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Abstract: Performance of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and
the influence of different parameters on HT-PEMFC is analyzed in this study. Firstly, mathemati-
cal expression for energy efficiency, power density, exergy destruction and exergetic performance
coefficient (EPC) are derived. Then, the relationship between the dimensionless power density,
exergy destruction rate, exergetic performance coefficient (EPC) and energy efficiency is compared.
Furthermore, the effect of flow rate, doping level, inlet pressure and film thickness are considered to
evaluate the performance of HT-PEMFC. Results show that EPC not only considers exergetic loss rate
to minimize exergetic loss, but also considers the power density of HT-PEMFC to maximize its power
density and improve its efficiency, so EPC represents a better performance criterion. In addition,
increasing inlet pressure and doping level can improve EPC and energy efficiency, respectively.

Keywords: HT-PEMFC; exergetic performance coefficient; performance optimization

1. Introduction

Among fuel cell types, the proton exchange membrane fuel cell (PEMFC) has been
widely used in mobile units and automobiles. A low-temperature proton exchange mem-
brane fuel cell (LT-PEMFC) operates at around 80 ◦C and is used in fuel cell vehicles.
Compared with LT-PEMFC, an HT-PEMFC operates at 120–200 ◦C and has a lot of advan-
tages, such as higher CO tolerance [1,2], simplified water and heat management [3] and
enhanced kinetics [4]. Hence, many studies [5–10] have been devoted to the HT-PEMFC.

Finite time thermodynamics (FTT) has been used to analyze various thermodynamic
processes and cycles [11–21] for several decades. The electrochemical model of PEMFC
can also be embodied into corresponding FTT model for thermodynamic performance
analysis and optimization to pursue maximum performances under operation conditions.
Currently, typical optimal FTT objective functions include exergy loss [22], exergy effi-
ciency [23–26], ecological performance coefficient [14,20,26–36], ecological function [14]
and entropy production rate [22,26]. Watowich et al. [37] used the optimal control theory
to determine the limit of the fuel cell operation process. Sieniutycz et al. [38,39] established
a steady-state model of the fuel cell and predicted the maximum power output from the
perspective of thermodynamic optimization. Liu et al. [25] developed a PEMFC power
system and established a FTT model including exergy destruction, exergy efficiency and
ecological function et. al. Results showed that fuel cell stack and heat exchanger were the
two components that caused the greatest exergy loss. Low current density can improve the
ecological performance and the power and exergetic efficiency of the system, but reduce the
exergy loss and the net power of the system. Ye et al. [23] analyzed the performance of an
HT-PEMFC under different operating conditions by exergy analysis, and the results showed
that higher operating temperature was beneficial to improve the efficiency and power of
the system, but relative humidity and operating pressure had little influence on the system.
Li et al. [14] analyzed the ecological performance of PEMFC and obtained the ecological
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performance coefficient ECOP = P/Tσ and ecological objective function ECOP = P− Tσ,
which were defined as the ratio of power to power loss and the difference between power
and power loss respectively. Guo et al. [24] obtained the optimal operation region of an
HT-PEMFC under different parameters based on the maximum power density and did not
compare different performance indexes and determine the optimal performance indexes.
Akkaya et al. [40] defined a novel exergetic performance coefficient (EPC) which was used
to analyze the performances of solid oxide fuel cell (SOFC) and compare it with other
performance criteria. It is a thermal-ecological index that combines the functions of energy
and exergy parameters. Therefore, EPC can be expected to better evaluate thermodynamic
processes and cycles including HT-PEMFCs than the ecological performance coefficient
and ecological objective function.

The purpose of this study is to evaluate HT-PEMFC by exergetic performance coef-
ficient (EPC) and compare it with other FTT indexes. Firstly, the HT-PEMFC model is
established which takes three kinds of polarization losses and leakage current density into
account. Then, the relationships between EPC, power density, exergy destruction rate
and energy efficiency are obtained. Finally, inlet pressure, doping level and film thickness
are taken as important operating parameters to evaluate their influence on HT-PEMFC
performances.

