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Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood
vessels, which are constantly subjected to mechanical stress, ECM molecules form
well-developed fibrous frameworks to maintain tissue structure. ECM is also important for
biological signaling, which influences various cellular functions in embryonic development,
and physiological/pathological responses to extrinsic stimuli. Among ECM molecules,
increased attention has been focused on matricellular proteins. Matricellular proteins
are a growing group of non-structural ECM proteins highly up-regulated at active tissue
remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular
protein, which is highly expressed during embryonic development, wound healing,
inflammation, and cancer invasion. The expression is tightly regulated, dependent on the
microenvironment, including various growth factors, cytokines, and mechanical stress.
In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of
development, sparsely detected in normal adults, but transiently re-expressed at restricted
sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC
is strongly up-regulated during embryonic development and under pathological conditions
with an increase in hemodynamic stress. Despite its intriguing expression pattern,
cardiovascular system develops normally in TNC knockout mice. However, deletion of
TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress.
Accumulating reports suggest that TNC may modulate the inflammatory response and
contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from
destructive stress responses. TNC may be a key molecule to control cellular activity during
development, adaptation, or pathological tissue remodeling.
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INTRODUCTION
Living tissue is composed of cells and extracellular matrix (ECM).
In the heart and blood vessels, which are constantly subjected to
mechanical stress, ECM molecules form well-developed fibrous
frameworks to maintain the tissue structure by supporting the
shape and position of cells, integrating and transmitting mechan-
ical forces generated inside the cells to whole tissue. ECM is
also important for biological signaling, which influences various
cellular functions in embryonic development, and physiologi-
cal/pathological responses to extrinsic stimuli. Tenascin-C (TNC)
is a non-structural ECM protein highly expressed in morphogen-
esis and tissue remodeling, and has a wide range of effects on cell
responses. Emerging evidence suggests that TNC may be involved
in mechanotransduction in response to mechanical stress. In this
review, we will focus on the adaptive role of TNC in the mechan-
ical stress response in the development and pathological state of
the cardiovascular system.

OVERVIEW OF EXTRACELLULAR MATRIX IN
CARDIOVASCULAR SYSTEM
FIBROUS EXTRACELLULAR MATRIX
Of all the organs of the body, the large arteries, particularly the
aorta, are subject to the greatest mechanical stress. They have a
well-organized fibrous framework. In the tunica media, multi-
layered elastin sheets (lamellae) connected by fine elastin fibers
form a three-dimensional continuous network that links smooth
muscle cells. This elastin network of the arterial wall functions as
an elastic reservoir protecting the tissue from destructive stress.
The outermost layer, the tunica adventitia, consists of a collagen-
rich ECM and helps prevent vascular rupture at extremely high
pressures (Wagenseil and Mecham, 2009). In the heart, the major
structural component of the ECM is collagen, which also forms
a three-dimensional network interconnecting myocytes to each
other and to the vasculature (Caulfield and Borg, 1979; Borg and
Caulfield, 1981). The fibrous skeleton composed of collagen is
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continuous with the annulus fibrosus cordis, the support appara-
tus of the tricuspid, mitral, and aortic valves to the cardiac muscle
in a manner analogous to the attachment of tendons to skeletal
muscle (Hinton and Yutzey, 2011). This stress-tolerant collage-
nous network not only contributes to passive elastic properties
of the heart but also to the transmission of mechanical forces to
and from the cardiomyocytes (reviewed in Sussman et al., 2002;
Bowers et al., 2010; Borg and Baudino, 2011).

NON-STRUCTURAL MATRIX, MATRICELLULAR PROTEIN
In addition to the fibrous ECM, a unique functional cate-
gory of non-structural ECM, matricellular proteins, are receiv-
ing increasing attention (Bornstein, 2009). Matricellular proteins
constitute a growing family (Table 1) that originally included
thrombosondin-1 (TSP1), SPARC (secreted protein, acid and
rich in cysteine; osteonectin), and TNC (Sage and Bornstein,
1991), and then TSP2, osteopontin, CCN1, CTGF (CCN2), and
tenascin-X were added (Bornstein and Sage, 2002). They have
common unique properties: (1) expressed at high levels dur-
ing development and in response to injury; (2) do not subserve
structural roles but function as modulators of cell-matrix inter-
actions; (3) bind to many cell-surface receptors, other ECM
molecules, growth factors, cytokines, and proteases; (4) gen-
erally induce de-adhesion, in contrast to the positive adhesiv-
ity of most matrix proteins (Bornstein and Sage, 2002). The
term has become used more widely and new members, such as
galectins and periostin, have joined the group (Bornstein, 2009).
In cardiovascular development, significant roles of periostin
have been reported (Conway and Molkentin, 2008; Inai et al.,
2008; Norris et al., 2008, 2009; Ghatak et al., 2014). It is also
noteworthy that some members, such as SPARC, osteopontin,
and periostin, have been found to be related to developing

Table 1 | Matricellular proteins.

