
Comparison of hydrophobicity
scales for predicting biophysical
properties of antibodies

Franz Waibl1, Monica L. Fernández-Quintero1, Florian S. Wedl1,
Hubert Kettenberger2, Guy Georges2 and Klaus R. Liedl1*
1Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck,
Austria, 2LargeMolecule Research, Roche Pharma Research and Early Development, Roche Innovation
Center Munich, Penzberg, Germany

While antibody-based therapeutics have grown to be one of the major classes

of novel medicines, some antibody development candidates face significant

challenges regarding expression levels, solubility, as well as stability and

aggregation, under physiological and storage conditions. A major

determinant of those properties is surface hydrophobicity, which promotes

unspecific interactions and has repeatedly proven problematic in the

development of novel antibody-based drugs. Multiple computational

methods have been devised for in-silico prediction of antibody

hydrophobicity, often using hydrophobicity scales to assign values to each

amino acid. Those approaches are usually validated by their ability to rank

potential therapeutic antibodies in terms of their experimental hydrophobicity.

However, there is significant diversity both in the hydrophobicity scales and in

the experimental methods, and consequently in the performance of in-silico

methods to predict experimental results. In this work, we investigate

hydrophobicity of monoclonal antibodies using hydrophobicity scales. We

implement several scoring schemes based on the solvent-accessibility and

the assigned hydrophobicity values, and compare the different scores and

scales based on their ability to predict retention times from hydrophobic

interaction chromatography. We provide an overview of the strengths and

weaknesses of several commonly employed hydrophobicity scales, thereby

improving the understanding of hydrophobicity in antibody development.

Furthermore, we test several datasets, both publicly available and

proprietary, and find that the diversity of the dataset affects the performance

of hydrophobicity scores. We expect that this work will provide valuable

guidelines for the optimization of biophysical properties in future drug

discovery campaigns.
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1 Introduction

In recent years, antibodies and related formats have emerged

as a major class of novel therapeutic proteins (Strohl and Strohl,

2012; Kaplon et al., 2020; Kaplon and Reichert, 2021; Mullard,

2021; Kaplon et al., 2022) with more than 120 approved

therapeutic antibodies up to now (Raybould et al., 2020).

Antibodies are characterized by their unique binding

properties and their broad applicability. In particular,

therapeutic antibodies have revolutionized the treatment of

various diseases, such as cancer (Scott et al., 2012) and

autoimmune diseases (Chan and Carter, 2010). Therapeutic

antibodies are usually also the fastest answer to new medical

challenges and viral threats, which has become apparent in the

current SARS-CoV-2 pandemic (Chvatal-Medina et al., 2021).

In the development of therapeutic antibodies, it is important

to avoid problems regarding the stability, aggregation, solubility,

and immunogenicity. One driving force of those problems is the

tendency of hydrophobic, i.e., apolar, regions on the surface to

form interactions with each other. This phenomenon is called the

hydrophobic effect and is driven by the release and entropy

increase of water from the hydrophobic surface into bulk solution

(Southall et al., 2002).

A plethora of methods have been used to investigate

hydrophobicity of antibodies in-silico. A summary of those

methods will be given in the subsection titled “In-silico

methods.” However, it is unclear which methods and which

hydrophobicity scales perform well at predicting a given

experimental metric of hydrophobicity. Here, we compare

between different methods and different scales to predict

retention times from hydrophobic interaction chromatography

(HIC). We hope that our findings will be useful to guide future

efforts at in-silico optimization of potential biopharmaceuticals.

1.1 Hydrophobicity

Hydrophobicity is one of the most important predictors of

developability when designing antibody-based drugs (Lauer

et al., 2012; Hebditch et al., 2019). Large scientific efforts have

been directed towards reducing hydrophobicity without

affecting the binding capability (Jain et al., 2017a; Jain

et al., 2017b; Raybould et al., 2019; Jo et al., 2020). It has

been shown that hydrophobicity as well as surface charges

contribute to self-aggregation in IgG-type antibodies

(Esfandiary et al., 2015; Das et al., 2022). Hydrophobicity

also leads to faster clearance in antibody-drug conjugates

(ADCs) (Lyon et al., 2015). While some antibodies exhibit

high hydrophobicity in their folded state, partial unfolding

can lead to exposure of additional hydrophobic sidechains and

accelerate aggregation (Amin et al., 2014).

Hydrophobicity of monoclonal antibodies (mAbs) is

routinely quantified using Hydrophobic Interaction

Chromatography (HIC) (Haverick et al., 2014; Wang

et al., 2016), while their solubility may be assessed using,

e.g., PEG precipitation assays (Gibson et al., 2011; Sormanni

et al., 2017). Aggregation of mAbs is commonly assessed

using size exclusion chromatography (Brusotti et al., 2018)

or dynamic light scattering experiments combined with

incubation under stress conditions like elevated

temperature (Amin et al., 2014).

Within this work, we test different hydrophobicity scores for

their ability to predict HIC retention times. We use both publicly

available datasets (Jain et al., 2017b) and Roche-internal data.

The novel HIC retention times are shown in the Supplementary

Material. For antibodies from public sources, the sequence is

shown together with the retention times.

1.2 Hydrophobicity of antibodies

Hydrophobic interactions of biomolecules are typically

mediated by one or few hydrophobic surface patches.

Experimentally, the interaction of proteins with a column

in Hydrophobic Interaction Chromatography (HIC) is

different for proteins with homogeneous or inhomogeneous

hydrophobicity profiles (Mahn et al., 2009).

