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Introduction: Sepsis-induced acute lung injury (ALI), a critical sequela of systemic inflammation, often progresses to acute 
respiratory distress syndrome, conferring high mortality. Although UMI-77 has demonstrated efficacy in mitigating lung injury in 
sepsis, the molecular mechanisms underlying its action have not yet been fully elucidated.
Methods: This study aimed to delineate the mechanism by which UMI-77 counteracts sepsis-induced ALI using comprehensive 
transcriptomic and metabolomic analyses.
Results: UMI-77 significantly ameliorated histopathological changes in the lungs of mice with sepsis-induced ALI Transcriptomic 
analysis revealed that 124 differentially expressed genes were modulated by UMI-77 and were predominantly implicated in 
chemokine-mediated signaling pathways, apoptosis regulation, and inflammatory responses. Integrated metabolomic analysis identified 
Atp4a, Ido1, Ctla4, and Cxcl10 as key genes, and inosine 5’-monophosphate (IMP), thiamine monophosphate, thymidine 3’,5’-cyclic 
monophosphate (dTMP) as key differential metabolites. UMI-77 may regulate key genes (Atp4a, Ido1, Ctla4, and Cxcl10) to affect 
key metabolites (IMP, thiamine monophosphate, and dTMP) and their target genes (Entpd2, Entpd1, Nt5e, and Hprt) involved in 
cytokine-cytokine receptor interaction, gastric acid secretion, pyrimidine, and purine metabolism in the treatment of sepsis-induced 
ALI.
Conclusion: UMI-77 exerts its therapeutic effect in sepsis-induced ALI through intricate modulation of pivotal genes and metabo-
lites, thereby influencing critical biological pathways. This study lays the groundwork for further development and clinical translation 
of UMI-77 as a potential therapeutic agent for sepsis-associated lung injuries.
Keywords: sepsis-induced ALI, inflammation, genes, metabolites, cytokine signaling

Introduction
Sepsis-induced acute lung injury (ALI), a critical complication of sepsis, is characterized by an excessive inflammatory 
response that can lead to acute respiratory distress syndrome (ARDS) and potentially fatal respiratory failure.1 The 
pathophysiology of sepsis-induced ALI involves the activation of immune cells and the release of a cascade of pro- 
inflammatory cytokines and chemokines, which cause endothelial and epithelial damage, increased vascular permeability, 
and subsequent pulmonary edema.2,3 The clinical manifestations of sepsis-induced ALI include hypoxemia, tachypnea, 
and bilateral infiltrates on chest imaging, which is consistent with the diagnosis of ARDS.4,5 Septic patients with ALI 
also exhibit higher mortality rates and poorer prognoses, despite progress in machine support ventilation and sympto-
matic treatment.6 To reduce sepsis-related mortality, it is extremely important to relieve ALI caused by sepsis.
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UMI-77 is a known drug candidate for pancreatic cancer,7 glioma8 and Alzheimer’s disease.9 A previous study found 
that 7.0 mg/kg UMI-77 significantly improved the 5-day survival rate of septic mice by inhibiting the inflammatory 
storm, and pathological results showed that UMI-77 could significantly improve the inflammatory infiltration of the lung 
tissue in septic mice,10 but the mechanism of UMI-77 anti-septic-induced ALI has not been thoroughly studied. This 
study aimed to analyze the mechanism of action of UMI-77 against septic ALI based on transcriptomic and metabolomic 
data, which would lay the foundation for the development of new drugs and clinical studies of UMI-77.

Materials and Methods
Animal Experiments and Sample Collection
Male BALB/c mice with a specific pathogen-free (SPF) status (weight 18–22 g) were obtained from Zhejiang Weitong 
Lihua Experimental Animal Technology Co., Ltd. (Zhejiang, China; laboratory animal license, SYXK (Zhe): 
2021–0013). All animal experiments were approved by the Taizhou University Animal Ethics Committee (ID number 
TZXY-2022-20221015) according to National Institute of Health’s guidelines with regard to the principles of animal care 
(2011) and were conducted under SPF laboratory conditions.

