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Abstract

Background: AP-4 belongs to the basic helix-loop-helix leucine-zipper subgroup; it controls target gene expression,
regulates growth, development and cell apoptosis and has been implicated in tumorigenesis. Our previous studies
indicated that AP-4 was frequently overexpressed in gastric cancers and may be associated with the poor prognosis. The
purpose of this study is to examine whether silencing of AP-4 can alter biological characteristics of gastric cancer cells.

Methods: Two specific siRNAs targeting AP-4 were designed, synthesized, and transfected into gastric cancer cell lines and
human normal mucosa cells. AP-4 expression was measured with real-time quantitative PCR and Western blot. Cell
proliferation and chemo-sensitivity were detected by CCK-8 assay. Cell cycle assay and apoptosis assay were performed by
flow cytometer, and relative expression of cell cycle regulators were detected by real-time quantitative PCR and Western
blot, expression of the factors involved in the apoptosis pathway were examined in mRNA and protein level.

Results: The expression of AP-4 was silenced by the siRNAs transfection and the effects of AP-4 knockdown lasted 24 to
96 hrs. The siRNA-mediated silencing of AP-4 suppressed the cellular proliferation, induced apoptosis and sensitized cancer
cells to anticancer drugs. In addition, the expression level of p21, p53 and Caspase-9 were increased when AP-4 was
knockdown, but the expression of cyclin D1, Bcl-2 and Bcl-xL was inhibited. It didn’t induce cell cycle arrest when AP-4 was
knockdown in p53 defect gastric cancer cell line Kato-III.

Conclusions: These results illustrated that gene silencing of AP-4 can efficiently inhibited cell proliferation, triggered
apoptosis and sensitized cancer cells to anticancer drugs in vitro, suggesting that AP-4 siRNAs mediated silencing has
a potential value in the treatment of human gastric cancer.
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Introduction

Although the incidence andmortality rates associated with gastric

cancer have gradually decreased in recent years in most areas of the

world [1,2], gastric cancer remains a worldwide health burden, and

remains the most common cause of cancer related deaths with little

improvement of long-term survival. The most efficient treatment of

gastric cancer was completely surgical removal of the neoplastic

tissue with D2 lymphadenectomy. In addition adjuvant chemother-

apy and radiotherapy have assisted to improve prognosis. Even so,

the 5-year survival remained very poor [1,3].More than onemillion

new cases were diagnosed each year, especially in East Asia, like

Japan, Korea, and China. In these countries, gastric cancer remains

the most common cause of cancer related deaths, and the precise

pathogenesis remains unknown [3].

Transcription factors are important regulatory components [4].

They belonged to the helix-loop-helix family and played an

important role in cell proliferation and differentiation, cell lineage

determination, expression of intracellular genetic information, and

other essential processes [5]. As a member of the basic helix-loop-

helix leucine-zipper (bHLH-LZ) subgroup of bHLH proteins [6],

activating enhancer binding protein 4(AP-4) was initially identified

as a cellular protein that bound to the simian virus 40 (SV40)

enhancer and activated the viral late gene transcription [7]. AP-4

is a ubiquitously expressed transcription factor and may control

transcriptional networks during cellular differentiation by forming

homodimers and binding to the symmetrical DNA sequence,

CAGCTG [7,8,9,10,11,12]. AP-4 is a ligand for immunoglobulin-

kappa promoter E-box elements, which may be implicated to

immunodeficiency diseases [13,14]. In addition, unlike other HLH
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proteins, AP-4 contains two additional protein dimerization motifs

consisting of leucine repeat elements LR1 and LR2. Hence, AP-4

presents a specific tripartite dimerization structure, suggesting that

AP-4 may interact with a wide variety of transcription factors

[8,14]. AP-4 regulates the expression of some genes

[9,15,16,17,18,19,20,21]. For instance, it activates the transcrip-

tion of hMTIIA gene and participates in the regulation of human

proenkephalin expression [22], and it may play a role in the

expression of the pancreatic exocrine gene family [23]. Recently,

the overexpression of AP-4 was reported in the colorectal cancer,

breast cancer and prostate cancer [9,18,24].