Thrombospondins

TSP-1

TSP-2

Secreted protein acidic and rich in cysteine (SPARC/osteonectin)

Tenascin family

Tenascin-C

Tenascin- X

Osteopontin

CCN family

CCN1 Cysteine-rich angiogenic inducer (CYP-61)

CCN2 Connective tissue growth factor (CTGF)

CCN3 Nephroblastoma overexpressed (Nov)

CCN4 Wnt-induced secreted protein-1 (WISP-1)

CCN5 WISP-2 connective tissue growth factor-like protein (CTGF-L)

CCN6 WISP-3

Periostin

Galectins

Plasminogen activator inhibitor type 1 (PAI-1)

Fibulin-5

Small leucine-rich proteoglycans (Biglycan, Decorin, Lumican,

Fibromodulin)

bone and teeth, which are subjected to strong mechanical
stress.

TENASCIN-C
THE TENASCIN FAMILY
Tenascins are a family of multimeric ECM glycoprotein character-
ized by an N-terminal globular domain and heptad repeats, which
facilitate multimerization; one or more tenascin-type epidermal
growth factor (EGF)-like repeats; a series of fibronectin (FN) type
III domains, and a C-terminal fibrinogen-related domain. There
are six names for the tenascin gene products: tenascin-C, X, R, Y,
W, and N (Tucker et al., 2006; Tucker and Chiquet-Ehrismann,
2009). TNC was the first tenascin found to be highly expressed in
tendons and embryonic ECM (Chiquet-Ehrismann et al., 1986).
It was discovered independently in several laboratories as glioma
mesenchymal ECM antigen, myotendinous antigen, cytotactin,
and J1 glycoprotein (reviewed in Tucker et al., 2006; Chiquet-
Ehrismann and Tucker, 2011). Tenascin-R is the second member
and is predominantly expressed in the central and peripheral
nervous systems (Rathjen et al., 1991). Tenascin-X is a mam-
malian tenascin primarily expressed in loose connective tissue
such as the dermis, epimysium, and blood vessels (Matsumoto
et al., 1992; Bristow et al., 1993) Mutations in tenascin-X can
lead to a type of Ehlers–Danlos Syndrome (reviewed in Bristow
et al., 2005) Tenascin-Y is an avian tenascin similar to mammalian
tenascin-X (Hagios et al., 1996). Tenascin-W (Weber et al., 1998)
is found primarily in pre-osteogenic areas, the kidney, smooth
muscle, and most prominently also in cancer stroma. Tenascin-N
is most recently discovered tenascin and is similar to tenascin-W
(Neidhardt et al., 2003).

BIOLOGICAL ROLE OF TENASCIN-C
TNC is the best characterized member of the family (Orend and
Chiquet-Ehrismann, 2006; Midwood and Orend, 2009; Chiquet-
Ehrismann and Tucker, 2011; Midwood et al., 2011; Udalova
et al., 2011; Brellier and Chiquet-Ehrismann, 2012; Chiquet-
Ehrismann et al., 2014) and is a typical matricellular protein. It
is a huge molecule of approximately 220–400 kDa as an intact
monomer and is assembled as a hexamer. TNC is found in many
developing organs of embryos, down-regulated after birth to
a few tissues bearing high tensile stress and locations of high
cell turnover, but highly up-regulated during injury, inflamma-
tion, regeneration, and cancer (Chiquet-Ehrismann et al., 2014).
A number of in vitro studies suggest that TNC has a wide
range of effects on cell adhesion, motility, differentiation, growth
control, and ECM organization via multiple cell surface recep-
tors including integrins α9β1, αvβ3, and αvβ6, Toll-like recep-
tor 4 (TLR4) and syndecan-4 (Orend and Chiquet-Ehrismann,
2006; Midwood and Orend, 2009). As in the case of target
disruption of several other matricellular protein genes, TNC
knockout mice develop normally (Saga et al., 1992; Forsberg
et al., 1996). Recent detailed investigations of various disease
models using TNC KO have suggested that TNC may pro-
mote tissue healing but enhances inflammation and fibrosis
(Midwood et al., 2011; Udalova et al., 2011; Brellier and Chiquet-
Ehrismann, 2012; Imanaka-Yoshida, 2012; Chiquet-Ehrismann
et al., 2014).
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During embryogenesis and tissue remodeling, TNC is
expressed transiently at specific sites, suggesting that the expres-
sion of TNC is tightly regulated dependent on the cell type
and tissue microenvironment (Tucker and Chiquet-Ehrismann,
2009). Many different growth factors, such as TGFβ, FGF, PDGF,
and proinflammatory cytokines, are able to induce TNC expres-
sion (for a review, see Orend and Chiquet-Ehrismann, 2006;
Tucker and Chiquet-Ehrismann, 2009).