Here, we test hydrophobicity scores based on the whole

surface as well as scores based only on the hydrophobic

surface regions. Physically, the first option implies a

process where the whole surface is desolvated and directly

contacts the HIC column, while the latter implies that only the

hydrophobic regions are desolvated. From literature, it is

expected that the second process more closely describes the

process of HIC.

Research on statistical mechanics of the hydrophobic effect

suggests that hydrophobic patches or moieties need to exceed a

certain minimum size to exhibit the full effect on the water

properties (Acharya et al., 2010; Huang and Chandler, 2000;

Acharya et al., 2010). Furthermore, the behavior of hydrophobic

surfaces also depends on the experimental conditions.

Additionally, hydrophobic interactions between biomolecules

depend on many other effects such as shape complementarity

between the interaction partners (Mahn et al., 2005), or entropic

penalties due to reduced conformational flexibility in the bound

state.

Aggregation propensity of biomolecules is often discussed in

terms of the related concept of Aggregation Prone Regions

(APRs). An APR is a part of a protein structure or sequence

that has a high tendency to form aggregates when exposed to the

protein surface (Wang et al., 2009). This concept has been linked

to highly hydrophobic surface regions (Chennamsetty et al.,

2010), but also to the propensity to unfold or form amyloid

β-sheets (Willbold et al., 2021).

The treatment of hydrophobic patches in in-silico

methods will be discussed below.
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1.3 In-silico methods

A multitude of methods have been devised to predict the

hydrophobicity of antibodies in-silico. Generally, they may be

divided into structure-based and sequence-based approaches.

Sequence-based methods, such as CamSol (Sormanni et al.,

2015) and many others (Conchillo-Sole et al., 2007; Tartaglia and

Vendruscolo, 2008; Walsh et al., 2014), offer the highest

computational speed, such that large numbers of sequences

can be scanned. Furthermore, they may be used even in cases

where the three-dimensional structure of a protein is unknown.

On the other hand, methods that incorporate the three-

dimensional protein structure may yield more accurate results.

Examples include AggScore (Sankar et al., 2018), the Spatial

Aggregation Propensity (SAP) method (Chennamsetty et al.,

2009), as well as AggreScan3D (Zambrano et al., 2015). When

the structure is not known experimentally, these methods can

still be applied in combination with in-silico structure

prediction. However, we have shown previously (Waibl

et al., 2021) that homology models are often insufficiently

accurate to describe the surface hydrophobicity, at least

when using descriptors based on molecular dynamics

simulation of the surrounding water.

Many in-silico methods favor large hydrophobic surfaces by

searching for continuous hydrophobic patches (Lijnzaad et al.,

1996; Chemical Computing GroupULC, 2020). Alternatively, the

hydrophobicity of nearby atoms can be incorporated using so-

called hydrophobic potentials (Heiden et al., 1993). In this

approach, hydrophobicity is mapped to the protein surface via

a distance weighting function. Hydrophobicity scores are then

computed either by summing the surface values or by searching

for patches above a certain cutoff. This approach favors large

hydrophobic patches, because the effect of a single hydrophobic

atom can be negated by a more hydrophilic surrounding, while

the values in a patch of several hydrophobic atoms add up

favorably.

Another approach is to assign additional hydrophobicity to

each atom or residue based on the hydrophobicity of nearby

atoms (Manavalan and Ponnuswamy, 1978; Gromiha et al.,

2013). Newer approaches, such as the Spatial Aggregation

Propensity (SAP) (Chennamsetty et al., 2009; Lauer et al.,

2012) or AggreScan3D (Zambrano et al., 2015) combine this

approach with terms for the solvent-accessible surface area

(SASA) to avoid contributions from the hydrophobic core of

the protein. In the case of SAP, this is done by computing the sum

of hydrophobicity values of surface-exposed side-chain atoms

within a pre-defined cutoff radius (Chennamsetty et al., 2009;

Chennamsetty et al., 2010).

While a lot of research has been conducted to elucidate the

hydrophobic effect using all-atom explicit solvent simulations

(Acharya et al., 2010; Waibl et al., 2021), those methods have not

been widely adopted in biopharmaceutical research due to high

computational demand.

1.4 Hydrophobicity scales

Both sequence-based and structure-based methods often

treat hydrophobicity as an innate property of the atoms or

amino acids that constitute the protein. The individual values

are tabulated in hydrophobicity scales and can be based on

experimental measurements or more detailed calculations.

A plethora of different hydrophobicity scales has been

devised. Lienqueo et al. (2002) investigated the ability of

different hydrophobicity scales to predict HIC retention times

over a wide range of different proteins. They classify

hydrophobicity scales into three groups. Firstly, direct scales

are based on the transfer free energy of each amino acid

between phases of different polarity, retention time in RP-

HPLC, or other properties such as polarity or geometry.

Secondly, indirect scales are based on the solvent-accessible

surface area (SASA) or other spatial distributions of amino

acids in a protein. Lastly, mixed scales are derived from

several of those properties or incorporate previous

hydrophobicity scales.

A review of experimental hydrophobicity scales has been

presented by Biswas et al. (2003). The usage of hydrophobicity

scales to predict HIC retention is summarized by Mahn et al.

(2009), and applications on interactions between proteins and

lipid membranes have been reviewed by MacCallum and

Tieleman (2011). Another review focused on secondary

structure prediction has been presented by Simm et al. (2016).

