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Abstract

Background: Single-particle analysis of electron cryo-microscopy (cryo-EM) is a key technology for elucidation of
macromolecular structures. Recent technical advances in hardware and software developments significantly
enhanced the resolution of cryo-EM density maps and broadened the applicability and the circle of users. To
facilitate modeling of macromolecules into cryo-EM density maps, fast and easy to use methods for modeling

are now demanded.

Results: Here we investigated and benchmarked the suitability of a classical and well established fragment-based
approach for modeling of segments into cryo-EM density maps (termed FragFit). FragFit uses a hierarchical strategy
to select fragments from a pre-calculated set of billions of fragments derived from structures deposited in the Protein
Data Bank, based on sequence similarly, fit of stem atoms and fit to a cryo-EM density map. The user only has to
specify the sequence of the segment and the number of the N- and C-terminal stem-residues in the protein. Using a
representative data set of protein structures, we show that protein segments can be accurately modeled into cryo-EM
density maps of different resolution by FragFit. Prediction quality depends on segment length, the type of secondary

structure of the segment and local quality of the map.

Conclusion: Fast and automated calculation of FragFit renders it applicable for implementation of interactive
web-applications e.g. to model missing segments, flexible protein parts or hinge-regions into cryo-EM density maps.

Keywords: Cryo-EM, Fragment based modeling, Flexible fitting

Background

Cryo electron microscopy (cryo-EM) is a key technology
for structural elucidation of molecular complexes. The
vast majority of published cryo-EM density maps is re-
solved at medium resolutions between 6 and 9 A or
lower [1-3]. In these medium resolution maps, no side-
chains are resolved, but secondary structure elements or
backbone traces can be identified and modeled [4-6].
Recent technical advances in development of direct elec-
tron detectors significantly improved the resolution of
structures determined by cryo-EM [7, 8]. Near atomic
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resolution of cryo-EM density maps now even allows de
novo modeling of well-resolved parts [9]. However, flex-
ible regions such as loops often remain unresolved [10].
In cases where conformational changes of proteins only
affect a substructure of the protein or a single domain
while the general fold remains unchanged, modeling fo-
cuses on the flexible hinge regions [11]. Approaches,
where defined structural elements are modeled into an
existing structural context are thus a regular part of the
workflow to calculate structural coordinates from cryo-
EM density-maps [10, 11]. Because of the wide range of
structural biologists working in the field of cryo-EM,
methods for modeling into cryo-EM density maps e.g. to
be integrated by easy to use web services such as SL2
[12] can greatly enhance researcher productivity. Here
we evaluate the applicability of a well established frag-
ment based modeling approach [12-14] for prediction of
protein segments into cryo-EM density maps. This novel
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method, termed FragFit, can be readily integrated into
modeling approaches where e.g: (i) conformational
changes of proteins only affect a substructure of the pro-
tein or a single domain, while the general fold remains un-
changed [11], (ii) parts in a protein model are missing
[10], or (iii) where local flexibility does not allow unam-
biguous assignment of a single conformational state [15].

Several methods have been established for structure
prediction of protein segments, especially for the pur-
pose of loop modeling [13, 16, 17]. These methods can
be divided into forcefield- [17] and fragment-based ap-
proaches [13]. Forcefield-based methods have the gen-
eral advantage that, in principle, new polypeptide folds
can be predicted. These tools are, however, computa-
tionally expensive [18], and are thus usually not applic-
able for instant visual control of the results in interactive
web-applications. Fragment based methods allow for
comparably fast assessment of results because searches
leverage databases of pre-calculated fragments. The lat-
ter databases are typically either derived from third party
databases of protein structures such as the Protein Data
Bank (PDB) [12, 19] or from concatenating small frag-
ments in a structural database [20, 21].

