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Diabetes is a serious threat to human health.Thus, research on noninvasive blood glucose detection has become crucial locally and
abroad. Near-infrared transmission spectroscopy has important applications in noninvasive glucose detection. Extracting useful
information and selecting appropriate modeling methods can improve the robustness and accuracy of models for predicting blood
glucose concentrations. Therefore, an improved signal reconstruction and calibration modeling method is proposed in this study.
On the basis of improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and correlative
coefficient, the sensitive intrinsic mode functions are selected to reconstruct spectroscopy signals for developing the calibration
model using the support vector regression (SVR)method.The radial basis function kernel is selected for SVR, and three parameters,
namely, insensitive loss coefficient 𝜀, penalty parameter 𝐶, and width coefficient 𝛾, are identified beforehand for the corresponding
model. Particle swarm optimization (PSO) is employed to optimize the simultaneous selection of the three parameters. Results
of the comparison experiments using PSO-SVR and partial least squares show that the proposed signal reconstitution method is
feasible and can eliminate noise in spectroscopy signals. The prediction accuracy of model using PSO-SVR method is also found
to be better than that of other methods for near-infrared noninvasive glucose detection.

1. Introduction

Diabetes is a chronic disease that poses a serious threat
to human health. According to the International Diabetes
Federation (IDF) in 2014, diabetes affects 387 million indi-
viduals around the world, and this figure is expected to
increase to 592 million in 2035 [1]. The diabetes, cancer, and
cardiovascular diseases are the main causes of death since
2005 [2]. At present, diabetes is treated by detecting blood
glucose concentrations to adjust the dose of glucose-lowering
drugs, thus controlling blood glucose levels to prevent and
reduce the symptoms of diabetes and its complications [3].
The accurate detection of blood glucose concentrations is
important in diabetes prevention and treatment.

Diabetes monitoring is usually carried out in hospitals or
through self-monitoring [4]; diabetes monitoring commonly
involves invasive detection, which uses high amounts of
biochemical reagents, entails long testing times, and causes
inevitable pain and inconvenience to patients. By contrast,
noninvasive blood glucose detection [5–7] offers a number

of advantages, such as fast analysis speed, absence of trauma,
low cost, and environmental friendliness. Noninvasive opti-
cal detection technology [8–10] is an important research topic
in the area of noninvasive blood glucose detection. Since the
1970s, scientists have applied optics to determine the chem-
ical composition of the human body. Noninvasive optical
detection technologies include a variety of methods, such
as near-infrared spectroscopy [11, 12], infrared spectroscopy
[13], polarimetry [14], photoacoustics [15], Raman spec-
troscopy [16], and light-scattering coefficient method [17].

Near-infrared light, the wavelength of which varies from
780 nm to 2526 nm, is the electromagnetic wave between visi-
ble light andmid-infrared light that can penetrate the human
skin and tissues. A good linear correlation exists between
blood glucose concentrations and near-infrared spectrum
absorption. In recent years, near-infrared spectroscopy mea-
surement has been widely employed and has thus become
fast-developing technology for analysis, particularly in med-
ical applications [11, 18, 19]. The research into near-infrared
spectroscopy combined with chemometrics is regarded as
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an effective method for the noninvasive detection of blood
glucose concentrations [11, 20].