While most hydrophobicity scales provide hydrophobicity

parameters on a per-residue basis, some scales have also been

parameterized per-atom. Notable examples include theWildman

and Crippen (1999) parameters, which are designed to predict

octanol-water partitioning coefficients (logP) and molecular

refractivities of small molecules, as well as the scale by

Eisenberg and Mclachlan (1986), which is fitted to the

transfer free energy of amino acids between the outer and

inner regions of a protein. While those scales clearly offer a

higher structural resolution, they might also introduce additional

inaccuracies, since properties of amino acids are not exactly equal

to the sum of their atomic contributions.

In this study we aim to compare various hydrophobicity

scales and descriptors regarding their ability to predict antibody

surface hydrophobicity.

Since there are too many hydrophobicity scales in literature

to test them all, we selected a representative set for the purpose of

this work. The scales were selected based on three properties: they

are widely used (Eisenberg, Kyte-Doolittle, Crippen, Wimley-

White), they are specifically aimed at predicting HIC or RP-

HPLC (Jain, Meek, Miyazawa), or they have been previously used

for hydrophobicity of antibodies (Black-Mould). Additionally,

we added the scale by Rose as an example of a scale based purely

on the change in SASA on folding. In Table 1, we present the

selected scales and classify them in terms of experimental data

and their resolution (atomic or residue-based). In the Results
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section, we will compare these scales in terms of their ability to

predict biophysical properties of monoclonal antibodies.

1.5 Aim of this work

In the early stages of development, a fast in-silico method to

estimate the hydrophobicity of antibodies is often desired. In this

work, we test the performance of several existing methods

combined with multiple hydrophobicity scales by predicting

relative hydrophobicity of antibodies and comparing to

experimental data from HIC. We compare the predictivity of

those methods between multiple datasets with different sequence

variability to test whether our scores work better for closely

related sequences or for a broader selection of antibodies. We

find that choosing an appropriate hydrophobicity scale is crucial

to obtain good agreement with experiments. Additionally, the

choice of the scoring function, the origin of the homology

models, as well as conformational sampling, can influence the

results. We also demonstrate that better correlation with

experimental results can be expected using datasets with high

sequence similarity, also in cases where no crystal structures are

available.

2 Results

2.1 Comparison between the datasets

In this work, we investigate several sets of antibodies, which

are described in detail in the Methods section. In short, the

dataset by Jain et al. (2017b) (called the “Jain” dataset below)

dataset contains 127 variable domains of antibodies which were

approved or undergoing clinical trials at the time of

publication. These variable domains were grafted on a

constant IgG1 Fc domain for consistency. We further split

this into a group where crystal structures are available (Jain-

PDB) and one where we rely on homology models generated

using DeepAb (Ruffolo et al., 2021) (Jain-models). The Roche-

34 dataset contains a diverse set of Roche-internal in addition

to publicly available antibodies. It overlaps with the Jain-

Models in 3 cases. The Roche-127 contains a group of

127 closely related Roche-internal antibodies, for which no

crystal structures are available.

To investigate how much of the antibody sequence space is

spanned by our input datasets, we produced a tSNE (van der

TABLE 1 Comparison of hydrophobicity scales that will be used in the present work.

Scale Resolution Principle Notes References

Bandyopadhyay-
Methler

Residue Local environment, Rekker coefficients (Rekker and Kort, 1979) Bandyopadhyay and Mehler (2008)

Black-Mould Residue Rekker coefficients (Rekker and Kort, 1979) Black and Mould (1991)

Eisenberg Residue Consensus of 5 previous scales Eisenberg et al. (1982)

Jain Residue HIC retention Jain et al. (2017a)

Kyte-Doolittle Residue Consensus of ΔG (water—vapor) and surface accessibility Kyte and Doolittle (1982)

Meek Residue RP-HPLC retention At pH 7.4 Meek (1980)

Miyazawa Residue Surface accessibility Miyazawa and Jernigan (1985)

Rose Residue Fraction of surface area buried while folding Eisenberg et al. (1982), Rose et al. (1985)

Wimley-White Residue ΔG (water—lipid bilayer) Interface Scale Wimley and White (1996)

Crippen Atomic LogP of small molecules Wildman and Crippen (1999)

Eisenberg-dG Atomic Surface accessibility Eisenberg and Mclachlan (1986)

FIGURE 1
tSNE embedding of the sequence space covered by the
datasets used in this study. 2,000 random sequences from theOAS
dataset are added for comparison, with a lower opacity. Groups of
nearby points represent similar sequences which are different
from the others. However, larger distances between groups
should not be over-interpreted.
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Maaten and Hinton, 2008) embedding of all investigated

sequences combined with 2,000 randomly chosen sequences

from the Observed Antibody Space database (Kovaltsuk et al.,

2018; Olsen et al., 2022). The computational details are described

in the Methods. The tSNE embedding produces a two-

dimensional coordinate representation based on a distance

matrix and aims to reproduce primarily the small distances.

This means that groups of points in the embedding represent

highly similar antibodies, while the distance between such groups

is not necessarily representative of their similarity.

The result is a two-dimensional representation of the

antibody sequence space, as shown in Figure 1. It can be used

to visually distinguish between datasets that span a wide portion

of the sequence space and datasets with a higher internal

similarity.

We find that the antibodies in both the Jain and the Roche-

34 dataset are generally unrelated, although there are some

groups of similar antibodies in both cases. In contrast, the

Roche-127 dataset has higher similarity, such that most

antibodies fall into two groups, with few antibodies outside

of those groups.

