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Abstract

Background: There are a wide range of phenotypes that are due to loss-of-function or null mutations. Previously, the
functions of gene products that distinguish essential from nonessential genes were characterized. However, the functions of
products of non-essential genes that contribute to fitness remain minimally understood.

Principal Findings: Using data from Saccharomyces cerevisiae, we investigated several gene characteristics, which we are
able to measure, that are significantly associated with a gene’s fitness pleiotropy. Fitness pleiotropy is a measurement of the
gene’s importance to fitness. These characteristics include: 1) whether the gene’s product functions in chromatin regulation,
2) whether the regulation of the gene is influenced by chromatin state, measured by chromatin regulation effect (CRE), 3)
whether the gene’s product functions as a transcription factor (TF) and the number of genes a TF regulates, 4) whether the
gene contains TATA-box, and 5) whether the gene’s product is central in a protein interaction network. Partial correlation
analysis was used to study how these characteristics interact to influence fitness pleiotropy. We show that all five
characteristics that were measured are statistically significantly associated with fitness pleiotropy. However, fitness
pleiotropy is not associated with the presence of TATA-box when CRE is controlled. In particular, two characteristics: 1)
whether the regulation of a gene is more likely to be influenced by chromatin state, and 2) whether the gene product is
central in a protein interaction network measured by the number of protein interactions were found to play the most
important roles affecting a gene’s fitness pleiotropy.

Conclusions: These findings highlight the significance of both epigenetic gene regulation and protein interaction networks
in influencing the fitness pleiotropy.
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Introduction

Mutations in individual genes or in a combination of genes can

have varying effects on phenotype. To study this further,

individual S. cerevisiae strains, each with a gene-deletion mutation

for a gene in the genome, such that there is a strain with a

mutation for every gene in the genome, have been generated [1].

The studies of the effects of these mutations on viability, when

each strain was grown in rich medium, have identified a set of

essential genes, consisting of about 20% of all the genes [1].

Essential genes are required for cell viability, while the other genes

are nonessential genes. The essential genes have been found to

encode products that have a large number of physical interaction

partners [2], although this finding has been challenged [3–6], and

are conserved across phyla [7]. The observation that ,80% of

genes are not essential for viability suggested that they contribute

to optimum fitness in response to different growth conditions.

To study the functions of non-essential genes, growth rates

(fitness) of the S. cerevisiae deletion strains have been examined in

various culture conditions [8–10]. One of the objectives of these

studies has been to group genes with similar fitness profiles, to

provide insight into gene function. With these data sets, a gene’s

importance to survival can be measured by fitness pleiotropy. A

gene’s fitness pleiotropy is defined as the number of conditions that

the fitness of the corresponding S. cerevisiae deletion strain is

significantly reduced [11]. Fitness pleiotropy is a quantitative

measurement of the importance of a gene’s function to the

organism’s relative fitness. The more important a gene is to fitness,

the higher the fitness pleiotropy. Thus, if the gene is important for

growth, the gene should have a high fitness pleiotropy measure.

Previously it has been shown that the fitness pleiotropy of a gene is

positively associated with the number of biological processes that

the gene’s product functions in, as well as the number of protein

interaction partners of the gene product [11,12]. A positive

association between fitness pleiotropy of transcription factors (TF)

and the number of the TF’s target genes has also been found [11].

However, the positive association was not statistically significant

(p-value = 0.22).
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Here, the fitness data from the S. cerevisiae deletion strains from

the previous studies [8–10] were re-examined to determine the

effect of chromatin regulation on fitness pleiotropy in two ways.

Chromatin regulation plays an important role in a gene’s response

to internal and external stimuli. First, we examined the fitness

pleiotropy of genes that encode chromatin regulatory factors, that

likely influence transcription by altering chromatin structure.

Second, we examine the epigenetic regulatory effect for every

gene, here defined as the chromatin regulation effect; CRE of a

gene is a measure of the mean absolute change of the gene’s

expression level when chromatin regulators are mutated, as was

done previously [13]. We find that CRE is strongly associated with

fitness pleiotropy.

Genes that are important for fitness tend to have stable

expression levels under many perturbations and thus it is expected

and shown here that fitness pleiotropy is negatively associated with

gene expression variation. Since the presence/absence of a

TATA-box has been found to be the major contributor to

expression variation [14–16], we also studied the relationship

between fitness pleiotropy and the presence/absence of TATA-

box, and show that they are highly associated. Additionally, we

further examined the relationship between the number of target

genes for TFs and their fitness pleiotropy, and showed that they

are highly statistically significantly associated.

We also determined if other centrality measures, in addition to

protein physical interaction (PPI) degrees, are associated with fitness

pleiotropy. We considered two additional centrality measures: 1)

betweenness (BW; defined as the fraction of shortest paths between

any two proteins that pass through the given protein in a protein

interaction network [17]) and 2) the clustering coefficient (CC;

defined as the ratio of the number of edges between its first order

neighbors, over all possible edges between its first order neighbors of

a given protein [18]). Proteins in complexes tend to have high CC

than other proteins. It has previously been shown that proteins

within complexes are more likely to be essential [3]. Thus we

consider three measures, PPI degree, BW and CC, whereas the

previous studies have only considered one measure (PPI degree

[11,12]). Our results show that both PPI degree and CC are strongly

associated with fitness pleiotropy and that the association between

BW and pleiotropy can be explained by the association between PPI

degree and pleiotropy.