Based on our previous study, BALB/c mice were randomly divided into three groups (control, LPS, and UMI-77 
groups, n=8, respectively). Mice in the LPS and UMI-77 groups were intravenously injected with 18 mg/kg LPS (Sigma, 
Shanghai, China), whereas mice in the control group were administered an equal volume of saline. Mice in the UMI-77 
group received daily intraperitoneal injections of 7.0 mg/kg UMI-77 (Sigma, Shanghai, China), whereas the control and 
model groups received an equal volume of matrix solution for five days. After the last administration, the mice were 
sacrificed, lung tissues were obtained and stored at −80°C and part of them were immersed in 4% paraformaldehyde.

H&E Staining
Lung tissues from each group (n=8) were embedded in paraffin, sliced, and stained with hematoxylin and eosin (H&E) as 
described in a previous study. Sections were visualized under a light microscope (CX33; OLYMPUS Corporation, Tokyo, 
Japan).

Transcriptomics Study
RNA from lung tissue samples was isolated and purified using TRIzol reagent (Thermo Fisher, 15596018) according to 
the manufacturer’s protocol. The total RNA concentration and purity were determined, and concentrations > 50ng/L, RIN 
value> 7.0, and total RNA > 1 μg were used in further studies. Then the PolyA mRNAs were captured, after 
fragmentation, first strand synthesis, second strand synthesis with dUTP, end repair, 3’ Adenylation, adapt ligation and 
UDG treatment of these procedures, they were finally sequenced using illumina NovaseqTM 6000 in standard operation, 
and the sequencing mode was PE150 according to the reference.11

After obtaining the sequencing data, the sequencing data were filtered to obtain high-quality sequencing data (Clean 
Data), which were then compared to the reference genome of the project species, and gene expression was quantified.

Untargeted Metabolomics Study
Take 25mg of the lung tissues from each group (n=8) in the EP tube with homogenate beads, and 500 μL of extract 
(methanol: acetonitrile: water =2:2:1 (V/V)) contains the isotope-labeled internal standard was added, vortex mixed 
evenly for 30s and homogenate at 35Hz for 4min, then transferred to the ice water bath for 5min, this step is repeated 3 
times; after stand at −40°C for 1 h, the sample was centrifuged at 4°C, 12000 rpm for 15 min to obtain the supernatant for 
machine testing. All samples were mixed with an equal amount of supernatant from the QC samples for machine 
detection. Vanquish (Thermo Fisher Scientific) ultra-performance liquid chromatography was used separated the target 
compounds, for polar metabolites, the Waters ACQUITY UPLC BEH Amide (2.1 mm × 100 mm, 1.7 μm) liquid 
chromatography column was used, and the mobile phase containing 25 mmol/L ammonium acetate and 25 mmol/L 
ammonia hydroxide in aqueous (A) and acetonitrile (B); for nonpolar metabolites, the Phenomenex Kinetex C18 (2.1 mm 
× 100 mm, 2.6 μm) liquid chromatography column was used, and the mobile phase containing 0.01% acetic acid in 
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aqueous and isopropyl alcohol: acetonitrile (1:1, v/v) (B). The injection volume was 2μL, the remaining conditions were 
in agreement with literature.12

MS/MS spectra were acquired using an Orbitrap Exploris 120 mass spectrometer in information-dependent acquisi-
tion mode (IDA) using Thermo Xcalibur acquisition software. The ESI source conditions were set as following: 50Arb 
for the sheath gas and 15Arb for the aux gas, an ESI temperature of 320 °C, 60000 for the full MS resolution, 15000 for 
the MS/MS resolution, SNCE 20/30/40 for collision energy, and 3.8 kV (positive) or −3.4 kV (negative) for the spray 
voltage, respectively.

ProteoWizard was used to convert the raw data to the mzXML format, and peak detection, extraction, alignment, and 
integration were performed using R based on XCMS. Metabolites were identified using the R package and 
BiotreeDB (V3.0).

Bioinformatics Analysis
Transcriptomic and metabolomic analyses revealed genes and metabolites with significant differential expression that 
were further analyzed using bioinformatic tools. Principal component analysis (PCA) and orthogonal partial least-squares 
discriminant analysis (OPLS-DA) were performed using SIMCA 14.1 software (Umetrics). Gene Ontology (GO) 
annotation and pathway enrichment were identified using the GO database (http://www.geneontology.org) and KEGG 
database (https://www.kegg.jp/kegg), respectively.