The quality of classical fragment based modeling de-
pends on the algorithm used for fragment selection and
on the completeness of the fragment database [22]. Since
the number of conformations rises exponentially with
the length of the segment, quality of prediction generally
drops with segment length [23, 24]. Loops are structur-
ally highly heterogeneous and flexible. Nevertheless, it
has been suggested that the conformational space for
loops up to 12-14 residues is covered by structural frag-
ments derived from entries of the PDB [25, 26]. We
therefore used LIP a regularly updated fragment data-
base derived from the PDB for modeling of segments
into cryo-EM density maps [12]. The advantage of this
approach is that the segments derived from the PDB are
taken from structures that have already been subject of a
strict and independent quality control. To evaluate Frag-
Fit under realistic conditions we used experimentally de-
rived cryo-EM density maps, which naturally include
fragmentations and local variations in resolution, and ex-
cluded identical template fragments (with 90% sequence
identity or higher to the queried segment) from model-
ing. We find FragFit to be a useful tool for quick and re-
liable modeling of segments of up to 20-25 residues
length into cryo-EM density maps. Prediction quality de-
pends on segment length, secondary structure type of
the predicted segment and the local quality of the map.

Methods

To start a search, the amino acid sequence of the quer-
ied segment, the stem residues flanking the queried seg-
ment, the cryo-EM density map and its resolution must
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be provided (Fig. 1). The sequence similarity and a geo-
metrical measure (termed geometric fingerprint) is used
to search for suitable fragments (‘FragSearch’) in the
fragment database derived from the RCSB PDB. These
fragments are subsequently re-scored by their fit to
preprocessed cryo-EM density maps to select for the
best fitting fragments (‘FragFit’). Besides providing
input arguments FragSearch and FragFit are fully au-
tomated procedures that do not require any interven-
tion by the user.

Fragment database and geometrical fingerprint

The fragment database LIP (‘Loops in Proteins’), which
we employed to search for suitable fragments in the first
prediction step (see Fig. 1a, ‘FragSearch’) contained about
9*10® protein fragments. The database was composed of
all overlapping fragments of 3-35 residues length ex-
tracted from about 100.000 entries of the PDB in June
2013. The number of fragments decreases linearly with
fragment length, from about 23 to 19 million for frag-
ments with 3 to 35 residues, respectively (see Add-
itional file 1: Figure S1). With a recent update (February
2017) the database contains now more than 10° protein
fragments, extracted from more than 126.000 entries of
the PDB. For each fragment the amino acid sequence,
PDB identifier, chain identifier and the residue numbers
of N- and C-terminal stem atoms is stored. In addition,
a geometrical fingerprint is calculated for the stem
atoms of each fragment (and also of the gap in the struc-
ture), composed of the distance d between the N- and
C-terminal stem atoms and three angles defining their
relative orientation (Fig. 1a, see Additional file 1: Figure
S2). Matching of geometrical fingerprints of fragment
and gap and sequence similarity (for details see [13]) are
used as evaluation criteria by FragSearch (Fig. 1a).

FragSearch

For detection of suitable fragments (FragSearch), we in-
tegrated the search algorithm of ‘SL2” which is based on
a hierarchical approach that minimizes calculation time
(see [12—-14]). First, fragments with the same number of
amino acids as the missing segment and with a similar
distance d of stem residues as in the gap (Ad <0.75 A)
are selected (see Additional file 1: Figure S2). Second,
these fragments are ranked by the RMSD-value of their
N- and C-terminal stem residues after superposition
with the respective stem residues of the gap. Third, frag-
ments whose incorporation would lead to clashes with
other atoms of the same protein chain are identified and
subsequently excluded. Moreover, fragments with identi-
cal primary structure or identical folds (with backbone
RMSD <05 A) are deleted (see [13]) to maximize the
conformational space. In a fourth step, the top-1000 list
of suitable candidates is re-ranked by sequence similarity
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to the queried segment and matching of geometrical fin-
gerprints of fragment and gap (Fig. 1a). The top-100 list
of suitable candidates is subsequently evaluated by Frag-
Fit, which employs cryo-EM density maps as an add-
itional selection criterion.

FragFit

The geometrical fit of the shape of a fragment to a cryo-
EM density map is used to re-rank the top-100 list of
suitable fragments and select for ‘fitting fragments’
(Fig. 1c). This fit is measured by means of the Pearson

cross-correlation coefficient between structure-derived
(termed simulated density maps) and experimentally de-
termined cryo-EM density maps. This procedure assigns
a cross correlation value to each fragment, which is fi-
nally used for re-ranking of the top-100 list (Fig. 1c, fit-
ting fragment’). For generation of the simulated density
maps for each suitable fragment (Fig. 1b, ‘map prepro-
cessing’) the ‘copy from pdb’ functionality implemented
in SPIDER was used [27]. The simulated density maps
were subsequently filtered to the resolution of the ex-
perimental cryo-EM density map using a Butterworth
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low pass filter. Since procession time of cryo-EM
density maps scales at least cubicly with image size, a
minimal box enclosing the density of the queried seg-
ment is extracted from the cryo-EM density map
(Additional file 1: Formula S1).