In summary, the following work will demonstrate that 1)

chromatin regulation, as measured by chromatin regulation effect

(CRE), and 2) gene centrality, particularly in relation to the

protein interaction network, as measured by PPI degree, are

important contributors to fitness pleiotropy in S. cerevisiae.

Results and Discussion

Three phenotypic profiles were used to define fitness pleiotropy.

In the first experiment, a quantitative profile for 4,277 mutant

diploid strains, each homozygous for a deletion of a nonessential

gene, were examined under 51 growth conditions [8]. In the

second experiment, a quantitative profile of 4,111 mutant haploid

strains, each with a deletion of a nonessential gene, were examined

under 82 growth conditions [9]. In the third experiment, a

quantitative profile for 4,742 mutant strains each homozygous

mutant for a deleted nonessential genes were examined under 418

conditions and a quantitative profile for 4,956 mutant strains each

heterozygous for a deletion of a nonessential genes were examined

under 726 conditions [10]. The results using the phenotypic profile

from Brown et al. [8] are presented below, while those based on

the phenotypic profiles from Parsons et al. [9] and from

Hillenmeyer et al. [10] are found in the Files S2 and S3. The

results based on phenotypic profiles of heterozygous deletions [10]

are not shown since the statistical significance is weak or not

observed in some relationships. Moreover, we found that the

correlation of fitness pleiotropy for homozygous deletions [10] and

heterozygous deletions [10] under 119 unique conditions was very

low. The biological explanation for the differences observed in the

heterozygous mutants compared to homozygous mutants is likely

that most of these genes are haplosufficient under the growth

conditions examined.

To ensure that our results do not depend on the particular

interaction datasets used, we studied three interaction data

sources: MIPS [19], DIP [20], and BioGrid [21]. In the main

text, we only present the results with regard to protein interactions

using the MIPS data set [19]; the results using DIP [20] and

BioGrid [21] data sets are found in Files S1, S2 and S3.

The Influence of Transcription Factors, Chromatin
Regulators, and Chromatin Regulation Effect on Fitness
Pleiotropy

Phenotypic changes are associated with changes in gene

expression levels. Hence, genes with products that influence gene

expression might also be associated with fitness pleiotropy, such as

genes that encode transcription factors (TFs) or chromatin

regulators (CR) that underlie epigenetic gene regulation. Epige-

netic gene regulation refers to modification of chromatin by CRs,

such as methylation or acetylation of histone proteins, a

component of chromatin. Given that chromatin modification

usually affects TF binding and thus gene expression regulation, it is

hypothesized that both TFs and CRs must be important

contributors to fitness pleiotropy. To compare the contributions

of TFs or CRs to fitness pleiotropy, the influence of both gene and

chromatin regulatory networks on fitness pleiotropy were

examined.

First, transcription factors in gene regulatory networks were

examined, in which the nodes are the genes, and directed edges

indicate regulatory relationship. We used the gene regulatory

network constructed in [22]. In such a network, there are two

types of degrees, in-degree and out-degree. The in-degree of a

gene measures the number of TFs that regulate the gene. The out-

degree of a TF measures the number of genes that the TF

regulates. When a TF is deleted, the genes regulated by the TF will

be affected. Thus, if the out-degree of a TF is high, many genes

will be affected when the TF is deleted, and consequently should

increase fitness pleiotropy. Therefore, we expect that the fitness

pleiotropy should increase with out-degree, but not in-degree. As

shown in Figure 1A, fitness pleiotropy is significantly positively

associated with the out-degree of TFs (r= 0.355, p = 4.0e208).

On the other hand, there is no significant association between

fitness pleiotropy and in-degree in the gene regulatory network.

This is expected as in-degree only indicates how many TFs control

the gene, and it is not related to its effect on other genes and thus

overall fitness. This result supports the observation that fitness

pleiotropy was positively associated with the out-degree of TFs

although the association was not significant in [11].

We next investigated the CRs that underlie chromatin

modification, such as histone acetylation/methylation, ubiquityla-

tion/deubiquitylation and phosphorylation. Given that chromatin

modification has a high degree of impact on gene expression, it is

expected that CR genes should have high fitness pleiotropy. To

test this, 65 genes that encode chromatin regulators were identified

from a previous study [23], and the median fitness pleiotropy

of CR genes was found to be 2.282. This is significantly higher

than the median fitness pleiotropy of non-CR genes (1.149)

(p = 3.7e25, Figure 1B). These results demonstrate the importance

Factors Influencing Pleiotropy
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of genes that encode chromatin regulators relative to other genes,

with respect to the organism’s fitness.

We next studied the relationship between the potential for a

gene to be chromatin regulated with the gene’s pleiotropy. We

used the following approach to measure the potential for a gene to

be chromatin regulated. Here, we used the gene expression

compendium that examined global gene expression profiles in 116

different S. cerevisiae strains that have CR genes mutated [23]. The

potential for a gene to be CR-regulated was determined by the

chromatin regulation effect (CRE) measure, which is defined as

the mean absolute value of the logarithm of the gene expression

changes across the 116 perturbations, as was previously done [16].