Empirical mode decomposition (EMD), which is an
adaptive time frequency data analysis method, is widely used
in nonsteady and nonlinear systems [21]. However, mode
mixing occurs in EMD. For example, different oscillations
exist in the same intrinsic mode function (IMF), or similar
oscillations exist in different IMFs.This problem is addressed
with ensemble empirical mode decomposition (EEMD),
which employs EMD to integrated signals with white Gaus-
sian noise [22]. However, signals with added noise can
produce varying numbers of IMFs, and reconstructed signals
contain residual noise after decomposition. In complemen-
tary ensemble empirical mode decomposition (CEEMD),
which can completely eliminate the residual noise in recon-
structed signals [23], pairs of positive and negative noises are
added to a signal to improve the efficiency of the original
noise auxiliary method. EEMD or CEEMD will produce
wrong ingredients components, and the IMFs obtained via
decomposition may fail to meet the definition of IMF
when parameter selection is ineffective. These limitations
are resolved with another noise auxiliary algorithm, called
CEEMDAN, which is used to achieve an accurate recon-
struction of original signals and pure decomposed mode
spectra [24]. The iterations of CEEMDAN are less than half
of the iterations of EEMD. Moreover, CEEMDAN can accu-
rately reconstruct original signals and recover the features
of EMD that are lacking in EEMD. However, CEEMDAN
still has some problems which need to be improved; for
example, its modes contain some residual noise, and the
signal information shows some spurious modes in the early
stages of decomposition [25]. To overcome these two issues,
the improved CEEMDAN method is applied in this paper to
obtain modes with less noise and more physical meaning.

The EMD-based methods can decompose the signal into
a series of IMFs which contain the noisy modes and infor-
mation modes. Therefore, it can be powerful adaptive tool to
extract the sensitive intrinsic mode functions to reconstruct
the signal.The problems is how to select the sensitivemode to
distinguish relevant IMFs and irrelevant IMFs in an efficient
way. Reference [26] uses an analogue approach based on
consecutivemean squared error (CMSE) criterion.The signal
is reconstructed from the mode whose criterion is minimal.
In [27], the authors propose an intuitive selected mode
method by a new criterion based onHausdorff distance (HD).
Moreover, [28] introduces the mutual information (MI) to
select the sensitive IMFs which can reflect the signal char-
acteristics for signal reconstruction. In this paper, the correla-
tive coefficient is used to select relevant IMFs to extract useful
spectral information.

Chemometrics, which was proposed by Bhattacharjee in
1994 [29], employs a multivariate statistical analysis of cali-
brationmethods and computing technologies to calculate the
sample content of each component combined with the near-
infrared spectrum. Common linear chemometrics modeling
methods includemultiple linear regression, principal compo-
nents regression, and partial least squares (PLS) regression.
Examples of nonlinear modeling methods include artificial

neural networks and support vector regression (SVR). Gen-
erally, modeling is the process of selecting parameters and
methods. SVR can obtain the global optimal solution in spec-
trum detection and convert linear regression to nonlinear
regression, as well as kernel function to the linear mapping
of high-dimensional space. The basic principle of SVR,
which is a regression method developed from support vector
machine, is to map the original data to high-dimensional
feature space through nonlinear mapping and to establish
a regression model in this space. Applying SVR in near-
infrared spectrum quantitative analysis modeling produces
a good effect. The commonly used kernel functions include
linear kernel functions, polynomial kernel functions, radial
basis kernel functions, and sigmoid kernel functions. Many
researches and experiments demonstrate that radial basis
kernel functions are preferable options if previous knowledge
is insufficient. The particle swarm optimization- (PSO-) SVR
method is proposed to select 𝜀, 𝐶, and 𝛾 simultaneously.
The results show the satisfactory learning precision and
generalization ability with PSO-SVR.

The paper is organized as follows. Section 2 provides a
description of the spectrum reconstruction method based
on improved CEEMDAN and the PSO-SVR model. The
CEEMDAN algorithm, improved CEEMDAN algorithm,
correlative coefficient, PSO, and SVR are also introduced.
Section 3 presents the near-infrared spectrum experiments
on glucose solutions and the results of different modeling
methods. Section 4 presents the conclusion of the study.

2. Methods

2.1. CEEMDAN Algorithm. The basis of CEEMDAN is
EEMD. Thus, the decomposition theory of the EEMD
method is described first [24].

(1) Set 𝑥𝑖(𝑛) = 𝑥(𝑛) + 𝑤𝑖(𝑛), where 𝑤𝑖(𝑛) (𝑖 = 1, . . . , 𝐼) is
a different white Gaussian noise.

