applications of entropy statistics is time series classification, and this information loss could have a
detrimental impact on the accuracy achieved in these applications.

The present paper is aimed at characterising those situations where a single entropy measure
may fail in providing discriminating information due to histogram compensation. This study will
be based on a specific Shannon entropy embodiment: permutation entropy (PE) [25]. Despite the
good results achieved using this measure, there are still cases where the histogram differences are
lost when computing the final PE value. We illustrate this situation with synthetic records generated
using hidden Markov models (HMM), and with real body temperature records that exhibit this same
behaviour. We then propose a different approach based on a clustering scheme that uses all the
relative frequencies as time series features to overcome this problem. The results for both types of
experimental time series demonstrate how critical this information loss may become, and how the
proposed clustering method can solve it.

There is no similar study in the scientific literature, as far as we know. However, there are a few
works that could use a multidimensional classification approach as ours. For example, it is worth
describing the approach taken by [26]. This paper presents a method to classify beat-to-beat intervals
data series from healthy and congestive heart failure patients using classical RR features, a symbolic
representation and ordinal pattern statistics. It first considers each feature individually, and then a
combination of two using a linear support vector machine. The main difference with the approach
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described in the present paper is that the method is fully supervised, and customised for a specific
biomedical record, without taking into account the full picture of the PE context.

Another key concept that will play an important role in this work is the concept of forbidden
ordinal pattern [18]. In a general sense, we consider a forbidden pattern with an ordinal pattern with
a relative frequency of 0 and a forbidden transition i → j, the impossibility to generate an ordinal
pattern j if the previous one was an ordinal pattern i. Forbidden patterns have already demonstrated
their usefulness to detect determinism in time series [27,28], and have even been used for classification
purposes already [22,23], as additional distinguishing features. Specifically, the present study will use
forbidden transitions as a tool to generate synthetic time series including forbidden patterns or certain
histogram distributions.

2. Materials and Methods

2.1. Permutation Entropy

PE is the Shannon entropy of the estimated probabilities of ordinal patterns found in input
time series x [25]. To obtain these ordinal patterns, consecutive subsequences of length m and
commencing at sample i have to be drawn from x. Formally, these subsequences can be defined
as xm

i = {xi, xi+1, . . . , xi+m−1}, where the index i ranges from 0 to N − m, with N being the total
length of x. Initially, when the subsequences are first extracted from the time series, the order of
xi, xi+1, . . . , xi+m−1 can be any, but the indices of the samples are always taken as 0, 1, . . . , m− 1 by
default. When xi, xi+1, . . . , xi+m−1 are sorted in ascending order, the resulting new order is translated
to the vector of indices. This new order of indices is considered the ordinal pattern or motif that
represents xm

i . We will refer to this vector as πm
i . For example, if x3

i = {1.7,−0.3, 2.5}, the associated
motif is (1, 0, 2), as the minimum, −0.3, was located at index 1, the next value in ascending order,
1.7, at index 0, and the maximum value, 2.5, at index 2. Therefore, π3

i = (1, 0, 2). The corresponding
counter (histogram bin) of motif (1, 0, 2), Π3

j , will therefore be increased, cΠ3
j
← cΠ3

j
+ 1 (supposing

Π3
j = (1, 0, 2)). For simplification purposes, m will be 3 in all the tests conducted.

This process is repeated for all the possible subsequences in x, and the final relative frequency
of each j-th motif is computed, obtaining p̂ using the normalised histogram of such motifs. Thus,
p̂ specifically becomes in PE p̂ =

{
p̂(Πm

0 ), p̂(Πm
1 ), p̂(Πm

2 ), · · · , p̂(Πm
m!−1)

}
, as described in the previous

section. Finally, p̂ is used to calculate PE as

PE(x, m, N) = −
m!−1

∑
k=0

p̂(Πm
k )log p̂(Πm

k ), ∀ p̂(Πm
k ) > 0 (3)

which essentially coincides with Equation (2). This entropy can be further normalised by the embedded
dimension m, enabling the PE comparison for different m and by log (m!). There are versions based
on Reny or Tsallis entropies instead [14].

2.2. Clustering Algorithm

The objective of a clustering algorithm is to find in an unsupervised way natural groups in
any dataset according to certain features and a dissimilarity measure or metric [29]. Specifically, the
purpose of using a clustering algorithm in this study is to separate automatically the classes in the
experimental datasets based on the relative frequencies of motifs.

The selection of a specific method of clustering among the thousands available depends on the
features of the input data, the achievable accuracy, implementation issues, and computational cost,
among other possible requirements [30]. In any case, the goal is to minimise the intracluster distance
or dissimilarity between objects (time series) and maximise the intercluster one [31].

We specifically chose the k-means clustering algorithm [32]. This is probably the most widely
used and known clustering algorithm, and, after more than 50 years since its introduction [33],
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it remains fully in use, in its original form or in its many spawned evolutions [34]. It is also simple
to implement and available in many software tools and libraries. We have also previously used this
method successfully [4,35–37].

The input to the clustering algorithm in this case is a set of time series defined by their features,
their estimated probabilities

{
p̂(Πm

0 ), p̂(Πm
1 ), p̂(Πm

2 ), · · · , p̂(Πm
m!−1)

}
. The dissimilarity d between two

time series, i and j, will correspond to the distance between their two associated estimated probabilities
vectors d

(
p̂i, p̂j

)
. This distance will be based on the Euclidean metric [38]. The number of clusters is

set in advance as 2 (to account for the two classes included in all the experimental datasets), avoiding
one of the main problems in many clustering algorithms [39].