In the final preprocessing step, densities occupied by
other parts of the structure are deleted from the minimal
box (Fig. 1b). For that purpose, the part of the structure
located within the minimal box is converted into a
simulated density map with its intensity level adjusted to
the value of the experimental map by a standard
normalization (setting the average of the map to 0 and
the standard deviation to 1). With a simple arithmetic
operation, the simulated density map is subtracted from
the minimal box reducing the cryo-EM density to the
density of the missing fragment. Besides reducing
procession time, this step limits false positive predictions
by preventing placement of fragments into already
occupied densities.

Validation data set

For evaluation of FragFit, a test data set of cryo-EM
density maps and structure coordinates of eight different
macromolecular complexes selected from the EMDB [1]
was composed. This data set (Table 1) includes proteins
with different functions such as the ribosome, the prote-
asome and ion channels with resolutions ranging from
3.1 to 12 A [7, 8, 28-33]. Using a sliding window of 5 to
35 amino acids length, a total of 20.000 different seg-
ments were assigned for evaluation. As for previous
evaluations of fragment based approaches, fragments
with sequence identities of more than 90% (for details
see [12, 14]) to the queried segments were excluded
from LIP prior calculations. This cut-off excludes identi-
cal structures, while keeping the conformational space
as large as possible, thus mimicking a real life situation,
where the best fitting fragment has to be selected from
millions of candidates. Further, to assess the quality of
FragSearch and FragFit (see Fig. 1) for prediction of dif-
ferent types of structural elements, helices, B-sheets and
loops were assigned by means of the DSSP algorithm
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[34]. Finally, to estimate the impact of resolution on
FragFit prediction quality, simulated density maps with
resolutions ranging from 4 to 20 A were used. Using
simulated instead of experimentally determined cryo-
EM density maps excludes bias by inhomogeneous reso-
lutions or map fragmentation. Simulated electron dens-
ity maps were calculated for the structure of the 2
adrenergic receptor—Gs protein complex (PDB-entry
code: 3SN6) [35] using the ‘pdb_sim’ functionality of the
NMEFF program package [36]. As above, fragments with
sequence identities of more than 90% were excluded
from LIP prior calculations (for details see [12—14]).

Validation measures

The root mean square deviation (backbone-RMSD) was
used as primary measure of structural similarity between
an experimentally determined protein segment and its
predicted conformation after superposition of the corre-
sponding termini and stem atoms (Formula 1). Since
only the backbone atoms but not the side chains are pre-
dicted, solely the coordinates of backbone atoms were
used for evaluation. The difference of RMSD values of
FragSearch and FragFit (ARMSD) was used to evaluate
the gain in prediction quality, when cryo-EM density
maps were used as restraints.

RMSD =

Formula 1. Calculation of root mean square deviation
(RMSD).

N is the number of atoms, Xi and Yi are the coordi-
nates of the backbone atoms from both structures after
superposition of the corresponding termini and stem
atoms.

To provide a measure of similarity independent from
the number of compared atoms, that is, of fragment
length [37], the template modeling score (TM-score)
was employed to assess the ‘topological similarity’ of two
proteins (Formula 2a) [38]. The Method is described in

Table 1 Structures and cryo-EM density maps used for evaluation of FragFit

EMDB-entry code PDB-entry codes Biological system Resolution in A Citation

1721 3J59,3J5A 70S ribosome 120 (Bock et al., [28])
1798 2XSY.2XTG 70S ribosome 78 (Ratje et al,, [31])
2490 4CE4 Mitochondrial large ribosomal subunit 49 (Greber et al,, [29])
2566 3J6B Mitochondrial large ribosomal subunit 32 (Amunts et al,, [7])
5256 317X cytoplasmic polyhedrosis virus 3.1 (Yu et al, [32])
2325 3ZP7Z GroEL/ES 89 (Chen et al,, [33])
5776 3J5Q TRPV1 38 (Cao et al,, [8])
1733 3C91 20S proteasome 6.8 (Rabl et al,, [30])
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detail in ref. [38]. Shortly summarized, the TM-score
employs the length (‘L) of the target protein and the
number of aligned residues in both protein segments
(‘Lali’) (see Formula 2a). The distance between each pair
of aligned residues is di, while 40 is a scaling value to
normalize this match difference. The expression ‘max’
denotes the maximum value after optimization of super-
position. A simplified variation of the TM-score was
used here (Formula 2b), since in our approach segments
of identical length (Lali’=7) were used and no
optimization of superposition of fragments was per-
formed; only the stem residues were aligned. In
principle, the value of the TM-score ranges from 0 to 1
with values of the TM-score > 0.5 denoting high topo-
logical similarity.