RNA interference (RNAi) is a process of sequence specific post-

transcriptional gene silencing initiated by double-stranded RNA

[25], which can lead to the silencing of specific cellular gene and

provide a powerful reverse genetics approach to analyze gene

functions both in vitro and in vivo [26]. Currently the most widely

used nucleic acid-based sequence-specific gene silencing molecules

were small interfering RNAs [27], named siRNAs, which consists

of symmetrical duplexes of 19–21 base pairs [28]. The siRNA

method could inhibit target gene expression with specificity,

efficiency and endurance [29].

We reported previously that AP-4 was overexpressed in gastric

cancer and that it may be associated with the poor prognosis [30].

In the present study, we further examined the AP-4 function in

human gastric cancer cell with RNA interference.

Results

Specific siRNA targeting the AP-4 expression in human
gastric cancer cells and human normal mucosa cells
To evaluate the effect of the siRNA-mediated silence of the AP-

4 gene expression, the control siRNA and AP-4 specific siRNAs

were transfected into the cells for 24 h, 48 h, 72 h, and 96 h. The

efficacy in down-regulating expression of AP-4 gene was detected

by real-time quantitative PCR and western blot. As shown in

Figure 1, AP-4 specific siRNAs could effectively inhibit the gene

transcription and translation. The mRNA and protein levels of

AP-4 were decreased with AP-4 siRNA transfection group but not

in the control siRNA (Figure 1). The siRNAs induced suppression

of AP-4 expression could be detected in 24 hours after trans-

fection. However, the inhibition ratio decreased 72 hours after

transfection. The most efficient time point were between 48 h to

72 h in suppress expression of AP-4. The relative levels of mRNA

transcripts significantly decreased by nearly 90% in siRNA-1

group, and 95% in siRNA-2 group. There was statistical

significance between siRNAs group and the control group.

Down-regulation of AP-4 expression inhibited the cell
proliferation and sensitized human gastric cancer cells to
anticancer drugs
To examine the effect of AP-4 specific siRNAs on cell

proliferation and chemo-sensitivity of the cancer cells, 20 nM of

AP-4 specific siRNAs or control siRNA were transfected and the

cell proliferation was determined by CCK-8 assay 48 hours after

transfection. We found that knockdown AP-4 could inhibit the

proliferation of gastric cancer cell lines SGC7901 and AGS

(Figure 2), but not in normal mucosa cell line GES-1 when

compared with the control siRNA transfection in 48 hours

(Figure 2). These results indicated that AP-4 siRNAs attenuated

the cell proliferation of gastric cancer cells in vitro. Furthermore,

we investigated the role of AP-4 in the regulation of chemo-

sensitivity of human gastric cancer cells. We compared the drug

sensitivity of AP-4 siRNAs with that of control siRNA or mock

cells and found that the relative inhibition rates of AP-4 specific

siRNAs were significantly higher than that of control siRNA or

mock cells (p,0.0001) (Figure 2). In addition, AP-4 siRNAs

significantly enhanced the sensitivity of cells to ADR, 5-FU or cis-

plantinum treatment at two differently doses (Figure 2), these

suggested that down-regulation of AP-4 may have a beneficial

effect in the sensitivity of chemotherapy.

Silencing of the AP-4 expression induced cell cycle arrest
and modulated the expression of p53, p21 and cyclin D1
The effect of AP-4 on cell cycle progression was investigated.

Human gastric cancer cells were transfected with 20 nM control

siRNA, and the AP-4 specific siRNAs for 48 h, respectively,

followed by propidium iodide staining and flow cytometry analysis

of cell cycle. While cells transfected with control siRNA progressed

through different phases of cell cycle, cells transfected with AP-4

specific siRNAs displayed significantly higher frequency of cells at

the G0/G1 phases (SGC7901/siRNA-1: 68.81%; SGC7901/

siRNA-2: 68.97%; AGS/siRNA-1: 61.92%; AGS/siRNA-2:

63.67%) and a lower frequency of cells at S-phase (SGC7901/

siRNA-1: 29.57%; SGC7901/siRNA-2: 29.84%; AGS/siRNA-1:

24.36%; AGS/siRNA-2: 22.91%). The percentage of cells at G0/

G1 phases in the cell transfected with AP-4 siRNAs was

significantly higher than that of the mock cells (SGC7901:

54.65%; AGS: 48.44%) (p,0.05) or control siRNA (SGC7901/

control siRNA: 52.18%; AGS/control siRNA: 50.38%) (Figure 3).