(2) Themodes IMF𝑖
𝑘
(𝑛) of each 𝑥𝑖(𝑛) (𝑖 = 1, . . . , 𝐼) can be

obtained by EMD, where 𝑘 = 1, . . . , 𝐾 representatives
modes.

(3) The 𝑘th mode of 𝑥(𝑛) is set to IMF
𝑘
, and the cor-

responding average of IMF𝑖
𝑘
is

IMF
𝑘 (
𝑛) =

1

𝐼

𝐼

∑

𝑖=1

IMF𝑖
𝑘
(𝑛) . (1)

In EEMD, each independently decomposed 𝑥𝑖(𝑛) pro-
duces residue 𝑟𝑖

𝑘
(𝑛) = 𝑟

𝑖

𝑘−1
(𝑛)−IMF𝑖

𝑘
(𝑛). However, the decom-

positionmodes are called ĨMF
𝑘
, and the first residue is 𝑟

1
(𝑛) =

𝑥(𝑛) − ĨMF
1
(𝑛), where ĨMF

1
(𝑛) is obtained by employing

EEMD. ĨMF
2
(𝑛) is the mean value of the result. 𝑟

1
(𝑛) with

a different given noise is decomposed by EMD. The next
residue is 𝑟

2
(𝑛) = 𝑟

1
(𝑛) − ĨMF

2
(𝑛). Other modes continue

this process until the stop condition is met.
Operator 𝐸

𝑗
(⋅) is the 𝑗th mode of a given signal decom-

posed by EMD, where 𝑤𝑖 is the white noise with the mean
value of zero and the variance of one.
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If 𝑥(𝑛) is the signal, then the steps of CEEMDAN are
described as follows:

(1) The signal 𝑥(𝑛) + 𝜀
0
𝑤
𝑖
(𝑛) is decomposed by EMD

𝐼 times to obtain the first mode: ĨMF
1
(𝑛) = (1/

𝐼)∑
𝐼

𝑖=1
IMF𝑖
1
(𝑛) = IMF

1
(𝑛).

(2) When 𝑘 = 1, the first residue 𝑟
1
(𝑛) = 𝑥(𝑛) − ĨMF

1
(𝑛)

is calculated.
(3) 𝑟
1
(𝑛) + 𝜀

1
𝐸
1
(𝑤
𝑖
(𝑛)) (𝑖 = 1, . . . , 𝐼) is decomposed until

the first EMD mode is obtained. The second mode is
then calculated:

ĨMF
2 (
𝑛) =

1

𝐼

𝐼

∑

𝑖=1

𝐸
1
(𝑟
1 (
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1
(𝑤
𝑖
(𝑛))) . (2)

(4) When 𝑘 = 2, . . . , 𝐾, the 𝑘th residue 𝑟
𝑘
(𝑛) = 𝑟

𝑘−1
(𝑛) −

ĨMF
𝑘
(𝑛) is calculated.

(5) 𝑟
𝑘
(𝑛) + 𝜀

𝑘
𝐸
𝑘
(𝑤
𝑖
(𝑛)) (𝑖 = 1, . . . , 𝐼) is decomposed until

the first EMD mode is obtained. The (𝑘 + 1)th mode
is then defined:

ĨMF
(𝑘+1) (

𝑛) =

1

𝐼

𝐼

∑

𝑖=1

𝐸
1
(𝑟
𝑘 (
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(𝑤
𝑖
(𝑛))) . (3)

(6) Steps (4)–(6) are repeated until the obtained residue
can not be decomposed; that is, the residue has a
maximum of one extreme at most. The final residue
meets 𝑅(𝑛) = 𝑥(𝑛) − ∑𝐾