In Supplementary Table S4, we show the germline annotation

[generated using ANARCI (Dunbar and Deane, 2016)] of the

antibodies in all public datasets. Furthermore, we show a

similarity matrix of all sequences in Supplementary Table S5.

It shows that the Roche-127 set is significantly less diverse than

the other datasets.

2.2 Performance of different scales

For each of our datasets, we compute the SASA score as

well as the positive-SASA score of all antibodies. The scores

are discussed in more detail in the Methods section. In short,

the SASA score (defined as Ssurf � ∑atoms
i hi × Ai) is the sum

of all solvent accessible surface areas (SASAs) Ai of the amino

acids in the Fv, multiplied by the respective hydrophobicity

values hi. The positive-SASA score is the same, but only

taking the hydrophobic amino acids into account.

In the left panel of Figure 2, we show the Pearson

correlation between the positive-SASA score and the

respective experimental HIC values. We find good

correlations using hydrophobicity scales that are optimized

towards HIC or other RP-HPLC data, such as the Jain or Meek

scales. Furthermore, we find good correlation values using the

Wimley-White scale. The Miyazawa scale, which has often

been associated with HIC prediction in literature, performs

well on the Roche-127 set but not on the Roche-34 set. The

relatively old scales by Eisenberg as well as Kyte and Doolittle

do not perform well in our analysis. Furthermore, we find

FIGURE 2
Pearson correlation values obtained by applying the positive surface score (left) and the direct surface score (right) on the different datasets and
comparing to the experimental HIC data.
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significantly worse predictivity of all scales when using

homology models in the Jain-Models dataset.

In the right panel, we show the same analysis using the total

surface score. While the general trends are the same, the overall

correlation is significantly lower. The best-performing scale in

this analysis is the Jain scale, which is little surprising, since it was

optimized to predict HIC retention.

2.3 Other methods

In addition to the simple surface scores, we created our

own implementation of the Spatial Aggregation Propensity

(SAP) method (Voynov et al., 2009). This method is

originally used in combination with the Black-Mould

hydrophobicity scale (Black and Mould, 1991), but we also

combine it with several other hydrophobicity scales. In

addition, we also test our own implementation of the

Heiden method (Heiden et al., 1993). Since this method

can reasonably work with atomic hydrophobicity scales, it

is expected that the scales by Wildman and Crippen (1999) as

well as the atomic hydrophobicity scale of Eisenberg and

Mclachlan (1986) perform better. The result is shown in

Figure 3. The scores are described in detail in the Methods

section.

Again, we find good correlations to the experimental HIC

values using the Wimley-White scale. Furthermore, both

methods work reasonably well with their original scales,

which is the Black-Mould scale for SAP and the Wildman

and Crippen scale for the Heiden method. We note that the

Heiden method works especially well with atomic

hydrophobicity scales such as the Crippen or Eisenberg-

ΔG scale.

While the highest predictivity is found using the Wimley-

White scale, we note that atomic hydrophobicity scales have

the further advantage of a higher spatial resolution, permitting

more detailed analysis of the surface properties. This will be

used for the spatial analysis of cavities below.

2.4 Performance of homology modelling
packages

To compare the efficiency of different homology

modelling packages, we performed our calculations on the

Roche-127 dataset using models created by MoFvAb, MOE,

and DeepAb, and compare the results. We find that MoFvAb

and DeepAb perform very similarly, while MOE performs

slightly worse in combination with most residue-based

scales. However, when using the SASA score (the right

FIGURE 3
Performance of the SAP method (left) and the Heiden method (right) with different hydrophobicity scales. The Pearson correlation was
calculated with respect to the HIC retention times of the respective dataset.
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panel in Figure 4), MOE performs better in combination with

the atom-based Crippen and Eisenberg-ΔG scales, as well as

the residue-based Black-Mould scale. This might originate

from a different side chain packing of MOE compared to the

other modelling packages.

2.5 Effect of sampling through molecular
dynamics

To test whether sampling of conformational ensembles

through short molecular dynamics simulations improves the

description of hydrophobicity, we performed 200 ns

Gaussian accelerated Molecular Dynamics (GaMD) (Miao

et al., 2015) simulations of each antibody in the Roche-127

set, using the MoFvAb models as starting structures. We then

computed the positive-SASA score and the Heiden score and

compare them to the experimental values. The result is

shown in Figure 5.

As in our previous work (Waibl et al., 2021), we find no

systematic improvements of the predictivity due to the

sampling. The difference between hydrophobicity scales is

clearly bigger than that due to the conformational sampling.

We find improvements in the atomic Wildman-Crippen and

Eisenberg-ΔG scales, while the effect on most residue-based

scales is small. This suggests that the sampling of sidechain

conformations might be better than that of global motions

within the protein.

2.6 Cavity effects

When visualizing structures of antibodies where the

predicted hydrophobicity exceeds the experimental one,

we often find that the structures contain cavities or

pockets. Those cavities can represent, for example,

binding pockets of antibodies that bind small molecules,

or they can occur due to unfavorable sidechain packing in

the homology modelling process. In Figure 6, we show

examples of a chemically meaningful and an erroneous

example of cavities, highlighting the respective structures

in the correlation plots.

The 1L7T crystal structure (Valjakka et al., 2002)

contains the unbound structure of an anti-testosterone Fab

FIGURE 4
Performance of different homology modelling packages on the Roche-127 set in combination with the positive-SASA (left panel) and SASA
(right panel) scores as well as different hydrophobicity scales. The Pearson correlation was calculated with respect to the HIC retention times of the
Roche-127 dataset.
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fragment. The binding pocket is clearly visible, albeit smaller

than in the corresponding bound structure (PDB code

1VPO). While the 1L7T structure is scored very high by

the Heiden method, the low experimental HIC retention time

indicates that a portion of the hydrophobic surface (probably

the binding pocket) is inaccessible to the HIC column.