Therefore, transfection with AP-4-specific siRNAs induced cell

cyclin arrest at G0/G1 phases.

The AP-4 specific siRNAs induced cell cycle block was further

investigated by observing the effects of AP-4 specific siRNAs

treatment on the relative expression of cell cycle regulators: the

tumor suppressor p53, the cyclin dependent kinase inhibitor p21,

and the G (1)-phase-specific cyclin D1, which were critical

regulators of the cell cycle and proliferation. Forty-eight hours

post-transfection, human gastric cancer cells were collected for

real-time PCR and immunoblotting analysis. Transfection with

AP-4 specific siRNAs could up-regulate the expression of p53 and

p21 protein. The modulatory effect of AP-4 siRNAs was greater

than that of control siRNA (Figure 4) (p,0.01). As expected, cyclin

D1 was down-regulated compared to control siRNA group and

mock group (Figure 4) (p,0.01). These data further supported the

hypothesis that silencing the expression of AP-4 altered the

expression of other cell cycling regulators, induced cell cycle arrest

and inhibited the proliferation of human gastric cancer cells

Detection of apoptosis and the factors involved in the
apoptosis pathway
To quantify the effect of AP-4 specific siRNAs on apoptosis in

human gastric cancer cells, Annexin-V and PI staining assays were

used in conjunction with Flow cytometry. Cells were stained with

Annexin V-FITC/PI and gated into Lower Right (LR) and Upper

Right (UR) quadrants. Cells in LR and UR were considered to be

early apoptotic (Annexin+/PI2) and late apoptotic (Annexin+/PI+)

respectively. Cells in LL (Lower Left) and UL (Upper Left)

quadrants were considered to be alive and necrotic respectively.

Extent of apoptosis was expressed as the sum total of the

percentages in LR and UR quadrants. The apoptotic rates were

showed in Figure 5. Treated cells with AP-4 siRNAs showed more

apoptotic cells (SGC7901/siRNA-1: 14.0%; SGC7901/siRNA-

2:11.5%; AGS/siRNA-1: 20.1%; AGS/siRNA-2: 23.6%) than the

negative (SGC7901/control siRNA: 5.5%; AGS/control siRNA:

6.7%) (p,0.05) and blank (SGC7901: 4.2%; AGS: 4.9%)

(p,0.05). These results showed that AP-4 specific siRNAs were

able to induce apoptosis in these cells.

AP-4 Affected Character of Gastric Cancer Cells
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Additionally, we examined the expression of factors involved in

apoptosis pathway with real-time PCR in mRNA level, such as

Bcl-2, Bcl-xL, Caspase-9, Caspase-8 and Bax. It showed that

knockdown AP-4 could up-regulate the expression of Baspase-9 in

human gastric cancer cells, and the modulatory effect of AP-4

siRNAs was greater than that of control siRNA (Figure 6)

(p,0.01). The expression of Bcl-2 and Bcl-xL were decreased

compared to the control siRNA or mock group (Figure 6)

(p,0.01). These data further supported that the silencing of AP-4

expression led to apoptosis in human gastric cancer cells.

However, the expression of Caspase-8 and Bax were different in

different cell lines after transfection. Forty eight hours after

transfection, Caspase-8 and Bax were over expression in AGS

cells. In SGC7901 cells, the expression of Bax increased, but the

expression of Caspase-8 increased only in siRNA-1 group. In

siRNA-2 group, Caspase-8 expression was not significant affected

(Figure 6).