The CRE measures the likelihood of a gene to be epigenetically

regulated. This means that, as CRE increases, the likelihood that

this gene is epigenetically regulated also increases. It has been

shown that CRE is significantly positively associated with gene

expression variation, due to trans-regulation [16].

Here, fitness pleiotropy is negatively associated with gene

expression variation suggesting that genes that show high

expression variation across the experiments are less important

for fitness (see Figure 2A). Therefore, we hypothesize that CRE

will also be negatively associated with fitness pleiotropy. Based on

the data, we studied the relationship between a gene’s CRE and

fitness pleiotropy and found that they are indeed significantly

negatively associated (r= 20.172, p,2.2e216, Figure 2B). Thus,

genes that display high expression change when chromatin

regulators are mutated tend to have low fitness pleiotropy. This

result suggests that genes with high CRE might function under

specific conditions. As a result, the deletion of such genes would

result in defective growth only under specific conditions, and will

have low fitness pleiotropy. The dataset was further examined to

identify genes with low fitness pleiotropy that are also chromatin

modified, to determine if this hypothesis is correct. Indeed, pho5

(fitness pleiotropy = 0) encodes acid phosphatase in budding yeast

and is induced under phosphate starvation, but repressed under

high-phosphate condition. It was found that the promoter of pho5

is protected by four positioned nucleosomes under high-phosphate

conditions [24] and pho5 activation is epigenetically regulated at

intermediate phosphate concentrations [25]. Another example is

SSA3 (fitness pleiotropy = 0), which encodes a member of the heat

shock protein 70 (HSP70) family. The expression of ssa3 is induced

after diauxic shift or upon heat shock [24]. Previous studies have

shown that there is a significant increase in H4 acetylation at the

promoter of ssa3 upon heat shock [26]. These two examples are

consistent with the idea that genes that are epigenetically regulated

and have products that function under specific conditions show

low fitness pleiotropy.

Given that TF out-degree is positively associated with fitness

pleiotropy (see above), the relative contributions of out-degree and

CRE to fitness pleiotropy were examined, in order to determine

their relative importance in influencing fitness pleiotropy. Partial

correlation analysis was used to achieve this objective. The

partial correlation analysis was restricted to TFs, as the large

number of non-TFs may confound our analysis. The results

showed that r fitness pleiotropy, CRE | out degree = 20.300 (p = 1.3e205),

r fitness pleiotropy, out degree | CRE = 0.311 (p = 5.9e206). The absolute

values of the two partial correlations are similar indicating that the

strength of contributions of CRE and out-degree to fitness

pleiotropy are similar. However, the two partial correlations have

different signs indicating that fitness pleiotropy is still negatively

associated with CRE when out-degree is controlled and that fitness

pleiotropy is still positively associated with out-degree when CRE is

controlled. Given that the number of TFs is small, in the following

analysis only CRE will be examined.

Figure 1. The relationship between fitness pleiotropy and different measurements. A) Fitness pleiotropy is positively associated with the
number of targeted genes that each TF regulates (r= 0.355, p = 4.0e208). Note that only less than 0.5% protein has out-degree higher than 100 (data
not shown). B) Fitness pleiotropy for CRs and non CRs. The line in the box indicates the median value. The upper edge of the box indicates the 75th

percentile, and the lower edge indicates the 25th percentile. The ends of the vertical line indicate the minimum and the maximum values, and the
points outside the ends of the vertical line are outliers. P-values are given to test the hypothesis that the median fitness pleiotropy for CRs is higher
than that for non CRs using non-parametric Wilcoxon rank sum test. The value of n in the box is the number of genes for each group.
doi:10.1371/journal.pone.0008086.g001
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Joint Effect of Chromatin Regulation and TATA-Box on
Fitness Pleiotropy

The TATA-box is a conserved cis-DNA-element found in

the eukaryotic promoter regions. Genes are divided into

TATA-containing genes and non-TATA- containing genes

based on the presence of TATA-box in the promoter region

[27]. The TATA-box has been found to be the most important

DNA motif for predicting gene expression variation, with

TATA-containing genes having significantly higher expression

variation than non-TATA-containing genes [13–14]. In sharp

contrast, TATA-containing genes have lower mean fitness

pleiotropy (0.850) than non-TATA-containing genes (1.237),

and the difference is highly significant (p = 8.7e208). In other

words, when TATA-containing genes are deleted, low fitness

pleiotropy is observed, suggesting that these mutations have a

less deleterious effect to the organism.

Furthermore, the presence/absence of TATA-box has been

shown to be highly associated with CRE [16]. Therefore, the

effect of the TATA-box on fitness pleiotropy, as indicated

above, could be explained by CRE if the association between

fitness pleiotropy and TATA-box disappears when we control

CRE. To confirm this, partial correlation was used to measure

the association strength between fitness pleiotropy and CRE/

TATA-box after controlling TATA-box/CRE, respectively.

The results showed that r fitness pleiotropy, CRE | TATA-box =

20.148 (p = 8.9e218) and r fitness pleiotropy, TATA-box | CRE =

20.027 (p = 0.127; treat TATA-containing genes as 1 and

non-TATA-containing genes as 0). This indicates that the

relationship between fitness pleiotropy and the presence of the

TATA motif could be explained by the negative association

between fitness pleiotropy and CRE. While interesting,

because TATA-containing genes are only about 20% of all

yeast genes, we will not consider the presence of the TATA-

box further.