A variety of signaling pathways and transcription factors are
known to stimulate TNC transcription (reviewed in Chiquet-
Ehrismann and Tucker, 2011). These include TGF/Smad 3/4
(Jinnin et al., 2004), TLR4/NFkB (Goh et al., 2010), c-Jun/NFkB
(Mettouchi et al., 1997), Notch (Sivasankaran et al., 2009), Sox4
(Scharer et al., 2009), PDGF/Ets (Jinnin et al., 2006), and MEF2c
with scleraxis (della Gaspera et al., 2009). Conversely, TNC can
trigger a variety of signaling pathways via multiple cell surface
receptors. Interestingly, it affects some of the same signaling path-
ways that initially trigger the expression leading to negative or
positive feedback loops (Chiquet-Ehrismann and Tucker, 2011).
For example, PDGF can induce TNC expression via the phospho-
inositide 3-kinase/Akt pathway (Jinnin et al., 2006) and MAPK
pathways (Chiquet et al., 2004) and, in turn, TNC enhances
PDGF signaling by cross-talk between PDGFR-β and integrin
αvβ3 with activation of focal adhesion kinase and Src tyrosine
kinase (Ishigaki et al., 2011). In contrast, a negative feedback
loops is created in the case of small GTPase RhoA as discussed
in the next section.

INDUCTION OF TENASCIN-C BY MECHANO-STRESS
Mechanical stress is also a strong inducer of TNC. Just as one
of its original names, “myotendinous antigen,” suggests, TNC is
highly expressed at the myotendinous and osteotendinous junc-
tions (Jarvinen et al., 1999, 2000, 2003) at sites subjected to
mechanical stress. High expression of TNC is often observed at
the branching point of arteries (Mackie et al., 1992), although the
expression level of TNC is generally low in adult blood vessels.
Based on this distribution of the molecule, the close association
of mechanical stress and TNC has been proposed. Supporting
this possibility, load-induced bone remodeling or muscle over-
load up-regulates the expression of TNC (Webb et al., 1997; Fluck
et al., 2000; Mikic et al., 2000; Mackey et al., 2011), while immobi-
lizing tendons down-regulates the expression. In culture, various
mechanical stresses including stretching (Chiquet et al., 2004),
compression (Jagodzinski et al., 2008), and shear stress (Tan et al.,
2013), up-regulate TNC synthesis by fibroblasts, chondrocytes,
smooth muscle cells, and endothelial cells.

Several types of cell-surface proteins, including stretch-
sensitive ion channels, are known to sense mechanical forces and
translate them into biochemical signals (Kung, 2005). Mechanical
inputs can be also detected by mechanosensing apparatus of
the focal adhesion complex and transduced to the cytoskele-
ton (Wang et al., 2009). Chiquet and coworkers have shown a
mechanism by which a mechano-signal is transduced at the link-
age between the ECM and cytoskeleton, which controls TNC
transcription mediated by megakaryoblastic leukemia 1 (MAL
or MKL1)/myocardin-related transcription factor A (MRTFA)
(Chiquet et al., 2007, 2009; Asparuhova et al., 2009, 2011; Brosig

et al., 2010). The cycle stretch of fibroblasts up-regulates TNC
transcription, independent of de novo protein synthesis, paracrine
factors such as TGFβ, and mitogen-activated protein kinases
(MAPKs), but depends on actomyosin contractility controlled by
the RhoA/ROCK pathway (Sarasa-Renedo et al., 2006) (Figure 1).
Mechanical stimuli activate the signaling pathway involving inte-
grin β1 (Chiquet et al., 2007) and integrin-linked kinase (ILK)
(Maier et al., 2008), which induces actin assembly and stress
fiber formation via mDia and ROCK (Ridley and Hall, 1992).
MAL/MLK1/MRTFA is a coactivator of serum response factor
(SRF) and is predominantly localized in the cytoplasm through
an interaction with G-actin (Miralles et al., 2003; Guettler et al.,
2008). Therefore, depletion of the cytoplasmic G-actin pool fol-
lowing Rho activation causes translocation of MAL into the
nucleus, where it induces TNC transcription, partly dependent
on SRF (Asparuhova et al., 2011).

RhoA-dependent mechanotransduction requires pericellular
fibronectin (Lutz et al., 2010). TNC binds fibronectin at the bind-
ing site to syndecan-4, a coreceptor for integrin α5β1, and has
a negative impact on focal adhesion formation and activation of
RhoA (Midwood et al., 2006; Lange et al., 2008; Van Obberghen-
Schilling et al., 2011). Therefore, mechanically induced TNC may
lead to negative feedback from the mechanotrasduction signal.
Moreover, since TNC is an elastic molecule that can be stretched
to several times its resting length in vitro (Oberhauser et al.,
1998; Marin et al., 2003), it may contribute to tissue elasticity and
protect against mechanical stress.