AP-4 silencing could regulate cell cycle and cell apoptosis
in both p53-dependent and independent-manners
To verify whether the up-regulation of p53 in AP-4 knockdown

gastric cancer cells was critical to the role of cell cycle arrest, Kato-

III cells, a kind of p53 defect gastric cancer cell line was used to

evaluate the dependence of AP-4 knockdown effect on p53. We

found that knockdown of AP-4 in AGS with wild-type p53 or

SGC7901 with mutant p53 could induce cell cycle arrest, but this

phenomenon was not observed in Kato-III cells (Figure 7), the

Figure 1. AP-4 specific-siRNAs suppressed the AP-4 expression in gastric cancer cells and human normal mucosa cells. The different
siRNAs were transfected into the cells for 24 h, 48 h, 72 h, and 96 h. The mRNA and protein expression were examined by real-time quantitative PCR
and Western blot. AP-4 specific-siRNAs could effectively inhibit the gene expression. The induced suppression of AP-4 expression started at 24 hours,
and the inhibition ratio decreased after 72 hours. The most efficient time point were 48 h and 72 h, the relative levels of mRNA transcripts
significantly decreased by nearly 90%. There was statistical significance between AP-4 siRNAs groups and control groups. (* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0037096.g001

AP-4 Affected Character of Gastric Cancer Cells
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percentage of cells at G0/G1 phases were 57.82% (siRNA-1),

59.05% (siRNA-2), 59.59% (control siRNA) and 59.06% (mock).

Those indicated that knockdown AP-4 maybe regulate cell cycle

by means of p53-p21 pathway. Apoptosis population was also

detected in Kato-III cells with Annexin V-FITC and PI staining.

The results showed that the apoptosis rate of Kato-III cells

transfected with AP-4 siRNAs(siRNA-1: 7.9%; siRNA-2: 9.2%)

was higher than the control siRNA(3.3%) (p,0.05) and mock cells

(3.5%) (p,0.05), but to a lesser extent than it did on the AGS

(p,0.05) and SGC7901 cells (p,0.05), indicating that silencing

AP-4 could induce apoptosis in gastric cancer cells through both

p53-dependent and independent-manners.

Discussion

Gene expression is a fundamental and highly conserved process.

Transcription, the first step in gene expression, is performed by

structurally conserved DNA dependent RNA polymerases, which

results in the synthesis of an RNA molecule from a DNA template

[31]. Transcription factors, form transcription initiation complex

with RNA polymeras II, participate in the process of transcription

initiation to regulate gene expression. They may play an important

role in transformation, tumorigenesis, tumor progression and

metastasis by regulating transcription and therefore gene expres-

sion [32,33,34]. Transcription factor AP-4, belonging to the

rapidly growing group of HLH proteins [8] is involved in

differentiation and cellular proliferation [35,36,37,38,39], affects

cell cycle events and apoptosis, regulates and controls some gene

expression [9,10,15,16,17,18,19,20,21]. Recently, it has been

reported that AP-4 was up-regulated in colon carcinoma, breast

cancer and prostate cancer [9,18,24]. In addition, AP-4 positive

expression indicated a poor prognosis with significance over grade,

node status or size in ER+ breast cancer, and a possible association

with chemo-sensitivity [40]. In our previously study, we have

found that the expression of AP-4 was overexpressed and it co-

related with a poor prognosis [30]. It may be a molecular marker

for diagnosis and prognosis of gastric cancer. In the present study,.

We designed two AP-4 specific siRNAs to inhibit the expression of

the AP-4 gene in human gastric cancer cells. They were well

established and transfected into cells to result in knock-down of

AP-4 gene expression. We found that the most potent time point in

suppressing the AP-4 expression in gastric cancer cells were 48 h

and 72 h after transfection. Thus, we chose the former to further

carry out related examination.

Previously, it has been shown that transcription factor AP-4,

unlike other HLH proteins, contained two distinct leucine repeat

Figure 2. Down-regulation of AP-4 expression inhibits the proliferation of gastric cancer cells, and enhances the chemo-sensitivity.
Forty-eight hours post-transfection, the cell proliferation and inhibitory effects of different concentration of 5-FU, ADR or Cis-plantinum were
evaluated by CCK-8 assay. The results indicated that AP-4 specific-siRNAs could inhibit the proliferation of gastric cancer cells but not the normal
mucosa cells (p,0.01) and enhance the chemo-sensitivities of gastric cancer cells to 5-FU, ADR or Cis-plantinum (p,0.0001). There was statistical
significance between AP-4 siRNAs groups and control groups (* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0037096.g002

AP-4 Affected Character of Gastric Cancer Cells
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elements which also direct dimerization and allow the selective

complex formation of ubiquitous AP-4 protein [8,41].