Before the k-means iteration takes place, it is necessary to obtain an initial set of centroids from
which an initial partition is computed. There are also many methods to achieve this initial set [40],
including random centroid selection [41]. The clustering performance may greatly depend on this [42],
as k-means does not guarantee global optimality. For repeatability, we chose a max–min scheme to
choose the two centroids [43]. The first record in the experimental database was taken as the centroid
of one class, and the furthest to this one in terms of d was the initial centroid for the other class
(max approach). The corresponding partition can then be obtained assigning each time series to its
closest centroid (min approach). This way, the results will not alter across the experiments, at the
expense of a possible suboptimal centroid selection [42].

At this point the k-Means iterations can take place. The centroids are replaced by an arithmetic
partition average (stated another way, the histograms of all the time series assigned to a centroid are
averaged), and the partition is built again using the new centroids. This process is repeated until a
convergence criterion is met or a number of iterations is reached [44]. In this work, a fixed number
of 10 iterations was used to keep the computational cost low and constant. This can also come at the
expense of a loss of performance, but the goal of the present study was not to design a classifier, but to
illustrate how the estimated motif probabilities as a feature vector can enhance the discriminating
power of PE.

In general, the time complexity of the standard k-means clustering algorithm is O(lskm!),with l
being the number of iterations, s being the number of objects (size of the dataset), k being the number
of clusters and m! being the dimension of the input vector [45]. In each iteration, the distance to each
centroid from each object has to be computed. That makes sk distances. As each distance entails
an arithmetic operation with each vector component, then each time a partition is computed needs
at least skm! operations. As this is repeated at each iteration, the global computational cost can be
roughly estimated as O(lskm!), as stated. However, this is a very conservative upper bound for the
algorithm complexity since this a worst case approach [46]. Moreover, further optimisations can be
applied [47,48].

In practice, l << s, k << s and m << s, being the number of time series s the main factor
influencing the computational cost. However, m! grows very fast, and the clustering task may soon
become a high-dimensional clustering problem [49]. Fortunately, as already demonstrated in [23],
only a few features, namely, histogram bins in the present paper, are responsible for differences among
classes (or many bins are just 0), and therefore, more efficient sparse clustering algorithm versions
can be used instead [50]. Besides, as m grows, the compensation probability among histogram bins
decreases, as occurs for the sum of several dice [51] when the number of dice increases.

The performance of the method was quantified in terms of classification accuracy in all cases,
given by the percentage of correctly classified times series. Further details of the k-means algorithm
can be found in many scientific papers, such as in [32,52]. Improvements to the standard k-means
algorithm used in this paper are also extensively described elsewhere [53–56].

2.3. Hidden Markov Models

HMM are stochastic processes that can be used to generate symbol sequences [57]. They consist
of a number of nodes representing M states, Q = {q0, q1, · · · , qM−1}. These nodes are interconnected
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by links related to a transition probability between any two states, in other words, the probability
of being at state qj at time t + 1 if we were at state qi at previous time t. In principle, any HMM
includes a bidimensional transition probability matrix A =

{
aij
}

with M rows and M columns, in its
simplest and more generic case. Thus, aij = p

[
Statet+1 = qj|Statet = qi

]
. There also exists another set

of probabilities of emitting a specific symbol at each state qi; but, in this work, each state generates a
single entire motif (ordinal pattern) with probability 1, and therefore these probabilities will not be
considered.

To discover the values of all the parameters involved in HMMs, three problems have to be solved
first [57]:

• To compute the probability of observing a certain input vector (Evaluation).
• To find a state transition sequence that maximizes the probability of a certain input vector

(Generation).
• To induce a model that maximises the probability of a certain input vector (Learning).

However, this study uses HMM only for generation of synthetic time series based on constrains
related to possible ordinal patterns. Moreover, the generation will be used in the opposite direction.
That is, the input to the HMM will be the transition probabilities between states, and with a
random excitation, a sequence of ordinal patterns will be obtained to generate a synthetic time
series accordingly.

For m = 3, the HMM used will have six states, from q0 to q5. The correspondence between states
and ordinal patterns will be q0 ← (0, 1, 2), q1 ← (0, 2, 1), q2 ← (1, 0, 2), q3 ← (1, 2, 0), q4 ← (2, 1, 0)
and q5 ← (2, 0, 1). This means that if, at time t, for example, state q3 is reached, the ordinal pattern to
consider must be (1,2,0), and therefore a synthetic random sample subsequence x3

i following this order
will have to be generated and appended to the complete time series. The topology will be ergodic,
considering state transition probabilities aij between any two states in general. The structure of this
model is shown in Figure 2a. The initial state of the HMM, Statet=0 = qi, will be chosen randomly.