In the MoFvAb model of mAb_3L, the CDR regions are

modelled as a very rugged surface, with several small cavities

and hydrophobic residues pointing towards the solvent.

However, this might be due to non-optimal side chain

packing in the homology modelling process. Again,

comparison to the experimental values indicates that not

all regions of the modelled hydrophobic surface are exposed

to the HIC column.

We also visualized several antibodies where the predicted

hydrophobicity is significantly lower than the experimental

one, to check whether they would show a particularly smooth

surface. In contrast to this expectation, we find several

instances of broad cavities, which might be able to fit a

phenyl or butane sidechain of the HIC stationary phase.

Two examples (mAb_17L and golimumab) are shown in

Figure 7.

3 Discussion

In the cases we studied, it is always better to predict HIC

retention based on only the positive amino acid contributions.

Even the Jain scale performs worse using the total surface

score instead of the positive surface score. The only exception

is the Jain dataset in combination with the Jain scale, which is

not surprising since this scale is optimized to predict HIC

retention. However, the Jain scale performs significantly

worse on other datasets when using the SASA score (which

includes the negative hydrophobicity values), which indicates

poor transferability of the hydrophilic values. However, the

transferability of hydrophobic values seems to be better, since

the positive-SASA score using the Jain scale performs well also

on the Roche-34 and Roche-127 datasets. We find a similar

trend also for other hydrophobicity scales, which indicates

FIGURE 5
Comparison of the performance of the positive-SASA score using the MoFvAb models directly (left panel) and using an average over 200 ns of
GaMD simulation (right panel). In each panel, the left column shows the positive-SASA score, while the right column shows the Heiden score. The
Pearson correlation was calculated with respect to the HIC retention times of the Roche-127 dataset.
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that the poor transferability of hydrophilic values in HIC

prediction is a general phenomenon, while the hydrophobic

values seem more robust.

This finding is consistent with the idea that protein-column

interactions in HIC are dominated by the most hydrophobic

surface regions (Mahn et al., 2005). We have shown previously

that the charged amino acids form very strong enthalpic

interactions with the surrounding water (Schauperl et al.,

2016). However, these amino acids do not have a large impact

on HIC retention, since they keep their hydration shell when the

protein binds to a HIC column, while only the more hydrophobic

amino acids are dehydrated.

We therefore conclude that HIC measurements are

controlled essentially by the most hydrophobic surface

regions. This is consistent with previous findings by Mahn

et al. (2005), who achieved high predictivity using a molecular

docking approach to identify the most probable interaction

region on the surface of ribonucleases, and scored them by

the hydrophobicity of this region. We expect that this

interaction region frequently coincides with a strongly

hydrophobic surface region.

When visualizing antibodies where the hydrophobicity is

over-predicted compared to experiment, we sometimes find

cavities in the surface. These cavities can be, for example,

binding pockets of antibodies that bind to small molecules, or

they can be due to inaccurate sidechain packing in the homology

models. In both cases, they lead to an increased hydrophobic

surface. Since this is not reflected by a higher experimental HIC

retention time, we assume that those pockets do not interact with

the stationary phase.

We also show two examples of antibodies where the

hydrophobicity is under-predicted compared to the

experiment. In contrast to the over-predicted antibodies, the

cavities found in those structures are broader or not very

FIGURE 6
Examples for structures where cavities lead to over-prediction of the surface hydrophobicity. Left column: scatter plots showing the Heiden
score vs. the experimental HIC values, for the Roche-34 set (top) and the Roche-127 set (bottom). In each plot, one antibody is marked, and the
respective surface is shown at the right side. Green surface corresponds to hydrophobic regions (Heiden score > 0) and blue surface corresponds to
hydrophilic regions (Heiden score < 0).
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deep.We expect that such broader hydrophobic cavities can form

specific interactions with the stationary phase, thus leading to a

high HIC retention time although there is only a relatively small

hydrophobic surface. This finding is also consistent with the idea

that binding to HIC columns is dominated by the most

hydrophobic region.

In general, methods based on the solvent-accessible surface

area (SASA) perform rather poorly in combination with atomic

hydrophobicity scales. This is expected due to the underlying

assumption of additivity of the hydrophobic contribution:

Correlations between the hydrophobic effect of neighboring

atoms are likely stronger than those between neighboring

residues. The surface projection by Heiden et al. (1993)

provides a smoother way of projecting hydrophobicity scales

onto the protein surface, leading to an improvement in

combination with atomic scales.

Our results using the Spatial Aggregation Propensity (SAP)

algorithm are similar to those using the positive-SASA score.

While we used a cutoff radius R of 5 Å throughout the main

text, Supplementary Figure S1 shows the comparison between R

of 5 or 10 Å. In almost all cases, the cutoff of 5 Å performs

better.

We find that homology models generated with MoFvAb and

DeepAb perform very similar in terms of predicting experimental

HIC values. On the other hand, models generated by MOE

perform slightly worse in combination with most residue-

based hydrophobicity scales, while outperforming them when

combined with atomic scales. One possible explanation would be

that MOE is more accurate at predicting side chain orientation,

while large-scale contributions to the structure, such as inter-

domain orientation, are predicted better by MoFvAb and

DeepAb.