2. Exergetic Performance Coefficient (EPC) of High-Temperature Proton Exchange
Membrane Fuel Cell (HT-PEMFC)
2.1. Working Principle of HT-PEMFC

The structure and working principle of HT-PEMFC are shown in Figure 1 [26], which
mainly includes an anode, cathode, electrolyte and external load. The electrochemical
reaction equations of the HT-PEMFC are:

Anode rection : H2 → 2H+ + 2e− (1)

Cathodic reaction : 2H+ +
1
2

O2 + 2e− → H2O + heat (2)

Total reaction : H2 +
1
2

O2 → H2O + heat + electricity (3)

Membranes 2022, 12, 70 2 of 13 
 

 

by exergy analysis, and the results showed that higher operating temperature was bene-
ficial to improve the efficiency and power of the system, but relative humidity and op-
erating pressure had little influence on the system. Li et al. [14] analyzed the ecological 
performance of PEMFC and obtained the ecological performance coefficient 𝐸𝐶𝑂𝑃 =𝑃/𝑇𝜎 and ecological objective function 𝐸𝐶𝑂𝑃 = 𝑃 − 𝑇𝜎, which were defined as the ratio 
of power to power loss and the difference between power and power loss respectively. 
Guo et al. [24] obtained the optimal operation region of an HT-PEMFC under different 
parameters based on the maximum power density and did not compare different per-
formance indexes and determine the optimal performance indexes. Akkaya et al. [40] 
defined a novel exergetic performance coefficient (EPC) which was used to analyze the 
performances of solid oxide fuel cell (SOFC) and compare it with other performance cri-
teria. It is a thermal-ecological index that combines the functions of energy and exergy 
parameters. Therefore, EPC can be expected to better evaluate thermodynamic processes 
and cycles including HT-PEMFCs than the ecological performance coefficient and eco-
logical objective function. 

The purpose of this study is to evaluate HT-PEMFC by exergetic performance coef-
ficient (EPC) and compare it with other FTT indexes. Firstly, the HT-PEMFC model is 
established which takes three kinds of polarization losses and leakage current density 
into account. Then, the relationships between EPC, power density, exergy destruction 
rate and energy efficiency are obtained. Finally, inlet pressure, doping level and film 
thickness are taken as important operating parameters to evaluate their influence on 
HT-PEMFC performances. 

2. Exergetic Performance Coefficient (EPC) of High-Temperature Proton Exchange 
Membrane Fuel Cell (HT-PEMFC) 
2.1. Working Principle of HT-PEMFC 

The structure and working principle of HT-PEMFC are shown in Figure 1 [26], 
which mainly includes an anode, cathode, electrolyte and external load. The electro-
chemical reaction equations of the HT-PEMFC are: 

Anode rection: H2 → 2Hା + 2eି (1) 

Cathodic reaction: 2Hା + 12 Oଶ + 2eି → HଶO + heat (2) 

Total reaction: Hଶ + 12 Oଶ → HଶO + heat + electricity (3) 

Load

Catalytic layer Catalytic layerAnode Cathode

H2 in

Fuel out

H2

H2

H2

H+

H+

e– 

e– 

E– e– 

Air in

H2O and heat

Heat

H2O

O2

Membrane

e– e– 

 
Figure 1. Working principle of high-temperature proton exchange membrane fuel cell 
(HT-PEMFC). 

Figure 1. Working principle of high-temperature proton exchange membrane fuel cell (HT-PEMFC).

According to the working principle of HT-PEMFC, the hydrogen and air flow rate can
be expressed as follows:

.
mH2 = STa

jA
2F

(4)

.
mair = STc

jA
4·0.21·F (5)
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where STa and STc are hydrogen stoichiometry and air stoichiometry respectively; j is
current density; A is the cell active area; F is Faraday constant.

2.2. Thermodynamic Model of HT-PEMFC

The HT-PEMFC model is formulated on the basis of the following assumptions:

(1) The HT-PEMFC system is working under steady-state conditions;
(2) Kinetic and potential energy are neglected;
(3) All gases within the HT-PEMFC are assumed to be ideal gas;
(4) The environment condition is 1.013 bar (1 atm) and 25 ◦C; air consists of 79% nitrogen

and 21% oxygen;
(5) Anode outlet temperature is equal to the operating temperature;
(6) There is no leakage of hydrogen and oxygen within the HT-PEMFC structure.