The Relationship between Fitness Pleiotropy and Gene
Product Centrality as Measured within the Protein
Interaction Network: Protein Interaction Degree,
Betweenness, and Clustering Coefficient

The physical interactions between proteins form a protein

interaction network. In this network, each protein is a node, and

the physical interaction between proteins is an edge. The physical

protein interaction degree (PPI degree) is defined as the number of

interaction partners for each protein. Since protein interactions

play a central role in protein function, proteins with high PPI

degree may be involved in more biological processes. Thus, we

also expect that genes that encode such proteins will have high

fitness pleiotropy. As shown in Figure 3A, as PPI degree increases,

fitness pleiotropy of the gene also increases (r= 0.232,

p,2.2e216). This result is consistent with the findings of He

and Zhang [11] and Yu et al. [12], where they found a relatively

weak, yet significant positive association between fitness pleiotropy

and PPI degree, using different datasets. The positive association

between fitness pleiotropy and PPI degree indicates that when a

gene with a high PPI degree is deleted, the functions of many

proteins that interact with this protein are likely to be affected,

resulting in changes in overall fitness, under different growth

conditions. Hence, the importance of a gene with respect to fitness

increases with the gene product’s PPI degree. The findings are also

consistent with previous results that showed that the essential

genes, that have the highest fitness pleiotropy, tend to have

products with higher physical interaction degrees (in our dataset,

p = 1.4e24) [2,28].

In this study, a gene’s product is considered central (gene

centrality) based on a high PPI degree and two other measures:

betweenness (BW) and clustering coefficient (CC). First, BW of a

target protein is calculated by the fraction of shortest paths that

pass through the target protein between any pair of proteins. It

Figure 2. The relationship between fitness pleiotropy and different measurements. A) Fitness pleiotropy is significantly negatively associated
with gene expression variation (r= 20.151, p,2.2e216). B) Fitness pleiotropy is negatively associated with chromatin regulatory effect (CRE) (r= 20.172,
p,2.2e216). The red dots are the mean fitness pleiotropy of the genes, given CRE. For visualization, the blue line represents linear regression.
doi:10.1371/journal.pone.0008086.g002
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thus measures the frequency of target protein usage when the

signal is transmitted between two proteins. Yu et al. [28] showed

that PPI degree is a better predictor of protein essentiality than

BW in a protein interaction network, although the probability of a

protein being essential increases with BW.

Here it was examined whether the fitness pleiotropy of a non-

essential gene increases with BW. Fitness pleiotropy is significantly

positively associated with BW (r= 0.178, p,2e216). PPI degree

and BW are also highly correlated with a Spearman correlation of

r= 0.893 in our dataset. These findings indicate, however, that the

high correlation between fitness pleiotropy and BW may be

explained by the high correlation between fitness pleiotropy and

PPI degree. To determine if this is true, the partial correlation

between fitness pleiotropy and PPI degree with BW controlled

(rfitness pleiotropy, PPI degree|BW = 0.169, p = 1.7e220) was examined.

When PPI degree is controlled, the partial correlation between

fitness pleiotropy and BW is 20.077 (p = 2.6e205), indicating an

absolute value much smaller than the partial correlation between

fitness pleiotropy and PPI degree when BW is controlled. Note

that the sign of rfitness pleiotropy, BW| PPI degree is the reverse of the

sign of rfitness pleiotropy, BW. These results indicate that PPI degree is

a better predictor of fitness pleiotropy than BW, because the

partial correlation between fitness pleiotropy and BW is minimal

when PPI degree is controlled. This finding is consistent with the

results of Yu et al. [28] that PPI degree is a better predictor of

essentiality than BW. Therefore, we will not consider BW in the

studies presented below.

Second, the clustering coefficient (CC) for the non-essential

genes was examined. Proteins within complexes have higher CC

values than other proteins. Since proteins within complexes are

more likely to be essential [3], it is also hypothesized that fitness

pleiotropy for non-essential genes increases with CC. This is

demonstrated by the positive correlation with fitness pleiotropy

and CC (r= 0.243, p,2.2e216). Although there is also a high

correlation between PPI degree and CC (r= 0.643, p,2.2e216,

Figure 3B), this correlation is not as strong as the correlation

between PPI degree and BW (r= 0.893).

To determine how PPI degree and CC interact to influence

fitness pleiotropy, the genes were divided into four groups based

on the measurement of PPI degree and CC: low PPI degree, low

CC (LL); high PPI degree, low CC (HL); low PPI degree, high CC

(LH), and high PPI degree, high CC (HH). Proteins with CC of 0

(76% of the genes) and those with CC of at least 0.4 (5% of the

genes) were classified as low CC and high CC, respectively. We

chose a low threshold of PPI degree so that the fraction of proteins

with low PPI degree is closest to the fraction of proteins with low

CC. This resulted in a low PPI degree threshold of 3 (70% of the

genes). The upper PPI degree threshold was chosen so that the

fraction of proteins with high PPI degree is closest to 20%, which

gave a threshold of 6 (18% of the genes). Only about 2% of

nonessential gene products are classified in the group having high

PPI degree and high CC, whereas most nonessential gene products

belong to the group with low PPI and low CC. Figure 4 gives the

box plot for the fitness pleiotropy within each group. The results

indicate that genes with products of high PPI degree and high CC

tend to have the highest fitness pleiotropy. Similar results were

obtained when other thresholds were used to partition the proteins

into four groups (data not shown).