𝑘=1
ĨMF
𝑘
, where 𝐾 is the total

mode number. Thus the expression of signal 𝑥(𝑛) is

𝑥 (𝑛) =

𝐾

∑

𝑘=1

ĨMF
𝑘
+ 𝑅 (𝑛) . (4)

2.2. Improved CEEMDAN Algorithm. According to [25],
the improved CEEMDAN algorithm is described based on
CEEMDAN as follows:

(1) For 𝑥𝑖(𝑛) = 𝑥(𝑛) + 𝛽
0
𝐸
1
(𝑤
𝑖
(𝑛)), calculate the local

means of 𝐼 realizations by EMD to obtain the first
residue, 𝑟

1
= ⟨𝑀(𝑥

𝑖
(𝑛))⟩, where 𝛽

0
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0
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std(𝐸
1
(𝑤
𝑖
(𝑛))) and𝑀(⋅) is the operation which pro-

duces the local mean of the signal.
(2) When 𝑘 = 1, calculate the first mode: ĨMF

1
(𝑛) =

𝑥(𝑛) − 𝑟
1
.

(3) Estimate the second residue as the average of local
means of the realizations 𝑟

1
(𝑛)+𝛽

1
𝐸
2
(𝑤
𝑖
(𝑛)); then the

second mode is defined
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(4) Calculate the 𝑘th residue and 𝑘th mode (𝑘 = 3, . . . ,
𝐾):

𝑟
1
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𝑘−1
𝐸
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𝑘
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(5) Repeat (4) for the next 𝑘.

2.3. Correlative Coefficient. The correlative coefficient is
widely applied in almost all areas of science and technology.
The correlative coefficient is a dimensionless index used in
multivariate statistics to represent the statistical relationship
between two groups of variables. Its value ranges from −1
to 1, and it is divided into three classes, namely, positive
correlation, irrelevant correlation, and negative correlation.
Generally, certain processing in the computation is neces-
sary to combine the negative correlation with the positive
correlation. The value of the correlative coefficient ranges
from 0 to 1, and a high value indicates a strong correlation.
After setting the two groups of variables, namely, 𝑥, 𝑦, the
correlative coefficient 𝜌

𝑥𝑦
is

𝜌
𝑥𝑦
=
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Thus, the correlative coefficient can be expressed as

𝜌
𝑥𝑦
=

∑
𝑛
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(𝑥
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2.4. Signal Reconstitution Method. Signal characteristics are
not evident because of the overlapped hydrogen absorption
peaks in the near-infrared spectrum.Moreover, themodeling
result using the original spectroscopy data is inferior, and
the accuracy is not high. Therefore, removing useless com-
ponents can produce satisfactory predictions and simplifies
the model. According to improved CEEMDAN and the
correlation coefficient, the signal reconstitution method can
be concluded by employing the following steps.

(1) The original signal is decomposed into IMF
𝑖
(𝑖 =

1, 2, . . . , 𝑛) by using the improved CEEMDAN algo-
rithm, and 𝑛 is the number of IMFs.

(2) All the correlative coefficient value between IMF
𝑖

and the original signal is calculated using formula
(9). The sensitive IMFs are selected according to the
correlative coefficient threshold [30], which is shown
in formula (10).

𝜇
ℎ
=

max (𝜇
𝑖
)

10 ×max (𝜇
𝑖
) − 3

(𝑖 = 1, 2, . . . , 𝑛) . (10)

In the formula above, 𝜇
𝑖
represents the correlative

coefficient between IMF
𝑖
and the original signal, and

the maximum number of correlative coefficient is
denoted by max(𝜇

𝑖
).

If the correlative coefficient value between IMF
𝑖
and

the original signal is larger than 𝜇
ℎ
, then the relevant

IMF is maintained as the sensitive mode. Otherwise,
the relevant IMF is removed as a false component.