For the HT-PEMFC, reversible potential can be given as Equation (6):

Er = E0
r +

∆S
nF

(T − T0) +
RT
nF

ln(
pH2 p0.5

O2

pH2O
) (6)

In Equation (6), E0
r is the ideal standard potential [26]; ∆S is the change of standard

molar entropy [26]; T is the operating temperature of HT-PEMFC; R is the gas constant.
For the HT-PEMFC, due to three types of overpotential which includes activation

overpotential Eact, concentration overpotential Econ and ohmic overpotential Eohm, its actual
output voltage is generally less than the reversible [26]. The actual output voltage can be
shown as Equation (7):

Ecell = Er − Eact − Eohm − Econ (7)

The power density of the HT-PEMFC can be derived as:

P = Ecell ·j·A (8)

where j is current density and A is the electrode effective surface area.
As an energy conversion device, the output efficiency [26] of HT-PEMFC can be shown

as Equation (9):

η = − P

∆
.

H
(9)

where ∆
.

H is the total energy absorbed from hydrogen and oxygen [26], it can be ex-
pressed as:

∆
.

H = − jA∆h
nF

(10)

where ∆h is the change of molar enthalpy.
The heat leakage rate [24] from HT-PEMFC to the environment can be represented by:

.
QL = KL AL(T − T0) (11)

where KL and AL represent the heat leakage coefficient and the corresponding heat leakage
area, respectively. T and T0 are, respectively, the temperature of the HT-PEMFC and the
environment.

According to the first law of thermodynamics, the remaining part of the thermal rate
from the HT-PEMFC can be expressed as:

.
QH = −∆

.
H − P−

.
QL =

A
nF

[−(1− η)j∆h− b1(T − T0)] (12)

where b1 = nFKL AL
A [24,41].
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2.3. Exergetic Performance Analysis

The output performance of HT-PEMFC is degraded due to different irreversibilities
including heat loss, friction between gas and channel, fuel mixing, leakage current, electro-
chemical reaction, and polarization. Exergetic analysis provides a standard for evaluating
the quality of energy released by HT-PEMFC and can represent the actual useful work of
energy.

The exergetic equilibrium equation of HT-PEMFC includes the total exergy of hydro-
gen and oxygen Ex f c

in , output power of HT-PEMFC Ex f c
d,out, exergetic loss generated by water

Ex f c
w,out, and irreversible heat loss Ex f c

d . Figure 2 shows the exergetic equilibrium of HT-
PEMFC. The exergetic equilibrium equation of HT-PEMFC is shown as Equation (13) [40]:

Ex f c
in = Ex f c

d,out + Ex f c
w,out + Ex f c

d (13)
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For HT-PEMFC, only physical exergy and chemical exergy is considered in the exergy
of HT-PEMFC reaction process. The expression of the total exergy can be written as:

ex = (ex)ph + (ex)ch (14)

Physical exergy [42,43] and chemical exergy [22,42] are expressed as:

(ex)ph = (h− h0)− T0(s− s0) (15)

(ex)ch = ∑ xn·ech
n + RT0 ∑ xn·lnxn (16)

where xn and ech
n are the molar fraction and the standard chemical exergy of H2, O2 and

H2O, respectively.
In HT-PEMFC, the total input exergy rate and the output exergy rate are shown as

follows:
.

exin =
jA
nF

(
exH2 + 0.5exO2

)
(17)

.
exout =

jA
nF

exH2O (18)

In practical application, energy depreciation is inevitable, including heat transfer,
chemical reaction friction and polarization. These irreversibilities will lead to exergetic
loss. Exergetic loss can be used to measure the degree of irreversibility of the process. The
greater exergetic loss, the greater irreversibility of HT-PEMFC thermodynamic process, and
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the less effective utilization of exergy. Exergy destruction rate of the HT-PEMFC can be
expressed as [43]:

ExD =
.

exin −
.

exout − P +
.

QH(1− T0/T) (19)

In the HT-PEMFC system, energy analysis can provide necessary fuel consumption
information, while exergetic performance analysis can evaluate the impact of irreversibility
in the system. From the perspective of better performance and ecology, an evaluation index
including energy and exergetic performance is defined as an alternative standard, which is
more conducive to engineering decisions and can be derived as [40]:

EPC =
P

ExD
=

Ecell ·j·A
.

exin −
.

exout − P +
.

QH(1− T0/T)
(20)

At the same time, due to the numerical differences among various indicators, in order
to better compare the relationship between EPC, P, η and ExD, dimensionless method
is adopted for the numerical calculation and analysis. The dimensionless function of
EPC, P, ExD and η are EPC = EPC/EPCmax, P = P/Pmax, ExD = ExD/ExDmax and
η = η/ηmax.