Molecular Docking
Molecular docking was performed as previously study.10 The 3D coordinates of Atp4a (PDB ID: 8IJV), Ido1 (PDB ID: 
8ABX), Ctla4 (PDB ID: 8DS7), Cxcl10 (PDB ID: 8K2X), Entpd2 (PDB ID: 3CJ1), Nt5e (PDB ID: 4H2B), and Hprt 
(PDB ID: 6D9S) were downloaded from the PDB database (http://www.rcsb.org/pdb/home/home.do), while those of 
Entpd1 (AlphaFoldDB ID: AF-P49961-F1) were downloaded from the UniProt database (https://www.uniprot.org).

ELISA Assay
To further confirm these results, the key genes were validated by ELISA according to K-X Biotechnology (Shanghai, 
China) instructions.

Statistical Analysis
SPSS 20.0 (Chicago, Armonk, NY, USA) was used for statistical analysis. Dunnett’s test under one-way analysis of 
variance (ANOVA) was used to determine the significance of differences among the groups in transcriptomics and 
metabolomics study, whereas the t-test was used to compare the two groups. All values are expressed as mean ± standard 
deviation. P < 0.05 was set as the significant threshold.

Results
The Effect of UMI-77 on Lung Pathology in Septic Mice
Histological examination was performed to evaluate the effect of UMI-77 on the lung tissues of septic mice. The lung 
tissue in mice from the LPS group exhibited thicker and more fragmented alveolar cavities than that in the control group, 
with a notable presence of inflammatory cell infiltration. In contrast, treatment with UMI-77 significantly ameliorated the 
pathological changes in the lungs. (Figure 1).

Lung Transcriptomics Characteristics of Septic Mice Treated by UMI-77
DESeq2 software was used to analyze the differential gene expression between the two groups. Genes were deemed 
differentially expressed if they had a false discovery rate (FDR) below 0.05 and an absolute fold change of at least 2 
(Figure 2a and b). A total of 124 differentially expressed genes were identified among the three groups; 45 genes 
exhibited increased expression in the LPS group and decreased expression in the UMI-77 group, whereas 79 genes 
showed the opposite pattern, with decreased expression in the LPS group and increased expression in the UMI-77 group. 
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(Figure 2c and d; Tables S1 and S2, respectively). The gene ontology (GO) terms of the differentially expressed genes 
were analyzed (Figure 2e–g). Notably, the biological process GO terms for chemokine-mediated signaling pathways, 
positive regulation of the apoptotic process, and inflammatory response stood out. Additionally, cellular component GO 
terms indicated high enrichment of differentially expressed genes related to the extracellular region and space. In terms of 
molecular function, GO terms for CXCR/CXCR3 chemokine receptor binding and protein binding were significantly 
represented among the differentially expressed genes. These findings suggest a substantial impact on the regulation of 
immune response and cell death mechanisms.

Metabolomics Analysis of Lung Tissue from Septic Mice Treated by UMI-77
The differential metabolites were identified with a VIP score exceeding 1 and a p-value less than 0.05, to distinguish the 
two groups by OPLS-DA analysis. The OPLS-DA score and permutation plots are shown in Figure 3a–d, which suggest 
that the model has a reliable foundation for metabolite profiling and group discrimination.13 A total of 382 differential 
metabolites were identified among the three groups, 225 of which were upregulated and 157 downregulated in the LPS 
group compared to the control group. UMI-77 demonstrated the ability to concurrently counteract the effects of these 
metabolites (Figure 3e and f, Table S3).