(3) The sensitive IMFs are selected to reconstruct the
signal for modeling.
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2.5. PSO-SVRModelingMethod. ThePSO algorithm is a type
of parallel global search strategy that is based on population.
It is easy to implement, and its concept is relatively simple; in
PSO, many parameters no longer require adjustments. PSO
exhibits a fast convergence speed and the capability of dealing
with high-dimensional problems.

The speed-position model is used in the PSO algorithm.
In the 𝐷-dimension solution space, the position of the 𝑖th
particle in the group is𝑋

𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝐷
)
𝑇, and the veloc-

ity ratio is 𝑉
𝑖
= (V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝐷
)
𝑇. The individual extreme

value at the current time is 𝑝
𝑖𝑏𝑒𝑠𝑡

, and the global extreme
value is 𝑔

𝑏𝑒𝑠𝑡
. In each iteration process, the particles adjust the

position and velocity of the current time by tracking the indi-
vidual extreme value and global extreme value and state in
the previous time. The iterative formula is shown as follows:

V
𝑖 (
𝑘 + 1) = 𝑤 ∗ V𝑖 (𝑘) + 𝑐1 ∗ rand ( )

∗ (𝑝
𝑖𝑏𝑒𝑠𝑡

− 𝑥
𝑖 (
𝑘)) + 𝑐2

∗ rand ( )

∗ (𝑔
𝑏𝑒𝑠𝑡
− 𝑥
𝑖 (
𝑘)) ,

𝑋
𝑖 (
𝑘 + 1) = 𝑋𝑖 (

𝑘) + 𝑉𝑖 (
𝑘 + 1) ,

(11)

where 𝑉(𝑘), 𝑉(𝑘 + 1), 𝑋(𝑘), 𝑋(𝑘 + 1) are the velocity
and position at the current moment and next moment,
respectively; rand ( ) is the random number within [0, 1], and
𝑐
1
, 𝑐
2
are the learning factors which are usually equal to two.

𝜔 is the weighting factor that should automatically decrease
with algorithm iteration to accelerate convergence speed; it
is generally defined as

𝜔 = 𝜔min +
(itermax − iter) ∗ (𝜔max − 𝜔min)

itermax
, (12)

where 𝜔max and 𝜔min are the maximum and minimum
weighting factors, respectively, iter is the current iteration
number, and itermax is the total iteration number.

For the sample data set {𝑥
𝑖
, 𝑦
𝑖
} (𝑖 = 1, 2, . . . , 𝑛, 𝑥

𝑖
∈ 𝑅
𝑑
,

𝑦
𝑖
∈ 𝑅), the regression function obtained by SVR fitting is

𝑓 (𝑥) = 𝑤 ⋅ 0 (𝑥) + 𝑏

=

𝑛

∑

𝑖=1

(𝑎̂ − 𝑎
𝑖
) (𝜑 (𝑥

𝑖
) ⋅ 𝜑 (𝑥)) + 𝑏

∗

=

𝑛

∑

𝑖=1

(𝑎̂ − 𝑎
𝑖
) 𝑘 (𝑥
𝑖
, 𝑥) + 𝑏

∗
,

(13)

where 𝑎
𝑖
and 𝑎̂ are Lagrangian operators and 𝑏∗ is the thresh-

old. Consider the following:

𝐾(𝑥
𝑖
, 𝑦
𝑖
)

= exp(−
󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
− 𝑥
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

2𝛾
2

) is the kernel function.
(14)

For PSO-SVR, the position and velocity of each particle
are determined by 3D parameters (𝜀, 𝐶, 𝛾). The mean square
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Figure 1: Waveform of pure signal.

error (MSE), which can directly reflect the regression perfor-
mance of SVR, is used as the fitness function:

MSE = (
𝑛

∑

𝑖=1

(𝑦̂ − 𝑦
𝑖
)

𝑛

)

1/2

, (15)

where 𝑦̂ is the estimated value of a new sample.
The steps for the optimal selection of parameters (𝜀, 𝐶, 𝛾)

in PSO-SVR are described as follows.