2.4. Optiaml Exergy Performance Coefficient

In order to find the performance limit of HT-PEMFC and the balance between energy
and exergy, this paper optimized the dimensionless power density, efficiency, exergy loss
rate and EPC of HT-PEMFC [44–49]. The doping level (DL), relative humidity (RH),
inlet pressure (p) and film thickness (tmem) corresponding to the optimal performance of
HT-PEMFC are obtained.

The current density, inlet pressure, film thickness and doping level are taken as the con-
straints condition of the dimensionless EPC. The expression is EPC = f (j, p, RH, DL, tmem).
When j, p, RH, tmem are constant, the expression is EPC = g(DL).

Therefore, the value of DLopt can be determined under optimal EPC performance.
However, using mathematical method and numerical algorithm, selecting EPC as objective
function when j, DL, RH, tmem or j, DL, RH, p is given, with the constraints p or tmem, one
can obtain the optimal EPC at an optimal popt or tmemopt .

3. Results and Discussion

The relevant parameters used in the HT-PEMFC model refer to the literature [22,26]
as shown in Table 1. Moreover, parametric studies are performed to investigate the HT-
PEMFC performance. According to Refs. [21,22,26], the variation ranges of operating
pressure p, doping level DL and film thickness tmem are listed in Table 2.

Table 1. Parameters used in the modeling.

Parameter Value

Faraday constant, F
(

C mol−1
)

96,485

Gas constant, R
(

J mol−1 K−1
)

8.314

Number of electrons, n 2
Operating temperature, T (K) 438 [22]

Anode pressure (atm) 1 [22]
Cathode pressure (atm) 1 [22]
Anode gas compositions 100% H2 [22]

Cathode gas compositions 21% O2/79% N2 [22]
The doping level, DL 10 [26]

The relative humidity, RH 3.8% [26]
Thickness of the electrolyte, tmem (cm) 0.005 [26]



Membranes 2022, 12, 70 6 of 13

Table 2. Variation ranges of p, DL and tmem.

Parameter Value

Hydrogen pressure, pH2 (atm) 1–5 [21]
Oxygen pressure, pO2 (atm) 1–5 [21]

The doping level, DL 2–10 [22,26]
Thickness of the electrolyte, tmem (cm) 0.001–0.01 [21]

3.1. Comparsion of Relationship between EPC, P, ExD and η

It can be seen from Figure 3 when EPC reaches the maximum value, the efficiency is
0.34, ExD/ExDmax is 0.4 and P/Pmax is 0.9414. This means the power density at EPCmax
is very close to the maximum. When P is at its maximum value, the efficiency is 0.27,
ExD/ExDmax is 0.53 and EPC/EPCmax is 0.83. Obviously, compared to Pmax, if EPCmax
is taken as the criterion, exergetic loss rate decreases by 23%, efficiency increases by 23%,
power density only decreases by 5%. Therefore, the EPC index is derived in this paper,
which not only considers exergetic loss rate to minimize exergetic loss, but also considers
the power density of HT-PEMFC to maximize its power and improve its efficiency.
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3.2. Influence of Inlet Flow Rate on HT-PEMFC

The changes of energy and exergetic performance based on hydrogen flow and air flow
are shown in Figures 4 and 5. It can be seen from Figures 4a and 5a that the thermodynamic
efficiency of HT-PEMFC has a maximum value in the region of low hydrogen and air
flow. This is because in the initial stage the electrochemical reaction rate accelerates,
and the power loss caused by polarization is small. With the increase of hydrogen and
air flow, the thermodynamic efficiency of the HT-PEMFC will decrease. However, the
power density will reach its maximum value at a specific hydrogen and oxygen flow
rate. The main reason is that the output power of the HT-PEMFC increases with the
increase of hydrogen and air flow rate. When the hydrogen and air flow rate are too
high, the polarization phenomenon of the fuel cell is obvious, so the output voltage and
power density decrease. Figures 4b and 5b show the influence of hydrogen and air flow
on EPC and exergy destruction rate. It can be seen that the value of EPC will reach the
maximum at the initial stage and then decrease gradually. As can be seen from the figure,
the curve characteristics of EPC and thermodynamic efficiency have similar trends, but
they carry different implications. Thermodynamic efficiency represents the amount of fuel
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consumed to produce a certain amount of power, while EPC represents the destruction rate
of availabilities.
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3.3. Influence of Doping Level on HT-PEMFC