However, not all the transitions between ordinal patterns are possible, as there are two samples
overlapping between consecutive subsequences. Therefore, the order and values of the last two
samples of subsequence x3

i−1 have to be the same for the two first samples of x3
i . In practical terms,

these forbidden transitions will be represented by a specific aij = 0, in contrast to the possible or
admissible transitions, where aij > 0. This will be explained in more detail in next section. The resulting
model applying these constraints is shown in Figure 2b, and this is the model that will be used to
generate synthetic time series.
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(a) Theoretical complete Markov model for transitions
between ordinal patterns for m = 3. All the transitions,
admissible (aij > 0) and forbidden (aij = 0) have
been included for completeness, although not all the
variables are shown to facilitate readability.
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(b) Real Markov model to generate motif transitions for
m = 3. In this case, only admissible transitions (aij >

0) are depicted. This model can be used to generate
time series that exhibit different histogram distributions,
depending on the values assigned to the state transition
probabilities.

Figure 2. Basic Markov models for consecutive ordinal patterns in a time series for m = 3.

2.4. Experimental Dataset

The experimental dataset was composed of synthetic and real-life records. The synthetic time
series were devised to fine tune the content in terms of ordinal patterns and enable the study of specific
effects. This way, the study would be capable of unveiling the possible weaknesses of the methods
assessed. The real-life dataset was chosen with the objective of translating into practical terms the
lessons learnt with the synthetic data.

2.4.1. Synthetic Dataset

The creation of a controlled set of ordinal patterns is not a straightforward task. Even for
low m values, there are many constraints that have to be taken into account. For example, as
described in [58], and also stated above, not all the transitions between consecutive motifs in
PE are possible. These transitions are summarised for m = 3 in Table 1. The rationale of
this behaviour is that consecutive subsequences overlap. Namely, given an initial subsequence
xi = {xi, xi+1, xi+2, . . . , xi+m−1}, the next consecutive subsequence xi+1 shares all the values with xi
except the first one, as xi+1 = {xi+1, xi+2, xi+3, . . . , xi+m}. In other words, the last m− 1 samples of xi
are the first m− 1 samples of xi+1. Consequently, the order found for {xi+1, xi+2, xi+3, . . . , } has to be
the same both in xi and in xi+1. For example, let x3

i = {2.13, 4.56, 6.29} for m = 3, with an associated
ordinal pattern π3

i = {0, 1, 2}. The next subsequence will have to be of the form xi+1 = {4.56, 6.29, λ}.
There are three possible regions where the value of λ can fall: λ < min(4.56, 6.29),

min(4.56, 6.29) < λ < max(4.56, 6.29) or λ > max(4.56, 6.29) (equal values are not included to
avoid ties [59,60]). In the first case, it would correspond to an ordinal pattern π3

i = {2, 0, 1}; in the
second case, to π3

i = {0, 2, 1} and; in the last case, to π3
i = {0, 1, 2}, being any other ordinal pattern

impossible to achieve. Analytically, this could have been anticipated from all the motifs that respect
the relative order of (4.56, 6.29) ({0, 1}): {2, 0, 1} , {0, 2, 1} and {0, 1, 2}. Although more complex,
this reasoning can be extrapolated for m > 3.
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Table 1. Admissible and forbidden transitions between consecutive motifs for m = 3.

Initial Motif Admissible Next Motifs Forbidden Next Motifs

{0, 1, 2}
{0, 1, 2} {1, 2, 0}
{0, 2, 1} {2, 1, 0}
{2, 0, 1} {1, 0, 2}

{0, 2, 1}
{1, 2, 0} {0, 1, 2}
{2, 1, 0} {0, 2, 1}
{1, 0, 2} {2, 0, 1}

{1, 2, 0}
{0, 1, 2} {1, 2, 0}
{0, 2, 1} {2, 1, 0}
{2, 0, 1} {1, 0, 2}

{2, 0, 1}
{1, 2, 0} {0, 1, 2}
{2, 1, 0} {0, 2, 1}
{1, 0, 2} {2, 0, 1}

{2, 1, 0}
{1, 2, 0} {0, 1, 2}
{2, 1, 0} {0, 2, 1}
{1, 0, 2} {2, 0, 1}

{1, 0, 2}
{0, 1, 2} {1, 2, 0}
{0, 2, 1} {2, 1, 0}
{2, 0, 1} {1, 0, 2}

This behaviour of the transitions between consecutive motifs fits very well into a HMM [57].
The synthetic time series to be created can be considered an overlapping sequence of random values
whose order is given by a motif from a finite and known alphabet. This knowledge of the motifs,
their sequence and their probabilities of occurrence, enables the definition of a discrete time invariant
stochastic model able to generate synthetic sequences. These sequences can exhibit a desired statistical
distribution of motifs given the appropriate input excitation and state transition probabilities.

Of the initially possible 36 state transition probabilities, those 18 corresponding to forbidden
transitions were permanently fixed to 0 in the HMM. The other 18 non-null state transition probabilities
were grouped according to the state of origin of the transition. Thus, a00, a01 and a05 were considered
a group of state transition probabilities from state q0, a12, a13 and a14 for q1, a20, a21 and a25 for q2,
a30, a31 and a35 for q3, a42, a43, and a44 for q4, and finally, a52, a53, a54 for q5. To avoid configuring 18
probabilities for each realisation of the experiments with synthetic records, the probabilities were set
using these groups of three. For example, when stated that probabilities were set as aij =

{
1

10 , 2
10 , 7

10

}
,

a12 = 1
10 , a13 = 2

10 , a14 = 7
10 , a20 = 1

10 , a21 = 2
10 , a25 = 7

10 and so on.
Using the model in Figure 2b, and a suitable random excitation, the time series of any length with

subsequences whose ordinal patterns are equally or unequally probable can be generated easily. As an
example, see Figure 3a, whose histogram in Figure 3b resembles that of a random time series, like the
one shown in Figure 1d. The random excitation determines the final transitions that take place at each
t from an initial random state. The path followed, in terms of qi, chains the ordinal patterns emitted,
and from these ordinal patterns, subsequences of time series values are also randomly generated,
ensuring they overlap with the previous ones and abide by the order emitted. These subsequences are
generated ensuring also that ties do not take place, and therefore a clear falling or rising trend may be
exhibited, depending on the dominant ordinal pattern, if any.
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(a) Realisation of a random synthetic time series
generated using the HMM described in Figure 2b

and set of probabilities aij =
{
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state transitions.