AP-4 could play an important role in modulation of cellular

functions via regulation of genes involved in viral production

[7,16,22,42,43], cell growth and survival [9,17,23,44], immune

response [14,41,45], and angiogenesis [21]. Peter Jung, et al found

that AP-4 could encode a c-MYC-inducible repressor to inhibit

p21 expression [9], and presumably played an important role in

mediating the proliferative activity of c-MYC [10]. In addition,

AP-4 influenced the sensitivity to apoptosis by regulating the

expression of Caspase-9 [17]. In this study, we found that down-

regulation of AP-4 inhibited the proliferation of human gastric

cancer cells in vitro. The proliferation inhibition ratio of AP-4

specific siRNAs was significantly lower than that of the cells

transfected with control siRNA or mock group.

Chemotherapy is one important strategy in the treatment of

gastric cancer, but it often fails because of the resistance to

anticancer drugs. It was reported that AP-4 positive expression was

possibly connected with chemo-sensitivity [40]. We next in-

vestigated the role of AP-4 in the regulation of chemo-sensitivity of

human gastric cancer cells and found that inhibition of AP-4 could

significantly enhance the sensitivity of these cells to ADR, 5-FU or

cis-plantinum treatment, suggesting that inhibition of AP-4 may

have a beneficial effect in chemo-sensitivity.

In addition, silencing of AP-4, induced cell cycle arrest at G0/

G1 phases, analysis of a potential mechanisms underlying the

effects of the AP-4 silencing on inhibition of human gastric cancer

cell proliferation were characterized by the expression of cell cycle-

related regulators. We found that down-regulation of AP-4

expression inhibited the expression of cyclin D1, but up-regulated

the expression of p53 and p21. p53 and p21 has been hypothesized

to be a negative regulator of the cell cycle and proliferation

[46,47], on the other hand, cyclin D1 promoted progression

through the G1-S phase of the cell cycle [48]. Down-regulated

Figure 3. The effect of AP-4 on gastric cancer cell cycle was investigated by flow cytometry. Forty-eight hours post-transfection, the cells
were harvested and stained with propidium iodide, and proportion of cells in each phase of cell cycling was assayed. In the graph, the proportion of
cells at G0/G1 phases in the cell transfected with AP-4 siRNAs was significantly higher than that of the mock cells or control siRNA. (* p,0.05; **
p,0.01).
doi:10.1371/journal.pone.0037096.g003

AP-4 Affected Character of Gastric Cancer Cells
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expression of AP-4, p21 and p53 in the meanwhile could make the

cell cycle arrest caused knockdown of AP-4 disappearance. These

results are in agreement with a model in which AP-4 induces cell

cycle arrest by regulating the expression of cell cycle regulators,

such as p53, p21 and cyclin D1.

Apoptosis, or programmed cell death, is known to participate in

various biological processes by two main apoptotic pathways, the

mitochondrial (intrinsic) pathway and the death receptor (extrinsic)

pathway [49]. We found that silencing the AP-4 expression trigged

cell apoptosis in our experiment, which demonstrated that AP-4

suppressed apoptosis in human gastric cancer cells.

In our experiment, increasing levels of Caspase-9 and down-

regulation of Bcl-2 and Bcl-xL were detected in human gastric

cancer cells, indicating that knockdown of AP-4 activated both

intrinsic and extrinsic pathways to apoptosis in cancer cells.

[49,50]

In summary, the data demonstrate that RNAi-mediated down-

regulation of transcription factor AP-4 effectively inhibited the cell

proliferation, indicated cell cycle arrest, triggered apoptosis and

enhanced chemo-sensitivity of human gastric cancer cells with the

decreased expression of cyclin D1, Bcl-2 and Bcl-xL and activated

p21, p53 and Caspase-9 expression, which suggested AP-4 may be

Figure 4. The cell cycle regulators were evaluated with Real time PCR and Western blot. Inhibition of AP-4 expression could up-regulate
the expression of p53 and p21 mRNA and protein, but down-regulate the cyclin D1. (* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0037096.g004

Figure 5. Effect of AP-4 specific-siRNAs on the induction of apoptosis in gastric cancer cells. Forty-eight hours post-transfection, the cells
were harvested and double stained with Annexin-V and PI. The apoptosis rate of cells transfected with AP-4 siRNAs was higher than the control siRNA
(p,0.05) and mock cells (p,0.05). (* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0037096.g005

AP-4 Affected Character of Gastric Cancer Cells
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a oncogene playing an important role in tumorigenesis. Although

the precise mechanism of this role needs to be further investigated,

the AP-4specific-siRNAs may be of potential values as novel

therapeutic agents for human gastric cancer.