(1) Theparticle swarm 𝜀, 𝐶, 𝛾 are initialized.Group size𝑚
is determined, the maximum and minimum weight-
ing factors of algorithms𝜔max,𝜔min are identified, and
the maximum iteration number itermax is set.

(2) The individual extreme value 𝑝
𝑖𝑏𝑒𝑠𝑡

of each particle is
set as the current position.The fitness of each particle
is set using the fitness function, namely, formulas (13)
and (15).The individual extreme value corresponds to
the particle with the best fitness as the global extreme
value 𝑔

𝑏𝑒𝑠𝑡
.

(3) On the basis of steps (1)–(3) for iteration calculation,
the position and speed of particle are updated.

(4) Thefitness of each particle is evaluated using formulas
(13) and (15).

(5) If the fitness of each particle is better than the cor-
responding fitness 𝑝

𝑖𝑏𝑒𝑠𝑡
, then 𝑝

𝑖𝑏𝑒𝑠𝑡
is updated. Oth-

erwise, the original value is retained.
(6) If the updated 𝑝

𝑖𝑏𝑒𝑠𝑡
of each particle is better than

the global extreme value 𝑔
𝑏𝑒𝑠𝑡

, the 𝑔
𝑏𝑒𝑠𝑡

is updated.
Otherwise, the original value is retained.

(7) If the maximum iteration is reached or if the solution
does not change, the iteration is stopped. Otherwise,
the process returns to step (3).

3. Experimental Results and Discussion

3.1. Simulation Signal Reconstruction Experiments. Consider
the original signal 𝑦(𝑡) = cos (4𝜋𝑡) + sin (15𝜋𝑡). The length
of the data is 1024, as shown in Figure 1. White Gaussian
noise is added to the original signal with the input signal to
noise ratio (SNR) fixed at 5 dB. Noisy signal 𝑦(𝑡) (Figure 2)
is decomposed into eight modes. Figure 3 indicates that the
sixth and seventhmodes are two components of a pure signal.
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Table 1: Correlative coefficients between each mode and noisy signal.

Mode IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8
Correlative coefficient −0.0125 −0.0096 0.0054 0.0073 0.0579 0.7215 0.7429 0.0592
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Figure 2: Waveform of noisy signal.

In the proposed method, the correlative coefficients between
each IMF and noisy signal 𝑦(𝑡) are calculated, and the thresh-
old is obtained with formula (7). The reconstructed signal is
the sum of IMFs with correlative coefficients larger than the
threshold. For noisy signal 𝑦(𝑡), the correlative coefficients of
IMF6 and IMF7 are larger than the threshold (0.16721), which
is shown in Table 1. The IMFs are arranged from high to low
frequency, and the noise is often concentrated around the first
IMFs.Thefirst threemodes should be removed to reconstruct
the signal regardless of whether the correlative coefficients
are larger than the threshold in the proposed method. The
reconstructed signal is presented in Figure 4.

The simulated signal 𝑦(𝑡) is reconstructed to effectively
reconstruct the spectral signal, and the reconstruction results
for EMD, EEMD, CEEMD, CEEMDAN, and improved
CEEMDAN are compared. In the experiments, the ensemble
number and white Gaussian noise are fixed (the ensemble
number is 100, and the SNR of white noise is 5 dB). The
reconstruction effect is evaluated by introducing the SNR,
root mean square error (RMSE), and correlative coefficient
into this method. The SNR and RMSE are defined as

SNR = 10 log
10
(

∑
𝑁

𝑡=1
(𝑦 (𝑡))

2

∑
𝑁

𝑡=1
(𝑦̃ (𝑡) − 𝑦 (𝑡))

2
) ,

RMSE = √ 1
𝑁

𝑁

∑

𝑡=1

(𝑦̃ (𝑡) − 𝑦 (𝑡))
2
,

(16)

where 𝑦̃(𝑡) is the reconstructed signal and 𝑦(𝑡) is the original
signal. Figure 5 demonstrates that EMD and improved
CEEMDAN produce high SNR and small RMSE values.
Hence, the reconstruction errors of these methods are
smaller. However, EMD exhibits seriousmodemixing.More-
over, the correlative coefficient values of these five methods
are approximate, and the reconstruction effect can not be
identified (Figure 5). Combining the SNR, RMSE, and correl-
ative coefficients results (Table 2), the improved CEEMDAN
method with the correlative coefficient exhibits a strong

Table 2: Values of SNR, RMSE, and correlative coefficient for recon-
struction signal.