Our findings show that it is most difficult to work with

homology models of highly diverse data sets. Several

hydrophobicity scales provide good correlations with the

Roche-127 dataset, which consists of homology models with

FIGURE 7
Examples for structures where the experimental hydrophobicity is under-predicted by the Heiden score. Left column: scatter plots showing the
Heiden score vs. the experimental HIC values, for the Roche-127 set (top) and the Jain-PDB set (bottom). In each plot, one antibody is marked, and
the respective surface is shown at the right side. Green surface corresponds to hydrophobic regions (Heiden score > 0) and blue surface corresponds
to hydrophilic regions (Heiden score < 0).
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high sequence similarity. We also find good correlations using

the Jain-PDB set and the Roche-34 set, which have large sequence

diversity but consist mostly of crystal structures. Only the HIC

data of the Jain-models set is poorly predicted, likely because

there is a high sequence diversity combined with homology

models, which are less reliable than crystal structures. This

means that there are many differences between structures,

while the SASA of each amino acid is not completely reliable.

In that case, summation of errors can lead to large errors in the

total hydrophobicity score.

We expect the CDR-H3 loop to be the most challenging part

of the structure to predict. Despite the enormous recent advances

in predicting antibody structures (Ruffolo et al., 2021; Abanades

et al., 2022), this loop remains difficult to predict accurately due

to its high flexibility and unchallenged diversity in length,

sequence, and structure. As the CDR-H3 loop is situated in

the center of the antibody binding site, it influences the

conformations of the neighboring CDR loops and

consequently plays a critical role for predicting and

quantifying surface hydrophobicity (Regep et al., 2017;

Fernandez-Quintero et al., 2020).

The agreement between hydrophobicity scores and HIC

retention times depends strongly on the hydrophobicity scale.

The Kyte-Doolittle and Eisenberg scales perform poorly, probably

because they were aimed at quantities different fromHIC retention

times. In contrast, the Jain scale, which is parameterized to predict

HIC retention times, performs much better. Furthermore, the

Wimley-White scale, which represents the free energy change

when transferring pentapeptides between water and a lipid

bilayer, also performs very well. A common feature of the Jain

and Wimley-White scales is that they assign high hydrophobicity

to aromatic residues and especially to tryptophan.

The Meek and Miyazawa scales perform comparably well on

datasets which contain crystal structures (Roche-34 and Jain-

PDB), but not on datasets that contain only homology models

(Roche-127 and Jain-models). This contrasts with the better

predictions obtained using the Jain and Wimley-White scales.

The reason might be related to differences in the amino acid

composition of the datasets, but also to the lower hydrophobicity

assigned to tryptophan and tyrosine in the Meek and Miyazawa

scales. Especially tyrosine is often found in antibody CDR

regions. Since the CDRs also encompass the highest sequence

diversity within an antibody, their amino acid composition is a

main contributor to their surface properties (Yugandhar and

Gromiha, 2014).

Thus, we conclude that several factors must be considered to

predict HIC-based hydrophobicity using hydrophobicity scales.

The choice of the hydrophobicity scale is crucial. There are

several scales which correlate well with experimental HIC

data. However, the Kyte-Doolittle and Eisenberg scales

produce very poor results, even though they are still widely

used. Furthermore, it is important to be aware about the

sequence diversity of the dataset in question, as well as the

reliability of the available structures. When predicting the

hydrophobicity of highly diverse antibodies, very reliable

structures—such as crystal structures—are required, while less

diverse datasets can be effectively described by homologymodels.

4 Theory and methods

4.1 Hydrophobicity scales

Scales were normalized by adding a constant such that Gly

has a value of zero and scaled such that hydrophobic residues

are positive and the variance of the values is 1. The variance

was calculated as the average of h2, where h denotes the

individual values relative to Gly. The resulting values are

shown in Table 2.

4.2 Datasets

The following datasets were investigated in this work:

4.2.1 Roche-34
This dataset contains 34 antibodies for which HIC

measurements of full-length IgGs have been performed. Of

this dataset, 14 have crystal structures deposited in the PDB

(Berman et al., 2000). Further three antibodies have been

previously published and have a name in the standard

antibody nomenclature, but do not have crystal structures.

The other 17 structures are Roche-internal. The relative HIC

retention times of this dataset, as well as identifiers and

sequences of the published antibodies, are shown in the

Supplementary Table S1.

4.2.2 Roche-127
This dataset contains 127 Roche-internal antibodies for

which HIC measurements of full-length IgGs have been

performed. Since no crystal structures are available for

those antibodies, homology models were created using

MoFvAb, as described below. Relative HIC retention times

are shown in Supplementary Table S2.

4.2.3 Jain-PDBs
This dataset is a subset of the publicly available dataset by

Jain et al. (2017b), containing 49 structures for which crystal

structures are available from the PDB. The HIC measurements

from the original publication were used as reference data for

this dataset. The used PDB codes are shown in Supplementary

Table S3.

4.2.4 Jain-Models
This dataset contains 77 antibodies from the dataset by

Jain et al. (2017b), for which no crystal structures were found
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in the PDB. Homology models were created using DeepAb

(Ruffolo et al., 2021).

4.3 tSNE

tSNE (t-distributed stochastic neighbor embedding) (van der

Maaten andHinton, 2008) is a dimensionality reduction technique

that aims to preserve the local structure, i.e., the distance

information between close-lying data points. Here, we apply it

to generate a two-dimensional representation of the antibody

sequence space, based on a distance matrix generated using

Clustal Omega (Sievers et al., 2011; Sievers and Higgins, 2018;

Sievers et al., 2020). We used the tSNE implementation in Scikit-

Learn (Pedregosa et al., 2011) with a “perplexity” setting of 500.