Integrated Analysis of Lung Transcriptomics and Metabolomics
To assess the comprehensive therapeutic impact of UMI-77 on septic-induced ALI, Spearman correlation analysis was 
employed to further explore the associations between the 124 differential genes and 382 differential metabolites. A total 
of 203 correlations between the genes and metabolites were observed, meeting the criteria of p < 0.05, r > 0.7 or r < − 0.7 
(Table S4). As demonstrated in Figure 4, 42 genes (Hoxb9, Il24, Ankk1, Ctla4, Gm37660, Trim30d, Hopxos, Gm8292, 
Gm13864, Lor, Chga, Gm13904, Gm7613, Gm8662, Gm8318, Majin, Gm48868, Gm45053, Ido1, Ubd, Mx1, Cxcl9, 
Ifit2, Gm3671, Gm5599, Gm10268, Gm7695, Gm8724, Gm15441, Gm14046, Rps12-ps19, Gm13665, Gm15289, 
Gm14048, Cxcl10, Cxcl11, Atp4b, Atp4a, Clps, Ghrl, Sst and Pgc) and 15 metabolites (Dodecanedioic acid, 
1-Linoleoylglycerol, 2-(1-Hydroxycyclohexyl)butanoic acid, Decatrienoylcarnitine, DG 34:4, Inosine 5’- 
monophosphate (IMP), PG 18:0_22:6, PG 20:4_22:6, PG 22:6_22:6, Phe-Gly-Gly, SHexCer 38:5;3O, SL 10:0;O/10:0, 
Thiamine monophosphate, Thymidine 3’,5’-cyclic monophosphate and Tridecanedioic acid) were selected for pathway 
analysis. As shown in Figure 5a, joint pathway analysis indicated that these integrated pathways, such as viral protein 
interaction with cytokine and cytokine receptors, gastric acid secretion, toll-like receptor signaling pathway, cytokine- 
cytokine receptor interaction, chemokine signaling pathway, growth hormone synthesis, secretion and action, thiamine 
metabolism, pyrimidine metabolism, and purine metabolism, are involved in the mechanism of UMI-77 in the treatment 
of sepsis-induced ALI.

To further clarify the relationship between differential genes and metabolites, the related targets of the metabolites 
were explored. The differential metabolites were analyzed using the MetScape plugin in Cytoscape to construct 
a metabolite-gene network, which yielded a total of 37 metabolite targets (Figure 5b). Subsequently, a protein-protein 

Figure 1 The histomorphological changes of lung tissue in mice. Magnification of ×400, scale bar = 100 µm.
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Figure 2 Transcriptomics landscape of lung tissue from septic mice treated by UMI-77. (a) Volcano plot of differentially expressed genes (LPS group vs Control group), red: 
up-regulated, blue: down-regulated. (b) Volcano plot of differentially expressed genes (UMI-77 group vs LPS group), red: up-regulated, blue: down-regulated. (c and d) Venn 
diagram of differentially expressed genes among three groups. (e) Biological process GO terms. (f) Cellular component GO terms. (g) Molecular function GO terms.
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interaction (PPI) network of 37 metabolite targets and 42 genes was constructed using the STRING database (https:// 
string-db.org/), resulting in four key targets: Atp4a, Ido1, Ctla4, and Cxcl10, which are directly associated with the 
targets (Entpd2, Entpd1, Nt5e, and Hprt) of thymidine 3’,5’-cyclic monophosphate (dTMP), inosine 5’-monophosphate 
(IMP), and thiamine monophosphate (Figure 5c and d). These key targets and metabolites are involved in cytokine- 
cytokine receptor interactions, gastric acid secretion, pyrimidine metabolism, and purine metabolism.

Figure 3 Metabolomics landscape of lung tissue from septic mice treated by UMI-77. (a) OPLS-DA analysis (LPS group vs Control group). (b) OPLS-DA analysis (UMI-77 
group vs LPS group). (c) Permutation test (LPS group vs Control group). (d) Permutation test (UMI-77 group vs LPS group). (e and f) Venn diagram of differentially 
metabolites among three groups.
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Validation of Key Genes from Sepsis Induced ALI Mice Treated by UMI-77
ELISA and molecular docking analyses were performed to validate these results. The results showed that the levels of 
Atp4a, Ido1, Ctla4, Cxcl10, Entpd2, Entpd1, Nt5e, and Hprt were upregulated in the LPS group compared with those in 
the control group, whereas they were downregulated in the UMI-77 group (Figure 6). Results showed that UMI-77 bound 
to Entpd2, Nt5e, Hprt, Ido1, Ctla4, Atp4a, Cxcl10 and Entpd1 through visible hydrogen bonds, and the binding energy 
was −8.6 kcal/mol, −9.8 kcal/mol, −8.4 kcal/mol, −9.4 kcal/mol, −6.8 kcal/mol, −6.8 kcal/mol, −6.9 kcal/mol, −7.9 kcal/ 