One explanation for this phenomenon is that proteins with high

PPI degree and high CC tend to form complexes that frequently

underlie important biological processes, and thus are important for

fitness. Inspection of the data leads to the identification of genes

with products that function in complexes that underlie important

biological processes. For example, COG7 (PPI = 8, CC = 0.43 and

fitness pleiotropy = 6) encodes a component of the cytosolic Golgi

tethering complex that functions to mediate fusion of transport

vesicles to Golgi compartments [24]. Another example is CDC10

(PPI = 8, CC = 0.5 and fitness pleiotropy = 7), which encodes a

component of the septin ring of the mother-bud neck that is

required for cytokinesis [24]. The studies of gene centrality

Figure 3. The relationship between fitness pleiotropy and PPI degree (A) and between CC and PPI degree (B). A) The fitness pleiotropy
is positively correlated with protein physical interaction (PPI) degree. The Spearman’s rank correlation is used to measure the relationship between
fitness pleiotropy and PPI degree (r= 0.232, p,2.2e216). Note that only less than 1% of protein has PPI degree higher than 50 (data not shown). The
labels are the same as those in Figure 2. B) The scatter plot of the relationship between clustering coefficient and PPI degree. The Spearman
correlation coefficient r is 0.643 (p,2.2e216).
doi:10.1371/journal.pone.0008086.g003
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presented here suggest that fitness pleiotropy in nonessential genes

increases with PPI degree, BW or CC. PPI degree is a better

predictor than BW, and PPI degree may interact with CC

influencing fitness pleiotropy.

The Influence of Gene Expression Variation on the
Relationship between Fitness Pleiotropy and PPI Degree,
CC and CRE

Many of the gene characteristics measured influencing fitness

pleiotropy identified in this study coincide with those influencing

gene expression variation, such as CRE, presence/absence of

TATA-box, and PPI degree [13–16]. Therefore, a natural

question that arises is whether fitness pleiotropy can be completely

explained by gene expression variation or not. If fitness pleiotropy

can be completely explained by gene expression variation, a direct

relationship between gene expression variation and fitness

pleiotropy could be inferred. Accordingly, the gene expression

variation data from a previous study was examined [25], to

determine if there is a relationship between fitness pleiotropy and

gene expression variation. As shown in the scatter-plot in

Figure 2A, there is, indeed, a high correlation between fitness

pleiotropy and gene expression variation (r= 20.151,

p,2.2e216), but the absolute correlation coefficient is relatively

low, indicating that expression variation may only explain a small

fraction of fitness pleiotropy.

Genes with fitness pleiotropy of at least 4 (top 11% of the all the

genes) (the threshold 4 was chosen so that the fraction of high

fitness pleiotropy genes is closest to 10%) and gene expression

variation of at least 2970 (top 10% of the genes) were selected as a

set with high fitness pleiotropy and high expression variation (0.4%

of the data). Interestingly, we found that this set was enriched with

the genes that encode ion transporters (P-value = 0.00019

indicated by FunSpec [29]), especially heavy metal ion transport-

ers, including the iron transporter genes ftr1, fet3 and ctr1. Given

that iron plays a vital role in many important processes, such as

electron transfer, oxygen transport, and DNA synthesis, a deletion

of an ion transporter gene is very likely to affect fitness. In S.

cerevisiae, iron level is primarily mediated by a plasma membrane

iron transport system, including products encoded by ftr1and fet3.

Additionally, it was found that expression of the genes that encode

the iron transporters are regulated according to iron need in the

cell [30–31]. Therefore, some genes with high gene expression

variation also tend to have high fitness pleiotropy.

Genes (15% of the data) with low fitness pleiotropy (equal to 0)

and low expression variation (no greater than 800, low 22% of the

genes) were also identified. It should be noted that 60% of the

genes in this set encode proteins that have unknown biological

function. The set also included genes such as pex7, pex10, pex4,

pex6, and pex15, that encode products involved in peroxisome

organization and biogenesis; a high number of these genes encode

proteins involved in importing other proteins into the peroxisomal

matrix [24]. The genes show low gene expression variation,

perhaps because their expression is not influenced by environ-

mental conditions. The low fitness pleiotropy (i.e., 0) suggests that

a defect in the biological process that these genes underlie might

not affect cell growth significantly. These findings also suggest that

the negative correlation between gene expression variation and

fitness pleiotropy is not strong and cannot describe some groups of

genes.