FIGURE 1 | Diagram of the molecular pathway of the

mechano-induction of tenascin-C. Mechanical strain activates RhoA in
fibroblasts, depending on fibronectin, integrin β1 and integrin-linked kinase
(ILK), which causes the reduction of monomeric G-actin by inducing actin
assembly and stress fiber formation. Depletion of the G-actin pool frees
MAL/myocardin-related transcription factor-A (MRTF-A)/megakaryoblastic
leukemia-1 (MKL1) to enter the nucleus, which induces TNC expression
partly depending on serum response factor (SRF). Meanwhile, TNC binds
fibronectin at the syndecan-4 binding sites and interferes with
fibronectin-mediated RhoA activation, and finally suppresses TNC
transcription. Adapted from Asparuhova et al. (2009), Imanaka-Yoshida et al.
(in press).
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MECHANOTRANSDUCTION AND TENASCIN-C IN
CARDIOVASCULAR DEVELOPMENT
During heart development, ECM not only provides structural
support for embedded cells but plays an important biological role
in the orchestration of cell behavior to form a complex structure
with 4 chambers and 4 valves. Accumulated studies have shown
diverse functions of various ECM molecules, including hyaluro-
nan, proteoglycans, the collagen family, fibronectin, and periostin
(reviewed in Lockhart et al., 2011).

HEART DEVELOPMENT AND TENASCIN-C
Specific roles of TNC in heart morphogenesis have long been
anticipated based on its strictly regulated temporal expression at
specific sites closely associated with cell migration and epithelial-
mesenchymal/mesenchymal-epithelial transition: (Wagenseil and
Mecham, 2009) differentiation of precardiomyocytes, (Caulfield
and Borg, 1979) cushion tissue formation, (Borg and Caulfield,
1981) valve formation, and (Hinton and Yutzey, 2011) coronary
vessel formation (Imanaka-Yoshida et al., 2003).

During the development of mouse embryos, the initial expres-
sion of TNC is detected in mesodermal cells in the first heart field
(FHH), which undergo mesenchymal-epithelial transition and
differentiate to cardiomyocytes and endocardial cells. Once the
cells differentiate to cardiomyocytes, they rapidly stop express-
ing TN-C, while endocardial cells continue to express TNC. TNC
expression is also detected at the recruitment of precardiac cells
from the second heart field (SHF) (Imanaka-Yoshida et al., 2003).
Interestingly, cardiomyocytes from the SHF in the outflow tract
maintain the expression of TN-C during looping and shortening.

Endocardial cushion and tenascin-C
The primitive heart consists of the inner endocardium and outer
myocardium and cardiac jelly, composed predominantly of the
proteoglycan glycosaminoglycan hyaluronan between the two lay-
ers. After cardiac looping, the cardiac jelly expands within the AV

canal and outflow tract regions and endocardial cells undergo
epithelial–mesenchymal transformation (EMT) and invade it,
forming an endocardial cushion (Eisenberg and Markwald, 1995;
Person et al., 2005), which is the initial step in valvulogenesis.

A number of reports have demonstrated the expression of
TNC in cushion tissue closely associated with EMT of endocar-
dial cells (Hurle et al., 1990; Crossin and Hoffman, 1991; Zhang
et al., 1993; Hiltgen et al., 1996; Sugi and Markwald, 1996; Boyer
et al., 1999). Indeed, TNC promotes EMT of cancer cells in vitro
(Nagaharu et al., 2011; Katoh et al., 2013).

Furthermore, Garita et al. have recently reported interesting
results suggesting that TNC may provide a structural commu-
nication or mechano-communication between the myocardium
and endocardium during looping. Using four-dimensional opti-
cal coherence tomography (OCT), they found that the endo-
cardium was consistently oriented between the midline of the
ventral floor of the foregut and the outer curvature of the myocar-
dial wall throughout the cardiac cycle and that TN-C co-localized
with FN at the attachment areas at the outer curvature of the heart
wall to the ventral floor of the foregut (Garita et al., 2011).

Valve development and tenascin-C
Later stages of valvulogenesis involve thinning, elongation, and
remodeling of the ECM of the primordial valve into three layers:
the fibrosa, spongiosa and either the ventricularis of semilu-
nar (SL) valve or the atrialis of the atrioventricular (AV) valve
(Lincoln et al., 2004, 2006a; Hinton et al., 2006) (Figure 2). The
atrialis/ventricularis are along the flow side of the valves and are
rich in elastin fibers. The fibrosa is situated on the ventricular
aspect of AV valves and the arterial aspect of the SL valves and is
composed of well-organized collagen fibrils. The spongiosa layer
of the valve leaflets is rich in chondroitin sulfate proteoglycan,
aggrecan, similar to cartilage. The AV valve has supporting struc-
tures termed chordae tendinae composed of TNC-rich elastic
matrix, which is similar to that of tendons. SL valves lack chordae

FIGURE 2 | Diagram of extracellular matrix compartmentalization of the

mature AV and SL valves. During valve maturation, BMP2 signaling induces
cartilage-associated genes Sox9 and aggrecan, while FGF4 signaling promotes

expression of scleraxis and tenascin, which are characteristic of tendon cell
lineages. SL valve precursor cells exhibit both cartilage and tendon-like
characteristics. Adapted from Zhao et al. (2007), Hinton and Yutzey (2011).
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tendineae, but instead have comparable supporting tissue in the
aortic and pulmonic roots and hinge regions (Zhao et al., 2007).