Methods SNR RMSE Correlative
coefficient

EMD 16.6707 0.1533 0.9896
EEMD 13.0117 0.2336 0.9754
CEEMD 14.2667 0.2021 0.9824
CEEMDAN 16.2156 0.1615 0.9888
Improved
CEEMDAN 18.1517 0.1292 0.9924

Table 3: Values of SNR, RMSE, and correlative coefficient for dif-
ferent methods.

Methods SNR RMSE Correlative
coefficient

Improved
CEEMDAN-CMSE 13.1254 0.2305 0.9817

Improved
CEEMDAN-HD 16.8698 0.1498 0.9914

Improved
CEEMDAN-MI 14.4521 0.1979 0.9835

Proposed method 18.2289 0.1289 0.9952

robustness to signal reconstruction and can extract useful
signal information.

The experiment results from Figure 5 and Table 2 show
that improved CEEMDAN method is better than that of the
EMD, EEMD, CEEMD, and CEEMDAN. It is more suitable
for the decomposition of nonstationary signal. For the signal
𝑦(𝑡), the proposed selected mode method based on correla-
tive coefficient with improved CEEMDAN decomposition is
compared with the methods in [26–28]. By the results shown
as in Table 3, the correlative coefficient values of these four
methods are approximate; however, the reconstruction effects
of proposed method whose SNR is 18.2289 and RMSE is
0.1289 are superior to that of the other three methods.There-
fore, the proposed method based on improved CEEMDAN
has small reconstruction error and strong denoising ability.

3.2. Near-Infrared Spectrum Experiments

3.2.1. Near-Infrared Spectrum of the Glucose Solution. The
instrument utilized for near-infrared spectroscopy is the
Antaris II FT-NIR, produced by America Thermo Company.
It is used to carry out full spectrum scanning transmission
in the spectrum ranging from 833 nm to 2630 nm. The near-
infrared spectroscopy of the 75 samples of 15 groups with
different concentrations (range of 50–1000mg/dL) of glucose
solutions is selected to establish the spectrum calibration
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Figure 4: Waveform of reconstructed and original signal.

model. In the actual experiments, the transmission spec-
troscopy of the same sample is carried out several times
to avoid the influence of instability of the near-infrared
spectroscopy and to improve accuracy.Thus, in the modeling
process, the average signal obtained from five measuring
times for one solution sample is considered the training
data. Some of the glucose solution spectra data are shown
in Figure 6. The near-infrared spectrum of the samples
is decomposed and reconstructed by employing improved
CEEMDAN, which can eliminate the noise caused by some
uncertain factors, such as spectrometer accuracy or test
conditions, and can accurately provide spectral information
for the calibration model.

3.2.2. Near-Infrared Spectrum CalibrationModel Building. To
maximize the sample data, we use cross validation until all
the samples are tested once.The sample spectrum is collected
independently. Thus, any individual can be chosen as the
testing sample, and others are considered as training samples

to evaluate the modeling method. PSO-SVR only needs a
small number of selected samples for training, particularly
the data sets that are sensitive to noise, and can thus reflect
the advantages of SVR and the intelligent optimization algo-
rithm. To realize PSO-SVR, the constitution and prediction
algorithms of SVR are embedded in the steps to calculate the
fitness value in the PSO algorithm. Reference [31] provides
the approximate scope of 𝜀, 𝐶, 𝛾 as 𝜀 = [0, 0.2], 𝐶 = [1, 108],
and 𝛾 = [0.01, 2]; 𝜔max, 𝜔min, and 𝑚 are generally taken as
0.9, 0.4, and 10, respectively. These initialization parameters
can avoid choice blindness.