The partial correlation between fitness pleiotropy and CRE,

PPI degree, and CC, were examined by controlling gene

expression variation. The results are given in Table 1. For

comparison, we also give the correlation between fitness pleiotropy

and CRE, PPI degree, and CC when gene expression variation is

not controlled. The absolute partial correlation coefficient between

fitness pleiotropy and CRE when gene expression variation is

controlled is much smaller than that when gene expression

variation is not controlled. This result suggests that the association

between fitness pleiotropy and CRE can be partially, but not

completely, attributed to the association between fitness pleiotropy

and gene expression variation. On the other hand, the partial

Figure 4. The influence of PPI degree and CC on fitness
pleiotropy. Fitness pleiotropy for four different groups of proteins
classified according to PPI degree and CC: LL (PPI degree , = 3,
CC, = 0); LH (PPI degree , = 3, CC. = 0.4); HL (PPI degree . = 6,
CC, = 0); HH (PPI degree . = 6, CC. = 0.4). P-values are given to test
the hypothesis that the median fitness pleiotropy in LL, LH, and HL is
lower than that in the HH group, respectively. The value of n in the box
is the number of genes for each group.
doi:10.1371/journal.pone.0008086.g004

Table 1. Correlation between fitness pleiotropy and each
measurement when expression variation is either controlled
or not.

measurement r p value

CRE without expression variation
controlled

20.172 ,2.2e216

with expression variation
controlled

20.112 2.6e210

PPI degree without expression variation
controlled

0.232 ,2.2e216

with expression variation
controlled

0.225 ,2.2e216

CC without expression variation
controlled

0.243 ,2.2e216

with expression variation
controlled

0.229 ,2.2e216

When gene expression variation is controlled, r is partial Spearman’s correlation
coefficient and p-value is based on null hypothesis test that there is no
statistically significant relationship between fitness pleiotropy and each
measurement after controlling gene expression variation, i.e., the relationship
between fitness pleiotropy and each measurement is explained by gene
expression variation.
doi:10.1371/journal.pone.0008086.t001
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correlation coefficients between fitness pleiotropy and PPI degree,

and CC when gene expression is controlled are all similar to the

corresponding correlation without controlling gene expression

variation indicating that these measurements contribute to fitness

pleiotropy independent of expression variation.

Based on this result, we next asked what biological mechanism

underlies the correlation between fitness pleiotropy and expression

variation. In order to answer this question, we studied the partial

correlation between fitness pleiotropy and gene expression

variation when CRE, PPI degree, or CC is controlled, respectively

(see Table 2). When CRE is controlled, fitness pleiotropy and gene

expression variation are no longer associated indicating that CRE

plays key roles in both fitness pleiotropy and gene expression

variation. Thus, CRE can be considered as the key underlying

latent variable that controls both fitness pleiotropy and expression

variation resulting in their correlation, and fitness pleiotropy and

gene expression are independent when CRE is controlled.

Joint Analysis of PPI Degree, CC and CRE on Fitness
Pleiotropy

These findings indicated that the gene characteristics that are

significantly associated with fitness pleiotropy are CRE, PPI

degree, and CC for the nonessential S. cerevisiae genes. Fitness

pleiotropy increases with PPI degree and CC, while it decreases

with CRE. We also found that, although the presence of TATA-

box influences fitness pleiotropy, this phenomenon can be

explained by high CRE in TATA-containing genes, which

suggests that fitness pleiotropy is no longer associated with

TATA-box once CRE is controlled. Based on these findings, the

next logical step takes us to a determination of whether such

characteristics that were measured collectively explain fitness

pleiotropy among all of the nonessential genes. In order to achieve

this objective, the partial correlation between fitness pleiotropy

and either CRE, PPI or CC measures were examined, when the

other two measures are controlled (Table 3). The results show that

both CRE and gene centrality (measured by PPI degree and CC)

play important roles influencing fitness pleiotropy.

In Files S1, S2 and S3, we provide results when MIPS, DIP, or

BioGrid protein interaction data sets, and the fitness profiles in

Parson et al. [9] or Hillenmeyer et al. [10] were analyzed. It is noted

that the association between fitness pleiotropy and PPI degree or

CC with/without controlling expression variation when the DIP

interaction data was used is much weaker compared to the

corresponding association values when MIPS or BioGrid interac-

tion data set was used. The observation can be explained by the

relative smaller number of protein interactions in the DIP data set

compared to the other two interaction data sets. The results

highlight the importance of using increasingly complete interaction

data sets for studying the relationship between fitness pleiotropy and

gene characteristics within the protein interaction networks. We also

note that significant partial correlation of fitness pleiotropy with

CRE controlling for PPI and CC, as well as with PPI controlling for

CRE and CC, was replicable when other combinations of fitness

profiles and protein interaction data sets were used in the analysis.

However, the significant partial correlation between fitness

pleiotropy and CC controlling for CRE and PPI can only be

observed when MIPS interaction data was used, and was not

observed when DIP and BioGrid interaction data sets were

analyzed. The observations suggest that the association between

fitness pleiotropy and CC can potentially be attributed to the

association between fitness pleiotropy with CRE and PPI.

This study provides a systematic analysis of genes and their

products’ functions that influence fitness pleiotropy, for all of the

nonessential genes in S. cerevisiae. Within the concept of gene

centrality and chromatin regulation, the important characteristics

identified are CRE and PPI degree. The inter-relationship

between these gene centrality measures and regulation by CRs

was also examined with respect to expression variation and fitness

pleiotropy. The findings suggest that the potential for a gene to be

chromatin regulated, as measured by CRE, and the gene

centrality, as measured by PPI degree, significantly affect the

corresponding gene’s fitness pleiotropy. The results from examin-

ing the data based on three independent gene deletion

experiments, that examined fitness in 51, 82 and 418 conditions,

respectively, are consistent. These consistent results indicate that

the conclusions should be generally applicable to many other

conditions. However, there are several limitations of this study.