Remodeling of the heart valve primordia shares a regula-
tory pathway with developing cartilage/tendons (Lincoln et al.,
2006b; Hinton and Yutzey, 2011). In the development of limb
buds, diversification of cartilage and tendon cells from a com-
mon precursor is antagonistically regulated by BMP and FGF
signaling pathways. BMP2 not only promotes chondrogenesis
but also inhibits tendon development, while FGF4 promotes ten-
don differentiation (Edom-Vovard et al., 2002; Edom-Vovard and
Duprez, 2004).

Similarly, BMP2 signaling activates valve progenitor cells to
express Sox9 transcription factor and the aggrecan gene as well
as cartilage precursors in limb buds (Lincoln et al., 2006a; Zhao
et al., 2007). In contrast, FGF4 signaling activates scleraxis and
TNC expression in the valve-supporting apparatus as well as in
developing tendons (Lincoln et al., 2006a; Zhao et al., 2007).
Hemodynamics is often proposed to be one of the driving forces
in valve development (Combs and Yutzey, 2009); however, there
is no evidence indicating that mechano-stress might be involved
in the induction of TNC during the development of the valves.

VASCULAR DEVELOPMENT AND TENASCIN-C
Another possibility is that TNC may play a role in blood ves-
sel development. In coronary vessels, most vascular progenitors
come from the proepicardial organ (PEO) between the primi-
tive heart and the liver bud. Mesenchymal cells from the PEO
migrate to the heart and form the epicardium. Epicardial cells
undergo EMT, differentiate into endothelial cells and vascular
smooth muscle cells (VSMCs), and form a primitive capillary net-
work, which eventually connects to the aorta (see Nakajima and
Imanaka-Yoshida, 2013, for review). During this process, TNC is
transiently expressed in PEO before cell migration and at epicar-
dial EMT. It is worthy of note that TNC is highly up-regulated and
associated with thickening of the vascular wall after the prema-
ture vessels are linked with the aorta (Ando et al., 2011), possibly
promoting the recruitment of vascular mural cells by facilitating
PDGF-BB/PDGFRβ signaling (Ishigaki et al., 2011).

Similar up-regulation of TNC in the vascular wall associated
with hemodynamic change is observed during the development
of the aorta (Imanaka-Yoshida et al., in press). In E12-13 mouse
embryos, weak expression of TNC is detected in the ascending,
arch and descending aorta. After ED14-15, when the systemic
circulatory system is established, TNC expression is evidently up-
regulated and becomes even stronger after birth. In normal adults,
the expression of TNC in the aortic wall is generally reduced,
although the infra-renal aorta continues to express TNC.

Despite its intriguing expression pattern during cardiovascular
development, targeting deletion of the TNC gene causes a grossly
normal phenotype (Saga et al., 1992; Forsberg et al., 1996). Our
recent preliminary data suggested that over-expression of TNC
in the heart may not cause a distinct phenotype, either (unpub-
lished data). Compensatory mechanisms should be present in
tissue morphogenesis of the embryo although it is not identi-
fied. However, increasing number of studies indicate that TNC is a
“stress protein” whose importance becomes apparent when organ
homeostasis is challenged by injury or destructive stress such as

mechanical overload (Chiquet-Ehrismann et al., 2014), while it is
masked during embryonic development.

MECHANOTRANSDUCTION AND TENASCIN-C IN
CARDIOVASCULAR DISEASE
MECHANOTRANSDUCTION IN HEART DISEASE
In the heart, extracellular and intercellular mechanical loads
are linked to the myofibrils in cardiomyocytes via vari-
ous mechanosensing complexes (McCain and Parker, 2011).
Cadherins links with myofibrils of neighboring cells at interca-
lated disks, while integrins attach Z-discs laterally to the con-
nective tissue at costameres (Pardo et al., 1983a,b). Costameres
are structures related to the focal adhesion complex and critical
cytoskeletal elements involved in environmental mechanochem-
ical signal transduction into cardiomyocytes (Samarel, 2005;
Russell et al., 2010). They are also the sites where contractile
forces generated within cardiomyocytes are transmitted to the
surrounding interstitial collagen network (Danowski et al., 1992;
Imanaka-Yoshida et al., 1996, 1999, 2004). Costameres may corre-
spond to the myotendinous junction in the sense of transmitting
contraction forces of muscle to connective tissue.

Although TNC is not detected in the normal myocardium,
it transiently appears upon tissue injury and inflammation in
various heart disease (Imanaka-Yoshida, 2012; Okamoto and
Imanaka-Yoshida, 2012).