(0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,1,0) (2,0,1)0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
fr

eq
ue

nc
y

(p̂
)

(b) Histogram of ordinal patterns corresponding to
the time series on the left. An unbiased model yields
a uniform distribution of motifs in histogram bins.

Figure 3. Example of a synthetic record generated using an unbiased HMM and its resulting uniform
motif relative frequencies.

If the transition probabilities are not equal, what we obtain is a biased model instead that results
in a nonuniform histogram of ordinal patterns. For example, Figure 4a shows a synthetic time series
resulting from probabilities aij =

{
1

10 , 1
10 , 8

10

}
. Its histogram is depicted on its right, in Figure 4b.
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(b) Histogram of ordinal patterns corresponding to
the time series on the left. A biased model yields a
nonuniform distribution of motifs in histogram bins.

Figure 4. Example of a synthetic record generated using a biased version of the Markov model and its
resulting nonuniform motif relative frequencies.

In the experiments, two classes of synthetic records were generated using the approach described,
termed Class A and Class B, with two sets of different probabilities. A total of 100 sequences of length
1000 samples were randomly created for each class.

2.4.2. Real Dataset

The real dataset used in the experiments is composed of body temperature records. This dataset
is the same previously used in other works [16], where additional details can be found. It contains 30
records and two classes. One class corresponds to a group of healthy individuals monitored during
their daily activities: the control group. The size of this group is 16. The second group, the pathological
group, contains 14 records of admitted patients at the Internal Medicine ward of the Teaching Hospital
of Móstoles, Madrid. These patients developed a fever at least 24h before the temperature data
acquisition started. An example of records of each class is shown in Figure 5.
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Figure 3. Example of a synthetic record generated using an unbiased HMM and its resulting uniform
motif relative frequencies.

If the transition probabilities are not equal, what we obtain is a biased model instead that results
in a nonuniform histogram of ordinal patterns. For example, Figure 5a shows a synthetic time series
resulting from probabilities aij =

{
1

10 , 1
10 , 8

10

}
. Its histogram is depicted on its right, in Figure 5b.
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Figure 3. Example of a synthetic record generated using an unbiased HMM and its resulting uniform
motif relative frequencies.

If the transition probabilities are not equal, what we obtain is a biased model instead that results
in a nonuniform histogram of ordinal patterns. For example, Figure 4a shows a synthetic time series
resulting from probabilities aij =

{
1

10 , 1
10 , 8

10

}
. Its histogram is depicted on its right, in Figure 4b.
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Figure 4. Example of a synthetic record generated using a biased version of the Markov model and its
resulting nonuniform motif relative frequencies.

In the experiments, two classes of synthetic records were generated using the approach described,
termed Class A and Class B, with two sets of different probabilities. A total of 100 sequences of length
1000 samples were randomly created for each class.

2.4.2. Real Dataset

The real dataset used in the experiments is composed of body temperature records. This dataset
is the same previously used in other works [16], where additional details can be found. It contains 30
records and two classes. One class corresponds to a group of healthy individuals monitored during
their daily activities: the control group. The size of this group is 16. The second group, the pathological
group, contains 14 records of admitted patients at the Internal Medicine ward of the Teaching Hospital
of Móstoles, Madrid. These patients developed a fever at least 24h before the temperature data
acquisition started. An example of records of each class is shown in Figure 5.
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motif relative frequencies.

If the transition probabilities are not equal, what we obtain is a biased model instead that results
in a nonuniform histogram of ordinal patterns. For example, Figure 4a shows a synthetic time series
resulting from probabilities aij =

{
1

10 , 1
10 , 8

10

}
. Its histogram is depicted on its right, in Figure 4b.

0 200 400 600 800 1000Samples

A
m

pl
it

ud
e

(N
or

m
al

is
ed

)

(a) Realisation of a random synthetic time series
generated using the HMM described in Figure 2b and

set of probabilities aij =
{

1
10 , 1

10 , 8
10

}
for admissible

state transitions.

(0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,1,0) (2,0,1)0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
fr

eq
ue

nc
y

(p̂
)

(b) Histogram of ordinal patterns corresponding to
the time series on the left. A biased model yields a
nonuniform distribution of motifs in histogram bins.

Figure 4. Example of a synthetic record generated using a biased version of the Markov model and its
resulting nonuniform motif relative frequencies.

In the experiments, two classes of synthetic records were generated using the approach described,
termed Class A and Class B, with two sets of different probabilities. A total of 100 sequences of length
1000 samples were randomly created for each class.