Both the protein interaction network and gene regulatory network

are incomplete and contain false positive and negative errors. To

study the effect of incompleteness of the protein interaction

network, we did the same type of analyses using the other two

protein interaction data sets: DIP [20] and BioGrid [21], and the

results are qualitatively similar (see Files S1, S2 and S3). We used

the largest gene regulatory network that is currently available in

this study. How our results will change when more complete

regulatory network data are available is a question for future

studies. The characteristics of genes that were studied in this paper

include PPI degree, BW, CC, CRE, TATA-box, etc are highly

correlated. We used partial correlation analysis to study how these

characteristics interact to affect fitness pleiotropy. More advanced

methods such as pathway analysis or Bayesian network analysis

may uncover more complex relationships among these character-

istics and how they interact to influence fitness pleiotropy, a topic

for further study.

Table 2. Partial Spearman’s correlation between fitness
pleiotropy and expression variation when each measurement
is controlled.

r p value

r fitness pleiotropy, expression variation | CRE 20.020 0.2662

r fitness pleiotropy, expression variation | PPI degree 20.144 3.4e214

r fitness pleiotropy, expression variation | CC 20.143 5.5e214

r is Spearman’s correlation coefficient and p-value is based on null hypothesis
test that there is no statistically significant relationship between fitness
pleiotropy and gene expression variation after controlling CRE, PPI degree or
CC, i.e., the relationship between fitness pleiotropy and gene expression is
explained by CRE, PPI degree or CC.
doi:10.1371/journal.pone.0008086.t002

Table 3. Partial Spearman’s correlation between fitness
pleiotropy and CRE, PPI degree or CC.

r p-value

r fitness pleiotropy, CRE | PPI,CC 20.153 3.5e214

r fitness pleiotropy, PPI | CRE,CC 0.100 7.5e207

r fitness pleiotropy, CC | CRE,PPI 0.114 2.0e208

Partial Spearman’s correlation between fitness pleiotropy and PPI degree refers
to Spearman’s correlation after controlling CC and CRE. r is Spearman’s
correlation coefficient and p-value is based on null hypothesis test that there is
no statistically significant relationship between fitness pleiotropy and each
measurement after controlling two other measurements, i.e., such
measurement is not significantly associated with fitness pleiotropy in this joint
analysis.
doi:10.1371/journal.pone.0008086.t003
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Materials and Methods

Phenotypic Profiles
Three fitness profiles of S. cerevisiae deletion strains, which measured

the changes of growth rate when nonessential genes were deleted

under various conditions were used [8–10]. In the main text, the

quantitative profile for yeast homozygous deletion strains with each of

4277 genes deleted under 51 conditions were used [8]. When

duplicate measures of growth rate for strains with the same deleted

genes were available, the average change in growth rate was used in

our analysis. A total of 10 genes have duplicate measures, and the

results are essentially the same if these genes had been removed in the

analysis (data not shown). The refined data were normalized under

each condition to a standard normal distribution. To exclude the

biological dependency between these 51 conditions, the conditions

were classified into 31 groups based on their different effects on the

phenotype using two-way clustering [8]. The conditions in the same

group have a similar phenotypic profile that was measured by

Pearson’s correlation coefficient by Brown et al. [8]. The 31 groups

are as follows: AAPO,H2O2; Alk.5g,Alk.15g; Bleo,HygB; Cis1,

Cis4,Oxa; CPTa,CPTc; ActD,Dox; Gal.5g,Gal.15g; AntA,GlyE;

Ida, TPZ;Mech,MMC; Min.5g,Min.15g;NaCl.5g,NaCl.15g; Nys.5g,

Nys.15g; Sorb.5g,Sorb.15g; Trp,Thr,Lys,SC; UVB,UVC,IR; and

the remaining with each condition as one group. The deletion strain

with growth rate change less than -2 (2 standard deviation) is defined

as having significant growth defect under the specific condition. A

deletion strain has a growth defect under a group of conditions if the

deletion strain shows growth defect under at least one of the

conditions in this group. The fitness profile data contain the growth

rate of yeast haploid deletion strains of 4111 nonessential genes under

82 conditions [9], growth rate of yeast homozygous deletion strains of

4742 nonessential genes under 418 conditions [10], and the details

are given in the Files S2 and S3. The fitness pleiotropy measures

based on the three phenotype profiles are strongly correlated (See

Table 7 in File S1).

Protein Interaction Networks
The yeast protein interaction data from three different data

sources were downloaded: MIPS [19], DIP [20], and BioGrid

[21]. The MIPS (Munich Information Center for Protein

Sequences) [19] dataset (version: PPI_18052006.tab) contains

11,124 protein physical interactions involving 4,404 proteins. The

DIP core interaction dataset [20] (version: ScereCR20070107)

contains 5,738 protein interactions involving 2,161 proteins. The

DIP core interactions were assessed by a number of quality tests

and are supposedly highly reliable [32]. The BioGrid [21] dataset

(version 2.0.34) contains 59,317 protein physical interactions

involving 5,054 proteins. Previous studies have shown that the

MIPS interaction dataset has relatively high reliability compared

to other data sources [33]. Therefore, our efforts were concen-

trated on the results based on MIPS. The results based on DIP and

BioGrid are presented as Files S1, S2 and S3. For a given protein

interaction dataset, the protein physical interaction (PPI) degree

was calculated. The betweenness (BW), and the clustering

coefficient (CC) were calculated using the software Pajek 1.20

[34]. Pajek is a software package for large network analysis and

visualization.