In an acute myocardial infarction model animal, TNC is exclu-
sively localized at the border zone between the intact and infarcted
lesion, the most active site of tissue remodeling (Imanaka-Yoshida
et al., 2001; Nishioka et al., 2010). As a typical matricellu-
lar protein, TNC could loosen the strong costameric adhesion
(Imanaka-Yoshida et al., 2001). This “de-adhesion” function may
be useful to release surviving cardiomyocytes to reorganize their
shape and arrangement; on the other hand, it should reduce the
efficiency of the transduction of contraction force of cardiomy-
ocytes. Furthermore, the border zone should be sites subjected
to strong stress due to the difference in the physical property of
the intact myocardium and necrotic tissue. By exploiting its elas-
tic properties (Oberhauser et al., 1998; Marin et al., 2003), as
discussed in the previous section TNC may protect surviving car-
diomyocytes in the border zone as a shock absorber. However,
there is no formal proof of this concept. In fact, deletion of TNC
attenuates adverse ventricular remodeling and improves cardiac
function after myocardial infarction in model mice (Nishioka
et al., 2010). Therefore, the adaptive role of TNC in heart tissue
remodeling has remained elusive.

MECHANOTRANSDUCTION AND TENASCIN-C IN AORTIC DISEASE
Recently, we found that TNC plays an adaptive role in main-
taining the tissue strength of the aorta upon hemodynamic and
humoral stress and protects aortic tissue from destructive events
(Kimura et al., 2014). In this section we summarize our find-
ings and propose the logic of a maintenance mechanism of tissue
strength involving TNC. The aorta must maintain tensile strength
to tolerate blood pressure, and must also maintain mechani-
cal flexibility and elasticity to accommodate the stroke volume
during the systolic phase and to keep the blood flowing dur-
ing the diastolic phase. Because the blood pressure and stroke
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volume fluctuate during the cardiac cycle, circadian rhythm, and
depending on physical and mental activities, aortic tissue must
have a mechanism that locally optimizes these mechanical prop-
erties to meet the changes in hemodynamic demands. The failure
of such a mechanism would lead to a mismatch between the
mechanical properties and hemodynamic demands, causing cen-
tral arterial hypertension in the case of excessive aortic stiffness
(Agabiti-Rosei et al., 2007) or destructive aortic tissue remodel-
ing including aortic aneurysm and aortic dissection (Cronenwett
and Johnston, 2010). Because the mechanical properties of aortic
tissue are determined mainly by the composition and architec-
ture of ECM (Cronenwett and Johnston, 2010), the maintenance
mechanism of aortic mechanical properties is expected to be
tightly coupled with the ECM metabolism. TNC is one of the
candidate molecules to maintain the strength of the tissue against
mechanical stress.

Acute aortic dissection
Acute aortic dissection (AAD) is a medical emergency and the
most common aortic disease that is life-threatening (Cronenwett
and Johnston, 2010). Patients usually experience the sudden onset
of chest or back pain that typically migrates along with the
progression of the tearing of the aortic wall. Because patients
experience no preceding symptoms, the exact sequence of the
events during AAD onset is unknown. However, it is generally
accepted that AAD starts with the tearing of the intimomedial
layer of the aortic wall, followed by circumferential and longi-
tudinal tearing of the aortic medial wall due to blood rushing
into the pseudolumen that is formed between the inner and
outer layers of the torn medial layer of the aortic wall. Several
genetic disorders are known to predispose the suffering individu-
als to AAD, including Marfan syndrome, Loeys-Dietz syndrome,
vascular Ehlers-Danlos syndrome, bicuspid aortic valve, Turner
syndrome, and familial thoracic aortic aneurysm and dissection.
However, these genetic disorders account for up to 10% of AAD
cases (Cronenwett and Johnston, 2010) and little is known about
the etiology of other cases. In addition, the molecular pathogen-
esis of AAD is largely unknown, partly because animal models
that recapitulate the pathological features of human AAD are not
available, except for those that are models of genetic disorders.

Aortic stress model in mice
During the investigation into the pathophysiological role of TNC
in the aorta under mechanical and humoral stress, we discov-
ered that deletion of TNC renders mice susceptible to AAD
(Kimura et al., 2014). We created a mouse model of aortic
stress by inducing aortic stiffness and hypertension (Figure 3),
known risk factors for AAD (Jondeau et al., 1999). Aortic stiff-
ness was induced by periaortic treatment of the infrarenal aorta
by 0.5 M CaCl2, which causes disruption of the elastic lamellae
and strong periaortic fibrosis (Ca treatment). Hypertension was
induced by continuous infusion of angiotensin II (1 μg/kg/min;
AngII treatment), which is known to induce constriction and a
proinflammatory response in the vasculature.