2.4.2. Real Dataset

The real dataset used in the experiments is composed of body temperature records. This dataset
is the same previously used in other works [16], where additional details can be found. It contains 30
records and two classes. One class corresponds to a group of healthy individuals monitored during
their daily activities: the control group. The size of this group is 16. The second group, the pathological
group, contains 14 records of admitted patients at the Internal Medicine ward of the Teaching Hospital
of Móstoles, Madrid. These patients developed a fever at least 24h before the temperature data
acquisition started. An example of records of each class is shown in Figure 5.
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Figure 4. Example of a synthetic record generated using a biased version of the Markov model and its
resulting nonuniform motif relative frequencies.

In the experiments, two classes of synthetic records were generated using the approach described,
termed Class A and Class B, with two sets of different probabilities. A total of 100 sequences of length
1000 samples were randomly created for each class.

2.4.2. Real Dataset

The real dataset used in the experiments is composed of body temperature records. This dataset
is the same previously used in other works [16], where additional details can be found. It contains 30
records and two classes. One class corresponds to a group of healthy individuals monitored during
their daily activities: the control group. The size of this group is 16. The second group, the pathological
group, contains 14 records of admitted patients at the Internal Medicine ward of the Teaching Hospital
of Móstoles, Madrid. These patients developed a fever at least 24h before the temperature data
acquisition started. An example of records of each class is shown in Figure 5.
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Figure 5. Example of records from the two classes of body temperature data. Top: Pathological.
Bottom: Control.

3. Experiments and Results

The discriminating power of PE has been well demonstrated in a number of publications
[16,24,60–62]. As a single feature, using a threshold, it has been possible to successfully classify
a disparity of records of different types.

Initially, the experiments were devised to assess the sensitivity of PE in terms of histogram
differences that led to PE differences as well. The two class synthetic records used in these
experiments where generated using unbiased and biased versions of the HMM described above.
The unbiased model using equal transition probabilities aij =

{
1
3 , 1

3 , 1
3

}
(Class A) and biased versions,

with unbalanced probabilities defined by the relationship aij = {α, α, 1− 2α}, with 0 ≤ α ≤ 0.5
(Class B). In this case, PE was expected to achieve a classification accuracy close to 100% using records
from the synthetic dataset, given that Class A and B are very different.

The results of this test are shown in Table 2. Class A was always fixed to an unbiased version (only
the initial state was chosen at random), compared against different probability combinations featuring
a biased histogram for Class B. The results confirmed that these two classes were easily separable,
with poor classification performance only for values of α really close to the unbiased version of 1

3 .
The classification accuracy is given as the average value and standard deviation of the 10 realisations
of each experiment, where at least the initial state could vary.

In the next set of experiments, transition probabilities were more varied for both synthetic classes.
The main objective in this case was to find histograms with similar amplitude bins but at different
locations (motifs) in order to assess the possible PE loss of discriminating power. Note that the
relationship between probabilities and motifs is given by the graphical structure of the model shown
in Figure 2b. In other words, an asymmetry in the transition probabilities does not necessarily entail
the same asymmetry in the histogram bins, since the state (motif emitter) can be reached from multiple
paths. These results are shown in Table 3.
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Table 2. Classification performance of permutation entropy (PE) as a single feature when one class of
synthetic records was generated using a balanced set of probabilities, and the other class using a varied
set of probabilities.

Class A Class B Classification
Transition Probabilities Transition Probabilities Accuracy (%)

{
1
3 , 1

3 , 1
3

} {
1

10 , 1
10 , 8

10

}
100± 0{

1
3 , 1

3 , 1
3

} {
1
9 , 1

9 , 7
9

}
100± 0{

1
3 , 1

3 , 1
3

} {
1
8 , 1

8 , 6
8

}
100± 0{

1
3 , 1

3 , 1
3

} {
1
7 , 1

7 , 5
7

}
100± 0{

1
3 , 1

3 , 1
3

} {
1
6 , 1

6 , 4
6

}
100± 0{

1
3 , 1

3 , 1
3

} {
1
5 , 1

5 , 3
5

}
100± 0{

1
3 , 1

3 , 1
3

} {
2
7 , 2

7 , 3
7

}
99.5± 0.57{

1
3 , 1

3 , 1
3

} {
4

13 , 4
13 , 5

13

}
87.4± 1.88{

1
3 , 1

3 , 1
3

} {
1
3 , 1

3 , 1
3

}
54.8± 1.20{

1
3 , 1

3 , 1
3

} {
3

10 , 3
10 , 4

10

}
96.1± 1.65{

1
3 , 1

3 , 1
3

} {
1
4 , 1

4 , 2
4

}
100± 0

Table 3. Classification performance of PE as a single feature when both synthetic classes are generated
using a biased set of probabilities.

Class A Class B Classification
Transition Probabilities Transition Probabilities Accuracy (%)

{
12
20 , 5

20 , 3
20

} {
3
20 , 5

20 , 12
20

}
87.5± 2.87{

13
20 , 4

20 , 3
20

} {
3
20 , 4

20 , 13
20

}
95.3± 0.83{

10
20 , 6

20 , 4
20

} {
9
20 , 3

20 , 8
20

}
85.4± 1.43{

1
2 , 0, 1

2

} {
0, 1

2 , 1
2

}
55.0± 2.89 (Figure 6){

1
2 , 0, 1

2

} {
1
2 , 1

2 , 0
}

100± 0 (Figure 7)

Some of the experiments in Table 3 are representative of the PE weakness addressed in the
present paper: very similar relative frequencies in different motifs lead to the same PE value, and
therefore classes become indistinguishable from a classification perspective. Specifically, this is the
case generated by means of transition probabilities

{
1
2 , 0, 1

2

}
and

{
0, 1

2 , 1
2

}
. The time series generated

using these probabilities are shown in Figure 6a,b, respectively. Despite having a very different motif
distribution, the p̂ values are almost identical, at different positions, yielding similar PE values.