Regulatory Network
Transcription factors (TFs) influence the expression of down-

stream genes. Hu et al. [22] constructed a regulatory network

using 263 TF knockout profiles. We used a directed edge from a

TF to a gene if the expression of the gene was significantly

changed when the TF was knocked out. Note that this regulatory

network represents indirect relationship, not necessarily direct

regulation. The out-degree of a TF is the number of genes that the

TF regulates in this network, while the in-degree is the number of

TFs regulating a specific gene in this network.

Expression Compendium of Chromatin Regulators
To study the effects of chromatin regulation on fitness

pleiotropy, the expression compendium of chromatin regulators

assembled previously, was used [23]. We removed the expression

data under perturbations of TATA binding protein (TBP), histone

proteins (H3 and H4), proteins with unknown chromatin

regulation activities, as well as comparative perturbations, because

they do not represent perturbations of chromatin regulators.

Finally, we obtained a reduced dataset of expression profiles for

116 perturbations of chromatin modifiers, Histone mehtyltrans-

ferase, acetyltransferases and deacetyltransferases, silencing fac-

tors, ubiquitinating, deubiquitinating enzymes and ATPase. We

further checked the percentage of missing values for each gene

under 116 perturbations. If a gene had more than 10% (i.e., 12)

missing values, we excluded it in the final refined data. We

normalized the refined data under each perturbation to a standard

normal distribution and calculated chromatin regulator effect

(CRE) as the average of absolute value of logarithm of the gene

expression changes across 116 perturbations, which is the same

as [16].

TATA-Containing Genes
A TATA-box is a DNA sequence motif (cis-element) found in

the promoter region of most eukaryotic genes. The TATA

consensus sequence was identified as TATA(A/T)A(A/T)(A/G)

[27]. The relationship between yeast genes and the TATA box

was downloaded from [27].

Statistical Analysis
In our dataset, fitness pleiotropy is a discrete response variable.

To measure the relationship between fitness pleiotropy and each

measurement, we used a non-parametric Spearman’s rank

correlation with corresponding statistical significant test since the

assumptions of parametric methods, such as linear regression or

ordinal logistic regression, are not satisfied. Spearman’s rank

correlation is used to discover the linear association between two

variables, and its corresponding test has no distribution assump-

tions for the variables. In the joint analysis, non-parametric

Spearman partial correlation and the corresponding significant

test are used to measure which measurement is most important in

influencing fitness pleiotropy. We also used Spearman partial

correlation to find the relative importance of measurements

influencing fitness pleiotropy. For example, if we want to know

which of measurement y or z has a stronger association with x, we

compare the value of rx,y|z and rx,z|y. The bigger value means the

stronger association. rx,y|z means partial correlation between x

and y after controlling z.

The first order partial correlation is defined as:

rxy,z~
rxy{rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{r2
xz

� �
1{r2

yz

� �r where rxy is the correlation

between x and y.

The second order partial correlation is defined as:

rxy,z1z2
~

rxy,z1
{rxz2,z1

ryz2,z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

xz2,z1

� �
1{r2

yz2,z1

� �r where rxy,z is the partial

correlation between x and y after controlling z. It is implemented by

SAS 9.0 (http://www.sas.com/technologies/bi/appdev/base/).
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To provide visualization of the relationship between fitness

pleiotropy and each measurement, we used linear regression to fit

the data in the plot.

v~azbd

where v is fitness pleiotropy and d is the measurement value. a and

b are parameters.

We also used box plots for visualization in our studies. These

show the difference in distribution of each variable. The line in the

box indicates the median value. The upper edge of the box

indicates the 75th percentile, and the lower edge indicates the 25th

percentile. The ends of the vertical line indicate the minimum and

the maximum values, and the points outside the ends of the

vertical line are outliers.

In addition, we used a non-parametric Wilcoxon rank sum test

[35] to compare the difference in median for two distributions.

The test in our study is a one-side test that is based on the

alternative hypothesis that variable A has higher or lower value

than variable B.

Supporting Information

File S1 Provides analysis results based on phenotypic file from

Brown et al. [8] and the results with regard to protein interaction

degree using DIP [20] and BioGrid [21] data sets.

Found at: doi:10.1371/journal.pone.0008086.s001 (0.50 MB

DOC)

File S2 Provides analysis results based on phenotypic file from

Parsons et al. [9] and the results with regard to protein interaction

degree using MIPS [19], DIP [20] and BioGrid [21] data sets.

Found at: doi:10.1371/journal.pone.0008086.s002 (1.60 MB

DOC)

File S3 Provides analysis results based on phenotypic file from

Hillenmeyer et al. [10] and the results with regard to protein

interaction degree using MIPS [19], DIP [20] and BioGrid [21]

data sets.

Found at: doi:10.1371/journal.pone.0008086.s003 (1.15 MB

DOC)
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