1 Lai 1
TM-score = — o — (a)
= )

1 L 1
TM=score = L [Z/_1 W} (b)

Formula 2. a) General calculation of the TM-score, b)
simplified Version used here.

Results

To test the applicability of our fragment based approach
for modeling of loops, helices or B-sheets into cryo-EM
density maps, we evaluated the gain in prediction quality
of classical fragment modeling when cryo-EM densities
are employed as experimental restraints. For the initial
step of fragment-based prediction (FragSearch) we
employed the hierarchical search algorithm implemented
in SL2 and the fragment database LIP [12—14]. In a sec-
ond step we used the cross-correlation between simu-
lated and experimentally determined density maps for
re-scoring. The test data set includes functionally and
evolutionary distinct proteins, whose structures were elu-
cidated at resolutions between 3.1 A and 12 A by cryo-
EM. We find a significant improvement of prediction
quality depending on length and secondary structure of a
missing segment as well as on the quality (resolution, frag-
mentation, noise) of cryo-EM density maps.

Modeling accuracy of segments into cryo-EM density
maps

The top-100 list of fragments is obtained by FragSearch,
which uses the criteria sequence similarity and geomet-
rical fit of stem atoms (see Fig. 1a). This top-100 list is
re-scored by FragFit, which uses a cryo-EM density map
as additional restraint. That step significantly improves
prediction quality for all fragments longer than five resi-
dues (paired t-test with P <0.05). The absolute RMSD-
values range from 1.9 A for fragments with five residues
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length to 9.6 A for fragments with 35 residues length
(Fig. 2a). Modeling, therefore, improves on average by
1-2 A (ARMSD) for fragments of 8—16 residues length
and 2-3 A (ARMSD) for longer fragments when cryo-
EM density maps are employed (Fig. 2c, grey bars).

Prediction quality depends on the secondary structure
type

Prediction quality depends on the secondary structure
type of the modeled segment. Helices, which become
visible even at medium resolution cryo-EM density maps
[5, 6], are found here as the secondary structure elements
with highest predictability (Fig. 2b). When compared to
other structural elements, the absolute RMSD value of
helices is lower. This difference is more articulate for lon-
ger fragments. Loops, which here also include structural
irregularities such as Pi-buldges or 3—10 helices, are pre-
dicted with similar accuracy as helices up to 16 residues
length, before prediction quality drops down to the level
of the B-sheets, which are generally most difficult to pre-
dict. The improvement of prediction of B-sheets and loops
with FragFit is similar or even more pronounced as for
helices up to a length of 25 residues but clearly drops for
longer segments (Additional file 1: Figure S3).

Prediction quality can be further enhanced when the
top-five hits are taken into consideration

When not only the top hit but the top-five hits of Frag-
Fit (and FragSearch) are considered for evaluation, the
performance is further improved by an additional aver-
age drop of the backbone-RMSD of about 1 A (Fig. 2c).
This benefit is again particularly pronounced for longer
fragments. For fragments of e.g. 17 amino acids length,
the mean backbone RMSD to the original segment drops
from 7.2 A (top hit FragSearch) and 5.0 A (top hit
FragFit) to 3.9 A (top-five hit FragFit). For fragments
of 27 amino acids length, the corresponding values
are 10.1 A (top hit FragSearch), 7.2 A (top hit FragFit)
and 5.6 A (top-five hit FragFit). When additional hits are
taken into account (e.g. top-ten hits FragFit), no further
improvement is obtained (Additional file 1: Figure S4)
suggesting that the best solution is regularly found within
the top five results list.