The HT-PEMFC using the polybenzimidazole membrane doped with phosphoric acid
molecules as electrolyte are studied in this paper. The doping level (DL) is the number of
phosphoric acid molecules per polybenzimidazole (PBI). DL plays an important role in the
ohmic overpotential. The relationship between the performance of HT-PEMFC and the
doping level (DL) is shown in Figure 6. As the DL increases, the power density and energy
efficiency reach the maximum value. When DL is further increased, the power density
and energy efficiency decrease. When DL is 8, both power density and efficiency reach
maximum values. As can be seen from Figure 6b, EPC acts as energy efficiency. However,
when the exergy destruction rate reaches the minimum value, EPC is the maximum value.
When energy efficiency and EPC are both maximized, the doping level is the same value.
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This is an expected result. Since minimum fuel consumption yields the maximum power at
a certain power, environmental pollution is minimal, consistent with the maximum EPC.
Hence, the optimal doping level is 8 in terms of EPC, P, ExD and η.
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3.4. Influence of Inlet Pressure on HT-PEMFC

The inlet pressure is an important factor that affects the performance of HT-PEMFC.
Figures 7 and 8, respectively, represent the effects of hydrogen and oxygen inlet pressure
on HT-PEMFC performance. As can be seen from the figure, both the power density
and efficiency of HT-PEMFC increase as the hydrogen and oxygen inlet pressure increase
from 1 to 5 atm with a step width of 1 atm [50], but the increase is not numerically
significant. Increasing the inlet pressure, on the one hand, increases the diffusion rate of
the gas, improves the mass transfer of the reaction gas. On the other hand, it increases the
concentration of gas and reduces the influence of concentration polarization on reversible
potential.
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destruction rate and exergetic performance coefficient.
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3.5. Influence of Film Thickness on HT-PEMFC

Figure 9 reflects the impact of tmem on HT-PEMFC power, efficiency, exergy destruction
rate and EPC. It is obvious that the power, efficiency and EPC all improve with the decrease
of tmem, mainly because of the thinning of the membrane and the path length of the ions
between anode and cathode is reduced, resulting in the decrease of ohmic potential of HT-
PEMFC. However, if the membrane is too thin, it will cause fuel penetration, short circuit,
film rupture and other problems. Therefore, it is essential to select the high temperature
membrane in a proper range.
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3.6. Relationship between EPC and Efficiency

Figure 10 shows the relationship between EPC and efficiency before and after opti-
mization of HT-PEMFC parameters. It can be seen that when DL and the efficiency are
the same, increasing the inlet pressure can significantly improve the EPC of HT-PEMFC,
indicating that the operating pressure has an impact on the power density and exergy
destruction rate. When the operating pressure is the same, it is obvious that the efficiency
of HT-PEMFC is improved by optimizing DL. The efficiency and EPC of HT-PEMFC are
significantly improved by increasing both the operating pressure and DL, which not only
reduces fuel consumption, but also reduces energy loss. However, if DL is too high, the
mechanical property will become worse and the phosphoric acid molecules will leak out of
the HT-PEM more easily. Besides, a higher inlet pressure consumes additional power to
compress the inlet reactants.
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In practical application, when HT-PEMFC is applied to vehicles, the EPC and energy
efficiency of HT-PEMFC can be improved by increasing inlet pressure and doping level.
When EPC increases, it shows that HT-PEMFC can produce more energy by causing less
dissipation in the environment. Moreover, as the energy efficiency increases, it indicates
that the HT-PEMFC consumes less fuel for the same amount of energy. Therefore, the
HT-PEMFC performs better in terms of power output and the ecological environment,
taking into account better EPC and efficiency operating conditions.

4. Conclusions

The performance of an HT-PEMFC is analyzed based on a new standard named exer-
getic performance coefficient, which is defined as the ratio of power to exergy destruction
rate. The relationship between exergetic performance coefficient (EPC), power density,
exergy destruction rate and energy efficiency is obtained, and the result shows that EPC can
replace power density as a new performance criterion. In the analysis of the HT-PEMFC
model, the influence of different parameters on power density, energy efficiency, exergy
destruction rate and EPC is analyzed. It is found that EPC and energy efficiency have
the same trend, but different meanings. The EPCmax represents the most energy obtained
from the HT-PEMFC while causing the least dissipation in the environment. Therefore,
the higher the EPC of the HT-PEMFC, the better the performance in terms of power and
ecological environment. In addition, improving the inlet pressure can significantly boost
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EPC, and increasing DL can greatly enhance energy efficiency. For future research in the
field of engineering, this new criterion can be used to analyze fuel cell vehicles.
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