Materials and Methods

Cell line and cell culture
Human gastric cancer cell lines AGS with wild-type p53,

SGC7901 with mutant p53 (obtained from Wuhan University)

and Kato-III with p53 genome deletion (Zhiyan Bio Technology

Co, Shanghai) were cultured in DMEM medium or RPMI1640

medium (Invitrogen) containing with 10% fetal bovine serum

(Invitrogen), penicillin (100 U/ml) and streptomycin (100 mg/ml).

Cells were maintained at 37uC in a humidified atmosphere of 5%

CO2.

Specific siRNA and transfection
The cDNA sequence of the AP-4 gene was obtained from

Genbank (NM_003223) and the targeting sequences of two 21-

nucleotide different siRNAs were designed and chemically

synthesized (Qiagen Germany). The nucleotide sequences were

as follows: siRNA-1, 59-CGGGAUUCCAGUCCCUCAATT-39

(sense), and 59-UUGAGGGACUGGAAUCCCGCG-39 (anti-

sense). siRNA-2, 59-UGGGAUUGUCAGCCUUCAATT-39

(sense), and 59-UUGAAGGCUGACAAUCCCAGG-39 (anti-

sense). Allstars negative control siRNA (Qiagen Germany) were

used as a scrambled siRNA control. Cells were plated in 6-well

plates and the siRNAs were transfected into culture cells with

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

instructions.

Real-time quantitative PCR
Total RNA extraction was performed using RNAiso Plus

(Takara, Japan) according to the manufacturer’s protocol. The

cDNAs from total RNA were synthesized using PrimeScriptH RT

reagent Kit (Takara, Japan). The mRNA expression was evaluated

by real-time PCR on an ABI StepOne Plus (Applied Biosystems,

Singapore) with Fast SYBR Green PCR reagents. GAPDH was

applied as the internal control. The concentrations of the reagents

were adjusted to reach a final volume of 20 mL, containing 2 mL
reverse-transcribed product, 10 ml of Fast SYBRH Green Master

Mix (Applied Biosystems, Foster City, CA), and 0.5 ml of 10 mM
forward and reverse primers. The reaction was carried out by 45

amplification cycles of 95uC for 3 s and 60uC for 30 s. The

following primers were designed (Table.1). PCR primers were

designed by Primer 5.0 and Blast search to check specificity.

Primer sequences used are listed in Tables 1. The results were

calculated by using 22DDCt method.

Figure 6. The expressions of the factors involved in the apoptosis were examined with real time PCR and Western blot. Inhibition of
AP-4 expression could up-regulate the transcription of Caspase-9 but down-regulate the Bcl-2 and Bcl-xL expression in human gastric cancer But
Caspase-8 and Bax expression were difference in different cell lines after transfection. Forty eight hours after transfection, Caspase-8 and Bax were
over expression in AGS cells. In SGC7901 cells, Bax was over expression, Caspase-8 expression was also up-regulated in siRNA-1 group, but in siRNA-2
group, Caspase-8 expression was not significant affected. (* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0037096.g006

AP-4 Affected Character of Gastric Cancer Cells
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Western blot
Protein was extracted with protein extraction kit (Beyotime,

China) according to the direction. The protein was diluted to

3 mg/ml and was separated by 10% SDS-PAGE, transferred to

polyvinylidene difluoride (PVDF) membranes (Millipore, USA),

and then was blocked in 5% non-fat powdered milk in TBST for

1 hour at room temperature. Immunoblotting was performed

using anti-AP-4 antibody (Sigma-aldrich, Shanghai, dilution

1:1000), anti-p21 antibody (Sigma-aldrich, Shanghai, dilution

1:1000), anti-p53 antibody (Abcam, UK, dilution 1:500) and anti-

cyclin D1 antibody (Abcam, UK, dilution 1:500) overnight at 4uC.
After three times rinsed with TBST, the membrane was incubated

with horseradish peroxidase-conjugated secondary antibodies

(dilution 1:2000, Boster, China) for 1 hour at room temperature.