Furthermore, a significant gain in prediction quality is
observed with FragFit when only those FragSearch top-
hits were considered with an RMSD above the mean
RMSD (indicated as double triangles in Fig. 2a). In those
cases, the gain in prediction quality measured by the
drop of the backbone-RMSD is about 2 A larger as the
gain when all FragSearch top-hits were considered
(Fig. 2d). This result suggests that the gain in prediction
quality largely stems from down ranking of fragments
with non native conformations.
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FragFit selects for the right fold

The backbone-RMSD was used as a measure of struc-
tural similarity. Specifically, we measured the average
distance between the backbone atoms of a selected frag-
ment and the original protein segment after superpos-
ition of the corresponding termini and stem atoms (see
Methods). Using this measure, all atoms are taken into
account with equal weight. For high RMSD-values typic-
ally observed with longer fragments it, however, remains
unclear whether this value stems from similar structures
with local deviations (such as a kink) or completely dif-
ferent structures/folds.

To provide a second quality assessment for evaluation
of longer fragments, we employed the TM-score, which
is designed as a measure of similarity in structure or
fold. This measure is also considered to be rather inde-
pendent of protein length [39]. A TM-score > 0.5 indi-
cates a similar structure or fold. Our analysis of the TM-
score provides evidence that fragments with appropriate
structure are regularly identified by FragFit, especially
for fragments up to 25 residues length. For fragments
longer than 12 amino acids we find that the TM-score
between original and predicted fragment (top hit Frag-
Fit) is higher than 0.5 in 81% of predictions. In 82-93%
of predictions of fragments of 12-25 residue length
a similar structure is found. The number of

fragments with a score higher then 0.5-score drops
to values of 69-76% for fragments of 26-35 residue
length (Additional file 1: Figure S5). According to the TM-
score analysis, the conformation of fragments up to 25
residues length can be predicted with high accuracy.

Influence of resolution on fragment prediction quality
Assessment of the influence of resolution on fragment
prediction quality is complicated, because of local varia-
tions in structure resolution and fragmentation of cryo-
EM density maps. To estimate the influence of resolution
on prediction quality, we generated simulated density
maps from the X-ray structure of the B2 adrenergic
receptor-Gs protein complex (PDB accession code: 3SN6)
with resolutions ranging from 4 to 20 A (Fig. 3). This
membrane protein complex contains 35% helices, 19.2%
sheets and 45.8% unassigned regions, such as loops or
kinks, thus representing the complete relevant spectrum
of protein secondary structures evaluated here. The ad-
vantage of using simulated instead of experimentally de-
termined cryo-EM density maps is that factors which
would influence this analysis such as noise or fragmenta-
tion are excluded. Of note, the PDB entry 3SN6 and all
fragments with a sequence identity of more than 90% have
been excluded from the fragment database.
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As with experimentally determined cryo-EM density-
maps the gain in prediction quality (ARMSD) increases
with fragment length (Fig. 3). Only for the highest reso-
lution maps of 4-6 A, a minor improvement of predic-
tion quality is also seen for the short fragments of 5-7
residues length. A constant increase in prediction quality
up to ARMSD =5 A is seen for simulated density maps
of 4-12 A resolutions for fragments of 8-35 residues
length. For the low resolution maps of 15 and 20 A, a
minor gain in prediction quality is only observed for seg-
ments of at least 11 or 20 residues length, respectively. The
higher gain in prediction quality of simulated compared to
experimentally determined density maps shows how noise
and fragmentation of experimentally determined cryo-EM
density-maps complicates modeling. In summary, FragFit
performs very well over a wide range of resolutions but best
for high- and medium resolution maps.

Discussion
Using a representative data set of protein structures re-
solved by cryo-EM, we provide evidence that fragment
based approaches can be applied to model protein seg-
ments into cryo-EM density maps at high accuracy. Our
results are complementary to previous approaches using
cryo-EM density maps for rigid [40—42] or flexible fit-
ting [43-45] of existing structures, or for de novo mod-
eling of complete protein structures into high resolution
cryo-EM density maps [46]. One outstanding feature is
that FragFit, which uses the same hierarchical strategy to
find suitable fragments as SL2 [12-14], provides results
within one or few minutes even for long fragments (de-
pending on box size and running environment). This
renders FragFit applicable for web-based applications
providing easy access for structural biologists.