For example, for
{

1
2 , 0, 1

2

}
, the main motifs were (0,1,2) and (2,0,1), followed by (1,0,2) and (1,2,0).

Motifs (0,2,1) and (2,1,0) were negligible, as depicted in Figure 6c. On the other hand, for
{

0, 1
2 , 1

2

}
,

the main motifs were (1,0,2) and (2,1,0), then (0,2,1) and (2,1,0), with no ordinal patterns (0,1,2) and
(1,2,0) (see Figure 6d). However, bin amplitudes were very similar, with an equal mapping on a single
PE value.
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Figure 6. Equivalent histograms from the PE point of view despite clear differences in ordinal pattern
distribution. When the estimated probability is computed, the PE measure is more or less the same
since the differences in bin locations are lost, only amplitudes matter.

However, the results in Table 3 for
{

1
2 , 0, 1

2

}
and

{
1
2 , 1

2 , 0
}

, despite having a similar transition
probability set of values, are completely different from an histogram perspective, and that is why the
classification accuracy was 100%. This is very well illustrated in Figure 7a,b.
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Figure 7. Contrary to case depicted in Figure 6, differences in ordinal pattern distribution are supported
by differences in histogram amplitudes, which results in significant PE differences as well.

Figures 6 and 7 very well summarise what can occur in a real case using PE as the distinguishing
feature of a classification procedure (or any other similar mapping approach). Although the case in
Figure 7 is the most frequent case, it is worth exploring alternatives to deal with poor time series
classification performances based on PE, as this study proposes. Along this line, the results shown in
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Figure 7. Contrary to case depicted in Figure 6, differences in ordinal pattern distribution are supported
by differences in histogram amplitudes, which results in significant PE differences as well.

Figures 6 and 7 very well summarise what can occur in a real case using PE as the distinguishing
feature of a classification procedure (or any other similar mapping approach). Although the case in
Figure 7 is the most frequent case, it is worth exploring alternatives to deal with poor time series
classification performances based on PE, as this study proposes. Along this line, the results shown in

Figure 7. Contrary to case depicted in Figure 6, differences in ordinal pattern distribution are supported
by differences in histogram amplitudes, which results in significant PE differences as well.

Figures 6 and 7 very well summarise what can occur in a real case using PE as the distinguishing
feature of a classification procedure (or any other similar mapping approach). Although the case in
Figure 7 is the most frequent case, it is worth exploring alternatives to deal with poor time series
classification performances based on PE, as this study proposes. Along this line, the results shown in
Table 4 correspond to the same experiments as in Tables 2 and 3, but using the relative frequencies
instead and the clustering algorithm as described in Section 2.2.
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Table 4. Classification performance achieved using the 6 estimated probability values as a feature
vector instead of the single PE value, for the previous experiments.

Class A Class B Classification
Transition Probabilities Transition Probabilities Accuracy (%)

{
1
3 , 1

3 , 1
3

} {
1

10 , 1
10 , 8

10

}
100± 0{

1
3 , 1

3 , 1
3

} {
1
5 , 1

5 , 3
5

}
100± 0{

1
3 , 1

3 , 1
3

} {
2
7 , 2

7 , 3
7

}
99.7± 0.51{

1
3 , 1

3 , 1
3

} {
4

13 , 4
13 , 5

13

}
96.0± 2.23{

1
3 , 1

3 , 1
3

} {
1
3 , 1

3 , 1
3

}
51.1± 1.74{

1
3 , 1

3 , 1
3

} {
3

10 , 3
10 , 4

10

}
99.0± 0.57{

12
20 , 5

20 , 3
20

} {
3

20 , 5
20 , 12

20

}
100± 0{

13
20 , 4

20 , 3
20

} {
3

20 , 4
20 , 13

20

}
100± 0{

10
20 , 6

20 , 4
20

} {
9

20 , 3
20 , 8

20

}
100± 0{

1
2 , 0, 1

2

} {
0, 1

2 , 1
2

}
100± 0{

1
2 , 0, 1

2

} {
1
2 , 1

2 , 0
}

100± 0

The classification performance achieved in the experiments in Table 4 were clearly superior to
those achieved using only PE, as hypothesised. For those cases where PE had a high discriminating
power already, using the raw estimated probabilities vector and the k-Means clustering algorithm,
such power was maintained or even slightly increased. For the specific case described in Figure 6,
where PE failed as commented above, this time the performance achieved an expected 100%, given the
differences in the motif distribution. Only when there were no significant differences, with equal
transition probabilities, both methods obviously failed.

The experiments were repeated using real body temperature time series from the Control and
Pathological datasets described in Section 2.4.2. The relative frequencies of each motif for the first
subset are numerically shown in Table 5 for each record. The same for pathological records, in Table 6.

Table 5. Individual results for the estimated frequencies for each motif using the control records.