The increase in stress in this model was verified by the direct
measurement of aortic pressure waves with catheterization. Ca
treatment caused an increase in the maximal dP/dt of the dis-
tal aorta, while AngII infusion increased that of the proximal

FIGURE 3 | Mouse model of aortic stress. Mouse model of aortic stress
was created by inducing hypertension with angiotensin II infusion and
aortic stiffness with periaortic application of CaCl2 in the infrarenal aorta
(brackets). Top panel: Hemodynamic stress on aortic wall was evaluated by
measuring dP/dt (mmHg/s) with aortic catheterization. Thick lines indicate
AngII-treated groups. Closed circles indicate Ca-treated groups. Bottom
panel: Stress response of aortic wall was evaluated by X-gal staining of the
aorta from Tnc reporter mouse, in which blue staining indicates Tnc gene
activity. Adapted from Kimura et al. (2014).

aorta. The combination of Ca and AngII treatments (Ca+AngII)
increased the dP/dt throughout the aorta. The expression of TNC,
as monitored in TNC reporter mice into which the lacZ gene was
introduced into one of the Tnc loci, was observed exclusively in
medial smooth muscle cells and faithfully followed the increase
in dP/dt.

Acute aortic dissection in mice
To understand the function of TNC in this aortic stress model,
we applied Ca+AngII treatment to TNC knockout mice (TNC-
KO). Remarkably, only TNC-KO mice developed AAD in the
suprarenal aorta (Figure 4), while WT mice showed only aortic
wall thickening in the same region of the aorta. Treatment with
Ca alone or AngII alone did not induce AAD in either WT or
TNC-KO mice. It should be noted that AAD developed in the
suprarenal aorta, which is distant from the Ca-treated infrarenal
aorta, and in almost all of the cases of AAD we observed a
normal-looking segment of the aorta in between. This observa-
tion indicated that direct propagation of the inflammation from
the Ca-treated infrarenal aorta cannot explain AAD development
in the suprarenal aorta. The finding that Ca+AngII treatment
greatly enhanced hemodynamic stress led us to conclude that the
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FIGURE 4 | AAD in TNC-KO mice. Morphology of mouse AAD in TNC-KO
mice. Top panels: A macroscopic image, 3D-reconstitution of optical
sections obtained by optical coherence tomography with a cut-out view,
and a schematic of the cut-out view. Bottom panels: Elastica van Gieson
staining of the suprarenal aorta. True (tr) and false (fl) lumens are indicated
in TNC-KO with Ca+AngII treatment. The inset is the magnified view of the
dissection site (thick arrow) as indicated by the rectangle. Adapted from
Kimura et al. (2014).

augmented hemodynamic stress was at least partly responsible for
AAD development in TNC-KO mice.

AAD in TNC-KO mice recapitulated the main features of the
human aorta, including disruption of the intimomedial layers
with otherwise preserved elastic lamellar architecture, intramural
hematoma, and formation of a pseudolumen with a double-barrel
appearance. One important feature of human AAD was miss-
ing; longitudinal dissection of the medial layer. This is probably
because the medial layer of the human aortic wall consists of
about a 100 layers of elastic lamellae, while that of the mouse aor-
tic wall consists of only 4–7 layers. Therefore, disruption of only
a few elastic lamellae would result in complete disruption of the
intimomedial layers, leaving only adventitia.

Transcriptome analysis before AAD development revealed the
impaired induction of ECM protein genes and exaggerated the
induction of proinflammatory genes in the suprarenal aorta of
TNC-KO compared to WT (Kimura et al., 2014). Measurement
of the tensile strength of the suprarenal aorta in WT showed
a transient reduction 1 week after Ca+AngII treatment, which

recovered 6 weeks after Ca+AngII, probably due to the induction
of ECM proteins. In contrast, the strength of the suprarenal aorta
of TNC-KO mice showed more marked weakening 1 week after
Ca+AngII treatment, likely reflecting the impaired induction of
ECM proteins. Thus, deletion of the Tnc gene and the resultant
impairment of ECM gene induction showed a significant impact
on the adaptive response in reinforcing tissue strength against the
increase in hemodynamic stress.

The exaggerated induction of proinflammatory genes in the
TNC-KO aorta may also have a significant impact on the home-
ostasis of aortic tissue. Indeed, imaging cytometric analysis of
the TNC-KO aorta showed much more infiltration of CD45-
positive inflammatory cells that showed stronger activation of
NFκB and STAT3 compared to the WT aorta before AAD devel-
opment, probably reflecting the proinflammatory environment in
the TNC-KO aorta. Interestingly, activation of SMAD2, a down-
stream molecule of TGFβ signaling, was reduced in VSMCs in the
TNC-KO aorta, concomitant with the reduction in the expres-
sion of smooth muscle α-actin, indicative of compromised VSMC
differentiation. Impaired TGFβ signaling may explain the impair-
ment of both the differentiation of VSMCs and induction of
ECM genes, because TGFβ is a strong inducer of VSMC dif-
ferentiation (Kumar and Owens, 2003) and a master regulator
of ECM genes (Bobik, 2006). Consistently, TGFβ is reported to
protect the aorta from rupture by angiotensin II infusion in
ApoE-deficient mice (Wang et al., 2010), possibly by stabilizing
the inflamed aortic tissue (Dai et al., 2005), in contrast to its
pathogenic role in Marfan syndrome (Dietz, 2010). Modulation
of the cytokine environment may explain the marked reduction
in the tensile strength of the aorta and AAD development upon
aortic stress by Ca+AngII treatment in TNC-KO mice, although
exactly how TNC modulates the cytokine environment remains
to be elucidated.