FragFit can be used to model or remodel parts of pro-
teins. It has been proven to guide modeling of poorly

resolved flexible loops in ribosome bound initiation
factor-2, which cryo-EM density map was resolved at
3.7 A resolution. Initial models generated by FragFit
were verified or optimized by real-space refinement in
Phenix 1.10 [10]. Moreover, FragFit can be readily inte-
grated into modeling approaches, where conformational
changes of proteins only affect a substructure of the pro-
tein or a single domain, while the general fold remains
unchanged [11]. In these cases, flexible fitting of the
complete structure or complex is not required. Instead,
the structure can be dissembled into its different do-
mains which are rigidly fitted [40]. FragFit can then be
used to reconnect these domains or to re-model the
hinge regions. Since the fragments are taken from PDB
structures which have undergone several steps of quality
control, the fragments do not necessarily have to be re-
fined, only the side chain rotamers may have to be
edited. Moreover, automatically refinement tools as
Rosetta [47], or a short energy minimization might be
used to further improve the completed structure with
regards to the newly ligated backbone stem atoms, which
may suffer from small structural distortions due to geo-
metrical inconsistencies.

The accuracy of FragFit depends on the type of sec-
ondary structure and of the quality (resolution, fragmen-
tation, noise) of the map. The high reliability of
prediction of helices can be explained by the characteris-
tic sequence composition and geometry of o-helices,
that are often well defined and clearly visible in cryo-EM
density maps. By contrast, B-sheets and long loops, that
are stabilized by more complex tertiary or quaternary
structure interactions involving residues distant in pri-
mary structure, are much more difficult to model and to
identify even in medium resolution maps [48]. Despite
this fact, analysis of the TM-score suggests that FragFit
is also capable of modeling p-sheets and complex loop
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R T ,
Fig. 4 FragFit examples. a A 12 residue long (3-sheet from Ribosomal protein L28 (PDB 2XTG, template PDB 3FZL with 25% sequence identity).
b TRPV1 ankyrin repeat region (PDB 3J5Q, template PDB 3EU9, sequence identity 23%). ¢ Loop in GroEL connecting two B-sheets (PDB 3ZPZ, template
PDB 3RTK with 26% sequence identity).d Long helix in TRPV1 (PDB 3J5Qtemplate PDB 3R2P with 19% sequence identity). Originally fitted structures

are colored gray, fragments found by FragFit are colored orange

structures, particularly when a homologous template
structure is available (Fig. 4b, c).

The gain in prediction quality is higher in those cases,
where FragSearch was unable to select the best fragment
(Fig. 2d, ARMSD FragSearch fails). Our analysis, therefore,
reveals that false positives are cleaned out from the top-
(Fig. 2d) and the top-five results list (Fig. 2c), when cryo-
EM density maps are used as restraints. An additional gain
in prediction quality is obtained, when the top-five results
list is taken into account. Visualization of the top-five frag-
ments is therefore expected to aid selection of the best fit-
ting fragment, particularly in case of fragmented maps or
maps with unassigned but not relevant densities. Fragmen-
tation might in several cases thus impact modeling quality
more than overall resolution. If noise or fragmentation is
absent, resolution of 12 A would theoretically be sufficient
to guide the modeling process (Fig. 3). In this case, even
low resolution maps support modeling of segments longer
than 20 residues, suggesting that if the rough shape of the
queried segment is defined by the map the native conform-
ation could be selected from the ensemble of conforma-
tions suggested by FragSearch. Finally, fragmentation might
in part also refer to the presence of an ensemble of different
conformations rather than one well defined state. Loops of
proteins are often highly flexible and split up into various
substates with sub-micro second lifetimes [49]. In these
cases FragFit might be useful to contour the possible en-
semble of different conformations present in flexible pro-
tein regions.

Conclusion
In summary, FragFit has proven to be a valuable tool for
the modeling of protein segments into cryo-EM density

map. Particularly for longer segments, cryo-EM density
maps add additional restraint that improve classical frag-
ment based modeling. The low requirements in comput-
ing power recommend implementation of FragFit for
instant visualization in web-applications (runtime ap-
proximately within a few minutes, depending on the
running environment, fragment length and box size).
Visual control allows interactive selection of the most
appropriate fragment, which we consider as a necessary
step to select for the most appropriate conformation,
specifically when artifacts or map fragmentations
complicate fully automatic modeling. The database
LIP and the programs FragSearch and FragFit are ac-
cessible on request.
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