Figure 4 The correlation heatmaps of 42 genes and 15 metabolites.
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Figure 5 Integrated analysis of lung transcriptomics and metabolomics. (a) The integrated pathway analysis of 42 genes and 15 metabolites. (b) The metabolites–genes 
network constructed by MetScape. (c) PPI network of genes and metabolites targets. (d) Network of genes, metabolites and metabolites targets. “↑” represented up- 
regulated, while “↓” represented down-regulated, the left mean LPS vs Control and the right mean UMI-77 vs LPS.
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Figure 6 Validation of key genes. (a) ELISA-based validation of key genes. **p<0.01. (b) Binding mode of UMI-77 to key genes by molecular docking. (I) Binding mode of 
UMI-77 to Entpd2. (II) Binding mode of UMI-77 to Nt5e. (III) Binding mode of UMI-77 to Hprt. (IV) Binding mode of UMI-77 to Ido1. (V) Binding mode of UMI-77 to Ctla4. 
(VI) Binding mode of UMI-77 to Atp4a. (VII) Binding mode of UMI-77 to Cxcl10. (VIII) Binding mode of UMI-77 to Entpd1.
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mol, respectively, which suggesting stable binding interaction. These findings validated the significance of these pivotal 
genes in the therapeutic mechanism of UMI-77 in sepsis-induced ALI.

Discussion
There are no specific drugs available for sepsis-induced ALI. In our study, we found the lung architecture of mice 
subjected to LPS challenge, characterized by thickened and fragmented alveolar walls and pronounced inflammatory cell 
infiltration, which are consistent with the hallmark features of acute respiratory distress syndrome; while 7.0 mg/kg UMI- 
77 can remarkable ameliorative effect on the lung’s pathological state of the model mice. Thus, transcriptomics and 
metabolomics were used to elucidate the mechanism of action of UMI-77 in sepsis-induced ALI.

In the transcriptomics study, 124 differential genes were identified and enriched in chemokine-mediated signaling 
pathways, positive regulation of the apoptotic process, and inflammatory response for the biological process GO terms. 
Chemokine-mediated signaling pathways represent a complex network of interactions that contribute to the recruitment 
of immune cells, vascular changes, and tissue damage in the lungs, which are integral to the inflammatory processes that 
drive sepsis-induced ALI.14,15 The apoptotic process plays a vital role in the pathogenesis and progression of sepsis- 
induced ALI,16,17 and UMI-77 as an autophagy inducer, may influence the positive regulation of apoptosis by modulating 
the expression of genes and proteins involved in the apoptotic pathway.8 In summary, the interplay between autophagy, 
apoptosis, and inflammation is central to the cellular response to sepsis, and UMI-77’s ability to modulate these pathways 
may have significant implications for the treatment of sepsis-induced ALI.

In addition, 382 differential metabolites were identified by metabolomics and 15 metabolites closely related to the 
differential genes were selected for further analysis. Among these, Glycerophospholipids such as PG 18:0_22:6, PG 
20:4_22:6, and PG 22:6_22:6 were upregulated, whereas DG 34:4 was downregulated in the LPS group. Sepsis-induced 
ALI is characterized by increased permeability of the alveolar-capillary barrier. In this context, glycerophospholipids play 
a crucial role in preserving the cell membrane structure, which helps regulate alveolar pressure, averting the accumula-
tion of alveolar edema, and thereby safeguarding against alveolar collapse.18 Fatty acids, including dodecanedioic acid, 
decatrienoylcarnitine, tridecanedioic acid, and 1-linoleoylglycerol, have potent effects on inflammation, vascular tone, 
and the immune response, all of which are critical in the pathogenesis of sepsis-induced ALI.19–21