The value of 500 was chosen because it is significantly bigger than

the size of the Roche-127 set but small compared to the total

number of datapoints. If there are groups of similar antibodies with

a size larger than the perplexity, the relation of this group to other

groups is lost almost completely.

While t-SNE excels at reproducing the relation between

adjacent datapoints (i.e., similar sequences) in the two-

dimensional embedding, the relations between more distant

sequences are less reliable. It has been shown that the

initialization method is crucial to obtain embeddings that also

reproduce some of the global structure (Kobak and Linderman,

2021). While literature states (Kobak and Linderman, 2021) that

initialization using Laplacian Eigenmaps (LE) (Belkin and

Niyogi, 2002) is superior to random initialization at

preserving global structure, this approach performed very

poorly for our dataset, producing consistently lower Pearson

correlations between the original distance matrix and the two-

dimensional distances. We therefore chose to use random

initialization, but repeat the calculation 10 times and use the

best embedding as judged by the Kullback-Leibler divergence

(Kullback and Leibler, 1951).

4.4 Starting structures

For the Jain-PDB dataset, equilibrated versions of the

crystal structures of the Jain dataset were taken from our

previous work (Waibl et al., 2021).

All homology models were created starting from the

respective VH and VL sequences. The program settings were

as follows:

4.4.1 MoFvAb
The settings for MoFvAb were as in the original work by

Bujotzek et al. (2015).

TABLE 2 The per-residue hydrophobicity scales that were used in this work.

Residue BaMe BlMo Ei KyDo Me Ro WiWh Ja Mi

ALA 0.75 0.37 0.15 0.76 0.07 0.18 −0.20 0.06 0.40

ARG −0.02 −1.52 −3.09 −1.41 0.11 −0.71 −0.41 −0.32 −0.15

ASN −0.16 −0.79 −1.29 −1.06 0.11 −0.80 −0.51 0.13 −0.37

ASP −0.50 −1.43 −1.42 −1.06 −1.08 −0.89 −1.53 −0.43 −0.43

CYS 2.60 0.55 −0.19 1.00 −0.90 1.69 0.31 0.55 1.65

GLN −0.11 −0.76 −1.37 −1.06 −0.63 −0.89 −0.71 0.46 −0.29

GLU −0.54 −1.40 −1.26 −1.06 −2.23 −0.89 −2.51 −0.72 −0.40

GLY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HIS 0.57 −1.00 −0.90 −0.96 −0.46 0.53 −0.20 0.03 0.30

ILE 2.19 1.34 0.92 1.68 1.83 1.42 0.35 1.54 2.08

LEU 1.97 1.34 0.60 1.44 1.16 1.16 0.71 1.54 1.91

LYS −0.90 −0.67 −2.03 −1.20 0.01 −1.78 −0.59 −1.07 −0.74

MET 1.22 0.73 0.16 0.79 0.63 1.16 0.30 0.49 2.14

PHE 1.92 1.52 0.73 1.10 1.74 1.42 1.43 2.48 2.18

PRO 0.72 0.64 −0.37 −0.41 0.80 −0.71 −0.55 0.44 −0.29

SER 0.11 −0.43 −0.68 −0.14 0.16 −0.53 −0.15 0.07 −0.19

THR 0.47 −0.15 −0.55 −0.10 0.36 −0.18 −0.16 0.16 0.00

TRP 1.51 1.16 0.34 −0.17 1.96 1.16 2.33 2.81 1.52

TYR 1.36 1.16 −0.23 −0.31 0.80 0.36 1.19 1.84 0.68

VAL 1.88 1.00 0.61 1.58 0.36 1.25 −0.08 0.97 1.51

Abbreviations: BaMe, Bandyopadhyay-Mehler; BlMo, Black-Mould; Ei, Eisenberg; KyDo, Kyte-Doolittle; Me, Meek; Ro, Rose; WiWh, Wimley-White; Ja, Jain; Mi, Miyazawa.
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4.4.2 MOE
Fab Models were created using the antibody modeling

protocol in MOE 2020.09. Templates were selected

automatically from the built-in database, and the resulting

structures were extended to FAb fragments. MOE models

were used as exported from MOE. All protonation states were

kept the same, histidines with a hydrogen in δ-position were

renamed to HID, and histidines with a hydrogen in the ε-position
were renamed to HIE. CYS residues in a disulfide bond were

renamed to CYX. Hydrogen atoms were removed and re-added

in standard positions using the reduce program (Word et al.,

1999).

4.4.3 DeepAb
DeepAb (Ruffolo et al., 2021) was downloaded from GitHub at

3 Nov 2021, and used with PyRosetta 4 release 293 (Chaudhury

et al., 2010). The pre-trained model was used, and calculations were

run without GPU acceleration. All settings were left at their default

values. The protonationwas kept as in theDeepAb output, histidines

and cysteines were renamed in the sameway as for theMOEmodels.

We note that the protonation only affects the atomic hydrophobicity

scales, since no simulations were performed starting from the

DeepAb models.

4.5 Gaussian accelerated molecular
dynamics simulations

GaMD simulations were performed starting from the

MoFvAb models of the Roche-127 dataset. CH1/CL domains

were added for the simulations but omitted in all analyses.

The models were protonated using the Protonate3D protocol

(Labute, 2009) in MOE (Chemical Computing Group ULC,

2020) to obtain consistent protonation patterns.