Record (0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,1,0) (2,0,1)

Control00 0.4058 0.0836 0.0941 0.1255 0.1548 0.1359
Control01 0.5376 0.0899 0.0836 0.0878 0.1192 0.0815
Control02 0.3849 0.0753 0.0836 0.1025 0.2426 0.1108
Control03 0.3870 0.0732 0.0878 0.1129 0.2092 0.1297
Control04 0.3242 0.1276 0.1255 0.1171 0.1903 0.1150
Control05 0.3598 0.0962 0.0983 0.1213 0.2008 0.1234
Control06 0.3912 0.0815 0.0648 0.1401 0.1987 0.1234
Control07 0.3410 0.1004 0.1317 0.0815 0.2322 0.1129
Control08 0.3368 0.0941 0.0983 0.1171 0.2301 0.1234
Control09 0.3159 0.1171 0.1255 0.1234 0.1841 0.1338
Control10 0.4560 0.0920 0.0962 0.1129 0.1276 0.1150
Control11 0.3556 0.1004 0.1171 0.1213 0.1694 0.1359
Control12 0.5334 0.0732 0.0753 0.0899 0.1380 0.0899
Control13 0.2615 0.1066 0.1234 0.1317 0.2301 0.1464
Control14 0.4058 0.0836 0.0941 0.1255 0.1548 0.1359
Control15 0.4518 0.0774 0.0878 0.1276 0.1192 0.1359

Mean 0.3905 0.0920 0.0992 0.1149 0.1813 0.1218
StdDev 0.0751 0.0157 0.0198 0.0165 0.0421 0.0174
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Table 6. Individual results for the estimated frequencies for each motif using the pathological records.

Record (0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,1,0) (2,0,1)

Pathological00 0.4054 0.0838 0.0920 0.1085 0.1938 0.1161
Pathological01 0.3260 0.0960 0.1036 0.1207 0.2244 0.1290
Pathological02 0.4496 0.0659 0.0683 0.1163 0.1822 0.1175
Pathological03 0.3405 0.0980 0.0926 0.1089 0.2534 0.1062
Pathological04 0.2191 0.1271 0.1348 0.1374 0.2347 0.1465
Pathological05 0.2736 0.0979 0.1083 0.1348 0.2407 0.1444
Pathological06 0.3805 0.0979 0.0992 0.1204 0.1793 0.1224
Pathological07 0.3331 0.0950 0.0950 0.1347 0.2072 0.1347
Pathological08 0.4361 0.0711 0.0660 0.1219 0.1873 0.1174
Pathological09 0.3103 0.1065 0.1019 0.1287 0.2283 0.1241
Pathological10 0.4342 0.0756 0.0919 0.0968 0.1881 0.1131
Pathological11 0.3447 0.1224 0.1155 0.1265 0.1716 0.1190
Pathological12 0.3590 0.0972 0.1072 0.1054 0.2154 0.1154
Pathological13 0.4056 0.0838 0.0943 0.0950 0.2154 0.1056

Mean 0.3584 0.0942 0.0979 0.1183 0.2087 0.1222
StdDev 0.0657 0.0174 0.0173 0.0137 0.0255 0.0125

Temperature records of the experimental dataset exhibit the same behaviour than synthetic
records with transition probabilities

{
1
2 , 0, 1

2

}
and

{
0, 1

2 , 1
2

}
. Using PE as the single classification

feature, it was not possible to find differences between classes, with a nonsignificant accuracy of
60%. With the clustering and probability vector approach, this accuracy raised up to the 90%,
with only three misplaced time series (19 objects assigned to the Control class, 16 really Control
ones and the three errors, and 11 to the pathological one). The final centroids for each class were
{0.3812, 0.0928, 0.0992, 0.1166, 0.1885, 0.1229} and {0.3667, 0.0931, 0.0976, 0.1177, 0.2035, 0.1218}.

Although it was not the objective of the present study to design a classifier, to better support
the results using the estimated probabilities instead of PE, a leave-one-out (LOO) [63] classification
analysis was conducted on the temperature data. A total of 100 realisations are used. In each realisation,
a record from each class (with replacement) was randomly omitted in the k-means analysis. Then,
the resulting centroids were used for classification of the omitted records using a nearest neighbour
approach. The number of errors in this case were 18, that is, 18 records of the Pathological group were
incorrectly classified as Control records, whereas no Control record was misclassified as Pathological.
Therefore, the global accuracy using LOO and the probability vectors of the temperature records was
82%.

4. Discussion

The initial results in Table 2 give a sense of the PE general behaviour, in terms of discriminating
power. For very significantly different transition probabilities, the classification performance easily
reaches 100%. As these probabilities become closer, the error increases, and obviously, for the same
models, it is impossible to distinguish between the two classes (54.8%). It is important to note that the
probability window for which performance is not 100% is very narrow, from 0.33 to 0.3 accuracy goes
from 54.8% up to 96.1%, which, in principle, confirms the high discriminating power of PE.