Interestingly, inosine 5’-monophosphate (IMP), thiamine monophosphate, thymidine 3’,5’-cyclic monophosphate 
(dTMP), and their targets (Entpd2, Entpd1, Nt5e, and Hprt), which are directly associated with key differential genes 
(Atp4a, Ido1, Ctla4, and Cxcl10), are involved in purine and pyrimidine metabolism. IMP is a nucleotide that serves as an 
intermediate in the purine metabolism pathway.22 During sepsis, the metabolic demands of cells increase significantly, 
disrupting the balance of purine metabolism.23 IMP, as part of this metabolic pathway, can reflect cellular stress and energy 
status in sepsis-induced ALI. Thiamine monophosphate, an active form of thiamine (vitamin B1) critical for energy 
metabolism, can be depleted due to heightened oxidative stress in sepsis, which potentially leads to thiamine deficiency 
that impairs energy metabolism and may exacerbate lung injury.24 dTMP is a central molecule in pyrimidine metabolism, and 
is essential for DNA replication and cell proliferation.25 The proliferation of alveolar epithelial and immune cells may be 
accelerated in response to injury and inflammation during sepsis, and dTMP is required for cell proliferation.26 Moreover, their 
targets, including Entpd2, Entpd1, Nt5e, and Hprt, may play important roles in sepsis-induced ALI. Hprt facilitates the 
conversion of hypoxanthine into IMP, which serves as a precursor for AMP synthesis,27 while Nt5e catalyzes the transforma-
tion of AMP into adenosine, a molecule that modulates vascular tone and immune reactions.28 Entpd2 and Entpd1 hydrolyze 
nucleotide triphosphates to diphosphates and play a role in the regulation of extracellular nucleotide levels, which can 
influence purinergic signaling and immune responses.29,30 Specifically, the modulation of Entpd2, Entpd1, Hprt, and Nt5e by 
UMI-77 could influence the production of extracellular adenosine, which is implicated in immune responses and inflamma-
tion, and is a key factor in the pathogenesis of sepsis-induced ALI.

In addition, in sepsis, high expression of Ido1 depletes tryptophan, accumulates canine urine, induces apoptosis and 
dysfunction of effector T cells, activates regulatory T cells (Tregs), and creates a microenvironment of immunosuppression.31 

Elevated levels of Ctla4 on the surface of T cells have been linked to a state of T cell exhaustion, which contributes to 
immunosuppression in individuals with acute sepsis.32 This suggests that Ctla4 may be a pivotal factor in the immunosup-
pressive phase of sepsis, potentially modulating the immune response by influencing T-lymphocyte activity. Studies have 
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shown that Atp4a is a key gene in gastric acid secretion, which is not directly related to ALI in sepsis; it may indirectly affect 
the process of inflammation and immune response.33,34 CXCL10, a chemokine ligand, modulated the inflammatory response 
by engaging with its receptor CXCR3. This interaction is crucial for recruitment and activation of inflammatory cells. In 
sepsis-induced ALI, the CXCL10-CXCR3 axis has been implicated in the exacerbation of lung injury through its role in 
immune cell trafficking and pro-inflammatory signaling.35,36 It has been proposed that UMI-77 exerts its protective effect 
against sepsis-induced ALI by targeting pivotal genes, including Atp4a, Ido1, Ctla4, and Cxcl10, which in turn influence 
pathways such as cytokine-cytokine receptor interactions, which play a crucial role in the pathology of the disease.

Conclusion
In this study, we performed comprehensive analysis using transcriptomics and metabolomics to elucidate the therapeutic 
mechanism of UMI-77 in sepsis-induced ALI. Our results showed that UMI-77 plays an important protective role by 
regulating key genes (Atp4a, Ido1, Ctla4, and Cxcl10), thus affecting key metabolites (IMP, thiamine monophosphate, 
and dTMP) and their targets (Entpd2, Entpd1, Nt5e, and Hprt) involved in key biological processes such as cytokine- 
cytokine receptor interaction, gastric acid secretion, pyrimidines, and purine metabolism, which are key to the pathogen-
esis of sepsis-induced ALI. These findings not only deepen our understanding of the pathophysiological mechanisms 
underlying sepsis-induced ALI but also provide strong evidence for the role of UMI-77 in sepsis-induced ALI. Future 
studies should validate the clinical potential of UMI-77 and provide a scientific basis for its clinical application. We 
highlighted a new perspective of UMI-77 as a potential therapeutic agent in the treatment of sepsis and how UMI-77 can 
provide more effective treatment options by modulating the inflammatory response and improving acute lung injury.
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