Gaussian accelerated Molecular Dynamics (GaMD) (Miao et al.,

2015) simulations were performed using the same protocol as

described previously (Waibl et al., 2021). The ff14SB force field

(Maier et al., 2015) was used in combination with the TIP3P water

model (Jorgensen et al., 1983). Energy statistics for GaMD were

collected during a number ofMD frames equal to 4 times the number

of atoms in the system, rounded up to the next picosecond (Case

et al., 2019). Then, GaMD was run using a dual boost. SHAKE

(Ryckaert et al., 1977) was used on all bonds including hydrogen. The

integration timestep was 2 fs, using a Langevin thermostat (Adelman

and Doll, 1976) at 300 K with a collision frequency of 2 ps−1 and a

Monte Carlo barostat (Åqvist et al., 2004) with one volume change

attempt per 100 steps.

For post-processing, one frame per nanosecond was used,

resulting in 200 representative frames. Energies were collected

every picosecond and were used to reweight the probabilities

of representative frames using cumulative expansion to the

second order (Miao et al., 2014).

4.6 Hydrophobicity scores

All scores were calculated in Python using a series of in-house

Python scripts.

Residue-based hydrophobicity scales were assigned based on

the residue name. All protonation states of histidine were

considered equally except for scales that contain separate values.

The atoms in each of the 20 amino acids were assigned types

according to the Crippen scale using the SMILES matching

functionality in RDKit (Landrum et al., 2020). The hydrogen

atoms bound to aromatic nitrogen in TRP and HIS residues were

set to the H3 type (“amine”), rather thanH2 (“alcohol”). All other

types were used as assigned by RDKit. After the initial

assignment, atom types were assigned by a simple lookup

table using the residue name and atom name as a key.

The solvent-accessible surface area (SASA) was computed

using the Shrake-Rupley algorithm (Shrake and Rupley, 1973)

implemented in MDTraj (McGibbon et al., 2015).

The direct surface score Ssurf was computed by multiplying

the SASA of each atom Ai by the hydrophobicity value obtained

from a scale, hi. This score is conceptually consistent with an

experiment where all surface-exposed residues are desolvated,

thereby contributing to the overall hydrophobicity.

Ssurf � ∑
atoms

i

hi × Ai (1)

The positive surface score Spos was defined in the same way,

except that all negative hi values were set to zero. This is consistent

with an experiment where only the hydrophobic surface regions are

desolvated, while the hydrophilic regions remain in contact with

water. It is expected (Mahn et al., 2009) that this matches the

experimental conditions of HIC more closely.

The Spatial Aggregation Propensity (SAP) (Chennamsetty

et al., 2010) was computed as:

SAPi � ∑
side chain atoms

j,rij <R

Aj

Aresidue
j

hj (2)

where rij is the distance between atoms i and j, and R is the cutoff

radius, chosen as 5 Å in this study to be consistent with the original

work.Aresidue
j is the average sidechain SASA of a residue capped with

N-methyl and acetyl groups in TIP3Pwater, computed from a 100 ns

cMD simulation using the ff14SB Amber force field and TIP3P. The

SASA was again computed using MDTraj.

The resulting hydrophobicity score was computed as:

SSAP � ∑
atoms

i

max(SAPi, 0) (3)

The final SAP score is computed including atoms that are not

solvent-exposed. However, the solvent-exposure is already considered

by using Aj in the individual atom scores. This is consistent with the

original literature (Chennamsetty et al., 2009; Lauer et al., 2012).
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For the score by Heiden et al. (1993), we first computed a

solvent-excluded surface (SES), using the post-processing routines of

our previous work (Waibl et al., 2022) (available from https://github.

com/liedllab/gisttools) to compute the lowest possible distance to a

solvent molecule on a 3D grid, and then creating an isosurface at the

solvent radius of 1.4 Å using themarching cubes algorithm in scikit-

image (van derWalt et al., 2014). For each vertex k of the surface, we

compute the molecular lipophilicity potential (MLP) using:

MLPk �
∑atoms

j,rjk <R g(rjk)hj
∑atoms

j,rjk <R g(rjk)
, g(r) � [exp(α(r − R

2
)) + 1]

−1

(4)
This is essentially a weighted average over nearby atoms, with

g(r) as the weighting function. g(r) is a (mirrored) logistic function

with height 1, steepness α and midpoint R/2, where R is the cutoff

radius. Consistent with the original implementation, we choose α as

1.5 Å−1 and R as 5 Å. We compute a hydrophobicity score as

SHeiden � ∑
vertices

k

max(MLPk, 0) × Ak (5)

where Ak is the SASA of vertex k, which is calculated by splitting the

area of each triangle to the three vertices. The sum over all positive

vertex scores is used to define the Heiden score. By visualizing the

hydrophobic surface regions, we find the same hydrophobic patches

as defined by MOE. The patch area, however, is not the same due to

slight differences in the definition of the molecular surface and the

way the patches are searched.

4.7 Hydrophobic interaction
chromatography

Apparent hydrophobicity was determined essentially as

described previously (Jarasch et al., 2015), by injecting 20 µg of

sample onto a HIC-Ether-5PW (Tosoh) column equilibrated with

25 mM Na-phosphate, 1.5 M ammonium sulfate, pH 7.0. Elution

was performed with a linear gradient from 0 to 100% buffer B

(25 mM Na-phosphate, pH 7.0) within 60 min. Retention times

were compared to protein standards with known hydrophobicity.
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