When both state transition probabilities are biased, the classification results are not 100% so
often, as Table 3 illustrates. Moreover, although the probabilities are the same but in a different order,
they result in significant differences in the histograms translated into a still high classification accuracy
due to the asymmetry of the model (Figure 2b). In a few transition probabilities cases, as for

{
1
2 , 0, 1

2

}

and
{

0, 1
2 , 1

2

}
, these histogram differences can be numerically compensated and lose the discriminating

capability, as hypothesised in this study.
Table 4 demonstrates this point by applying a clustering algorithm to the set of relative frequency

values instead of the resulting PE value. For all the theoretically separable cases, this scheme yields a
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performance of at least 96%, and, in all cases, the performance is higher than that achieved using only
PE. It is especially significant the

{
1
2 , 0, 1

2

}
and

{
0, 1

2 , 1
2

}
case, a clear representative of the possible

detrimental effects of mapping to a single feature. From a nonsignificant classification accuracy of
55%, the clustering approach achieves a 100% accuracy, since the class differences are very apparent
in the set of relative frequencies (Figure 6c,d). Obviously, all methods fail when the state transition
probabilities are the same (51.1% accuracy in this case for 1

3 probabilities). Although with PE the result
was 54.8% accuracy, it should not be interpreted as an improvement over the 51.1%, since both results
were not significant, and correspond to a plain random guess that can exhibit a minor bias due to the
limited number of realisations, 10 in this case.

Tables 5 and 6 demonstrate, with real data, the possible detrimental impact on PE discriminating
power mapping all the relative frequencies on a single scalar may exert, confirming what synthetic
records already showed. The numerical values listed enable a detailed comparison of each motif
contribution to the possible differences between classes. The main differences take place for
patterns (0,1,2) and (2,1,0), at the first and fifth data columns, respectively. When using PE values,
these differences become less noticeable, and that is why it is not possible to separate significantly
the Control and Pathological groups of these records. Moreover, these relative frequencies go in
opposite directions, that is, they are greater for the Control group in the first case (0.3905 > 0.3584) and
smaller in the second case (0.1813 < 0.2087), with relatively small standard deviations, and therefore
compensation is more likely. It is also important to note that the final clustering centroids very well
captured the histogram structure of both classes.

The LOO analysis provided a more realistic picture of the possible performance if a classifier
had to be designed for the experimental dataset of temperature records. The accuracy went down
slightly, from 90% using the entire dataset, down to 82% when a record of each class was omitted in
the centroid computation. Anyway, this is still a very high classification accuracy, and it is important
to note that PE alone was unable to find significant differences in this case, even when using all the
records.

The computational cost using m! features instead of a single PE value was obviously expected to
be higher. Therefore, a trade–off between accuracy and execution time should be considered. Using a
Windows c© 8 computer with an Intel Core i7-4720HQ c© 2.60GHz processor, with 16GB of RAM and
C++ programming language, the execution time for the 100 LOO iterations using temperature records
was 5.92s for m = 3, 21.1s for m = 4 and 104.1s for m = 5, without any algorithm optimisation. With a
single feature, PE, the execution time was 2.48s.

The embedded dimension m is also related to the amount of information captured by a
subsequence. A multiscale approach, with different time scales for PE [64,65], could also contribute to
gain more insights into the dynamics of the time series. In this regard, it has been demonstrated that
higher values of m frequently provide more discriminating power [24,60], as well as an optimal set
of time delays [66]. However, using the approach proposed, it would be first necessary to assess the
significance of the m! features, even for each time delay, to keep the computational cost reasonably low.

5. Conclusions

The distinguishing power of PE is very high and is sufficient for many time series classification
applications. PE has been successfully employed as a single feature in a myriad of technological and
scientific fields.

However, sometimes the distinguishing features embedded in the histogram bins can become
blurred when Equation 3 is applied. In order to avoid this problem, before discarding PE as the
classification feature, or any other measure based on this kind of many-to-one mapping approach,
we propose to look at the previous step of the PE algorithm and analyse the discriminating power of
the relative frequencies instead.

The experimental set had to be chosen with this problem in mind. To control, up to a certain
extent, the distribution of ordinal patterns in the time series used, we first developed a method based
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on HMM to create synthetic time series that satisfied certain motif emission constraints, and caused
PE to fail at least in some cases. In addition, real-time series and body temperature records were also
included, as they also exhibited this same problem under study.

The use of a vector of features instead of a single value can be seen as a typical multifeature
extraction stage of a pattern recognition task. Almost any clustering algorithm is perfectly suited
to deal with this task. For illustrative purposes only—not for optimisation—we applied a classical
k−Means algorithm and a standard configuration.

The results using this approach confirmed, for both datasets, that using the original histogram
values, the discriminating power of PE can be enhanced. As a consequence, we propose, when possible,
to analyse the information provided by each histogram bin jointly, as is the case in the present study,
or separately, in a kind of feature selection analysis, as in [23], to maximise the information provided by
ordinal pattern distribution beyond the scalar PE value. This approach can be arguably be exported to
many other methods, and open a new line of research combining event-counting metrics with pattern
recognition or machine learning algorithms.

Obviously, if there are no differences at the histogram level; for example, when temporal
correlations are the same, any method based on such information will fail, that is, both PE and
the method proposed. This scenario can be illustrated trying to distinguish time series with random
Gaussian or uniform amplitude distributions. Despite the amplitude differences, it was not possible to
distinguish between both classes using PE or the method proposed. For such cases, we conducted a few
additional tests using measures better suited to amplitude differences in order to propose alternatives
to overcome this drawback. The most straightforward approach is to use methods such as ApEn or
SampEn, both amplitude-based, which achieved a classification accuracy close to 100% using Gaussian
and uniform amplitude distributions for classes. A solution more related to the present paper was to
use a PE derivative that included amplitude information [24]. In this regard, Weighted Permutation
Entropy [67] also achieved a very high classification accuracy, well above 80%.
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