PLS regression, a classical calibrationmethod, can extract
the latent variables associated with the dependent variable in
the spectrum and establish the regression equation. In this
work, the PLS is the comparisonmethod for PSO-SVR. PSO-
SVR and PLS are utilized to establish the calibration model
between the spectral data and the real glucose concentration.

After establishing the calibration model, the results must
be verified to confirm the reliability of the model. The cor-
relation coefficient and the root mean square error of pre-
diction (RMSEP) are employed to evaluate the correlation
of the model. The correlation coefficient can describe the
linear correlation degree between the spectral matrix 𝑋 and
the concentration matrix 𝑌; it is commonly denoted by 𝑅.
when the 𝑅 value is closer to one, the regression effect of
model is satisfactory. Moreover, when the RMSEP is small,
the prediction precision of model is high. The correlation
coefficient and RMSEP are calculated as

𝑅 = √1 −

∑ (𝑦̂
𝑖
− 𝑦
𝑖
)
2

∑(𝑦̂
𝑖
− 𝑦
𝑖
)

2
,

RMSEP = √
∑ (𝑦̂
𝑖
− 𝑦
𝑖
)
2

𝑛 − 1

,

(17)
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where 𝑛 is the sample quantity of the calibration set, 𝑦
𝑖
is the

true value of the 𝑖th sample, 𝑦̂
𝑖
is the predicted value of the

𝑖th sample, and 𝑦̂
𝑖
is the average value of 𝑦̂

𝑖
of all the samples

in the calibration set.
Two types of calibration models introduced above are

employed to predict the glucose concentrations in 15 glucose
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Figure 7: The errors between predicted values and true values.

Table 4: Values of 𝑅 and RMSEP for calibration model.

Methods 𝑅 RMSEP
PLS 0.9999825 0.9100
Improved CEEMDAN-PLS 0.9999985 0.6519
PSO-SVR 0.9999986 0.5560
Improved CEEMDAN-PSO-SVR 0.9999997 0.5352

solutions samples. The errors between the predicted values
and the true values are then calculated.The results are shown
in Figure 7.The predicted values and true values are provided
in Figure 8. Table 4 shows that the PSO-SVR, which is
based on improved CEEMDAN for predictions and whose 𝑅
and RMSEP are 0.9999997 and 0.5352, respectively, is more
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robust and accurate than PLS, whose 𝑅 and RMSEP are
0.9999825 and 0.91, respectively. The 𝑅 and RMSEP values
of the calibration model established with the spectrum data,
which were reconstructed with improved CEEMDAN in the
PLS and PSO-SVR methods, are better than those of the
calibration model with the original spectrum data. Thus,
PSO-SVR, which is based on improved CEEMDAN, exhibits
a good performance in detecting the glucose concentrations.
The excellent prediction results of PSO-SVR indicate that
near-infrared spectroscopy technology can be employed to
detect glucose concentrations.

4. Conclusion

The quantitative analysis of near-infrared spectroscopy data
demonstrates the potential development in noninvasive
blood glucose detection. PSO-SVR is an effective method
to solve the regression problem on high-dimensional data
matrixes. This study proposes the PSO-SVR modeling
method that is based on the improvedCEEMDANalgorithm.
The proposed method can remove noise, extract useful
information from near-infrared spectra, and optimize the
parameters in SVR. The near-infrared spectrum analysis
model established with the PSO-SVR based on improved
CEEMDAN method is stable, accurate, and practicable and
it exhibits a good predictive effect. The current experiments
focus on glucose solutions. In the future, we will extend the
experiments to human tissues.
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