Role of tenascin-C in the protection of aortic tissue
From the viewpoint of aortic homeostasis and AAD pathogene-
sis, TNC can be regarded as a stress-activated molecular damper
(Figure 5); it is inactive under normal conditions, but once the
tissue experiences high mechanical stress it is activated and works
to reinforce tissue strength by inducing ECM proteins and at
the same time by ameliorating the excessive proinflammatory
response. These findings may be clinically relevant, because ele-
vation of tissue and serum TNC levels has been reported in both
Stanford type A and type B human AAD (Nozato et al., 2013;
Trescher et al., 2013). It is also noteworthy that in TNC-KO
mice, aortic wall stiffness was increased only in the infrarenal
abdominal aorta where TNC was expressed at a low level (our
unpublished data). This suggests that TNC may also participate
in the maintenance of the flexibility of aortic walls in certain
situations.

ADAPTIVE ROLE OF TENASCIN-C IN THE MECHANICAL
STRESS RESPONSE
As observed in the aortic stress model discussed above, adap-
tive or destructive tissue remodeling upon hemodynamic and
humoral stress could be associated with the inflammatory
response. Indeed, mechanical forces influence the production of
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FIGURE 5 | Role of TNC in protection of aortic tissue. Diagram of the
role of TNC in the stress response of aortic tissue. Hemodynamic and
humoral stress induces TNC expression by vascular smooth muscle cells
(VSMCs). TNC, in turn, maintains the fibrotic response and ameliorates the
excessive proinflammatory response to reinforce the tensile strength of the
aortic wall, thus preventing AAD development.

inflammatory mediators (Wang and Thampatty, 2008; Yang et al.,
2008). Alternatively, strong mechanical stress may cause minimal
injury, which would evoke inflammation and secondary matrix
synthesis as a repairing response.

Generally, TNC expression is closely associated with tissue
injury and inflammation in various pathological states, which
makes TNC a hallmark of inflammation for clinical diagnosis
(Imanaka-Yoshida, 2012; Okamoto and Imanaka-Yoshida, 2012).
In fact, inflammatory cytokines induce TNC. A growing body
of evidence suggests that TNC activates TLR4 signaling, leading
to greater cytokine secretion and more TNC synthesis, forming
a positive feedback loop to augment inflammation (Midwood
et al., 2009; Goh et al., 2010). The exaggerated induction of proin-
flammatory genes in the stressed aorta of TNC-KO seems to be
inconsistent with the current consensus. It is well-known that
TNC has diverse functions in a context-dependent manner and
they are sometimes conflicting. Since TNC can bind various cell-
surface receptors, different signals from one molecule may be
transduced via different receptors depending on the cell type.

Obviously, TNC is not the only ECM molecule involved in
the response to mechanical stress. Mechanical stimuli can gener-
ally up-regulate the gene expression, synthesis and organization
of various ECM molecules. In particular, several matricellular
proteins, including CCN1 (Hanna et al., 2009), CCN2 (CTGF)
(Schild and Trueb, 2004; Chaqour et al., 2006; Honjo et al.,
2012), osteopontin (Endlich et al., 2002), SPARC (Durvasula
and Shankland, 2005), and periostin (Yamashita et al., 2013) are
induced by mechanical stimuli depending on actin cytoskeleton
via common or different pathways. These matricellular proteins

show a similar expression pattern to TNC and could modulate
the signal transduction and activity of the cells. Furthermore,
some are co-localized with TNC and can cooperate or counterbal-
ance each other. For example, TNC and osteopontin are strongly
induced in spastic cerebral arteries in a subarachnoid hemor-
rhage model and TNC induces vasospasm, which is reversed by
osteopontin (Suzuki et al., 2013). Periostin directly binds TNC,
promoting the organization of a fibrous matrix (Kii et al., 2010).
Complex networks of multiple ECM molecules, including matri-
cellular protein, may regulate the adaptive and plasticity responses
of the tissue to mechanical overload.

Despite this potential compensatory mechanism, deletion of
TNC causes AAD under strong mechanical and humoral stress,
which suggests that TNC could play a critical role in protecting
vascular tissue from destructive stress responses.

CONCLUSION
TNC may be one of the extracellular key modulators controlling
the cellular response to mechanical load during development as
well as during adaptation or pathological tissue remodeling.
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