The outcome was visualized by the ECL Plus Western blotting

detection system according to the manufacturer’s instructions.

Anti-b-actin (dilution 1:1000, Boster, China) antibody acted as

internal control.

Measurement of cell proliferation
The impact of silencing AP-4 on the gastric cancer cell

proliferation after 48 hours of transfection was measured by Cell

Counting Kit-8(CCK-8) (Beyotime, China), according to the

manufacturer’s instruction. Briefly, gastric cancer cells were

cultured in 96-well plates and transfected with 20 nM of control

siRNA, AP-4 specific siRNAs. After 48 hours, 10 ml of CCK-8

Figure 7. Silencing AP-4 regulated cell cycle and apoptosis in both p53-dependent and independent-manners. In Kato-III cell, the AP-4
expression was obviously down-regulated at 48 hours post-transfection. However, the induction of cell cycle arrest and apoptosis were not observed
in Kato-III cells. The proportions of cells at G0/G1, G2/M and S phases were not significant difference between AP-4 siRNAs groups and control or
mock groups. The apoptosis rate of Kato-III cells transfected with AP-4 siRNAs was higher than the control siRNA (p,0.05) and mock cells (p,0.05).
However, the apoptosis rate in Kato-III cells with AP-4 silencing was lower than AGS and SGC7901 cells with AP-4 silencing (p,0.05).
doi:10.1371/journal.pone.0037096.g007

AP-4 Affected Character of Gastric Cancer Cells
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reagent was added to each well, After 1 hour of incubation at

37uC, the absorbance measured at 450 nm. The relative levels of

cell proliferation in each group of cells was calculated according to

the following formula: R= (A2-A1)/A26100% and P=A1/

A26100% in which R was relatively inhibitory rate and P was

relatively proliferation ratio of cell growth; A1was mean absor-

bance value of transfected cells; and A2 was mean absorbance

value of untransfected control cells without any drug treatment.

All experiments were done with 5 wells per experiment and

repeated at least three times.

Cell cycle Assay
Cells were harvested 48 hours after transfection and fixed in

70% ice-cold ethanol overnight, washed with 16PBS, and stained

with propidium iodide (PI) (50 mg/ml) in 16PBS supplemented

with RNase (50 mg/ml) for 30 minutes. Tests were performed in

triplicate for each sample, and analyses were performed by flow

cytometer (FACS CantoII, BD Bioscience, USA) in accordance

with the manufacturer’s guidelines.

Chemo-sensitivity test in vitro
As described previously, CCK-8 assay was used to assess effect

of the chemo-sensitivity of gastric cancer cells to anticancer drugs.

In brief, six hours after transfection, the medium was removed and

replaced with fresh medium containing varying concentrations of

anti-tumor drug (ADR, 5-FU or cis-platinum) and incubated for

48 hours. Relatively inhibitory rate of cell growth was calculated

according to the formula listed above.

Apoptosis assay by Annexin V-FITC and propidium iodide
(PI) staining
To assess the rate of cell apoptosis, apoptosis was quantified by

annexin-V–FITC and propidium iodide double staining using an

Annexin-V/FITC kit (Antgene, China). Cells were collected

according to the manufacturer’s instructions 48 hours after

transfection, washed with cold PBS, and suspended in binding

buffer, and then the cells were incubated 30 minutes in the dark at

4uC with Annexin V-FITC and PI in phosphate buffer and

analyzed on the flow cytometer (FACS CantoII, BD Bioscience,

USA) within 1 h after staining.

Statistical Analysis
All data were shown as mean 6 SD. Difference among groups

was analyzed by one-way ANOVA and Student–Newman–Keuls

(SNK)-q test using a SPSS 12.0 for Windows software. Statistical

significance was defined as * p,0.05 and ** p,0.01.
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