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Abstract: Some types of fiber-reinforced concrete (FRC) such as steel fiber-reinforced concrete (SFRC)
or polyolefin fiber-reinforced concrete (PFRC) are suitable for structural uses but there is still scarce
knowledge regarding their flexural fatigue behavior. This study aimed to provide some insight into
the matter by carrying out flexural fatigue tests in pre-cracked notched specimens that previously
reached the Service Limit State (SLS) or the Ultimate Limit State (ULS). The fatigue cycles applied
between 30% and 70% of the pre-crack load at 5 Hz until the collapse of the material or until
1,000,000 cycles were reached. The results showed that the fatigue life of PFRC both at SLS or ULS
was remarkably higher than the correspondent of SFRC. The fracture surface analysis carried out
found a linear relation between the fibers present in the fracture surface and the number of cycles
that both SFRC and PFRC could bear.
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1. Introduction

Fibre-reinforced concrete (FRC) appeared in the last century as an evolution of re-
inforced concrete (RC) as it solved some of the drawbacks that this material suffered
when applied to structural elements. The development of a wide range of fibre types and
their use in FRC provided a solution to shrinkage cracking and fire spalling, reduced the
width of the cracks that appear in RC, and enabled the appearance of multifunctional
concretes [1–4]. Moreover, some types of fibres such steel or polyolefin ones when forming
steel fibre-reinforced concrete (SFRC) and polyolefin fibre-reinforced concrete (PFRC) have
been capable of enhancing the mechanical properties of concrete to such extent that, ac-
cording to some recommendations [5–8], the contribution of the fibres can be considered in
the structural analysis [9–11].

Based on previous experiences, the use of FRC was expected to be beneficial in
structural elements subjected to fatigue such as pavements, bridges, offshore platforms,
railroad sleepers, or structures of factories with moving machinery [12,13]. When a FRC
structural element is subjected to fatigue under compressive forces, the presence of fibres
creates two opposed effects. First, fibres bridge the micro-cracks that appear and control
the crack growth. Second, the presence of fibres increases the porosity, promoting the
appearance of cracks, with the fibre dosage being a key parameter [14,15]. Moreover,
the beneficial effect of fibres has been shown to be highly dependent on the fibre length, with
the short fibres being the ones that produce the best results [16]. It should be underlined
that in all these studies SFRC was employed.

Due to the recent development of polymer fibres that enhance the mechanical prop-
erties of plain concrete, on some occasions obtaining comparable properties to those of
SFRC, the interest of assessing the fatigue behaviour of these type of concrete formulations
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has aroused. The study of this type of FRC, when subjected to fatigue cycles, is of key
importance as there are previous studies where the structural character of such formu-
lations has been assessed [17,18]. It has been shown that concrete reinforced with PVA
fibres might boast better fatigue behaviour than certain SFRC formulations [19]. In concrete
formulations with a cocktail of steel and PVA fibres, similar feature has been observed [20].
In any case, there is hardly any study where concretes with a certain dosage of macro
polymer fibres have been subjected to fatigue cycles.

It should be highlighted that, in the mentioned applications, there are not only struc-
tural elements subjected to compressive fatigue but also to flexural fatigue. In these
elements the reduction of stiffness, strength, toughness, or other properties that cyclic loads
might cause could be even more dangerous for the structural integrity than in the case of
compressed parts of the structure. Moreover, it should be taken into account that in such
applications the most loaded sections of the structure might be cracked due to differential
displacements or loads. Consequently, the research of this phenomenon in FRC elements
is of great relevance, but up to now the amount of literature dealing with this matter is
reduced. Due to the high difficulty of performing tensile tests in FRC specimens, most
of the research has employed flexural tests. In one of them, the influence of the length
of the fibres was assessed using hooked-end steel fibres [21]. It was found that the main
reinforcement mechanism was based on the anchorage of the hook of the fibres, with the
importance of the length of the fibre being negligible. However, additional contributions
have shown that, for the same fibre dosage, shorter fibres were more effective to enhance
the flexural fatigue behaviour of SFRC [22]. Regarding the shape of the fibres, it was shown
that the hooked-end fibres provided a greater improvement of the mechanical behaviour of
concrete than the straight ones [23]. It should be underlined that all the mentioned studies
were carried out with SFRC, with, in the opinion of the authors, hardly any study where
macro-polymer structural fibres were employed.

As was seen in previous studies, the behaviour of plain concrete elements when sub-
jected to fatigue depends on several parameters such as the loading conditions, frequency,
number of cycles, and concrete mix design, among others. To the mentioned parameters,
some additional ones, such as the type of fibre, fibre dosage, distribution and orientation,
and pre-crack width, should be included when FRC is studied.

Additionally, there are few studies that dealt with the behaviour of concrete reinforced
with polymer fibres. Regarding the compressive fatigue behaviour, [24] conducted a study
where it was shown that fibres improved the material performance when subjected to low
frequencies’ loading. Such improvement was explained by the effect of fibres bridging
the cracks generated during the tests. In another study, where micro-polypropylene fibres
were added to a concrete that was subjected to cyclic loading, it was shown that also
micro-fibres enhanced the compressive fatigue behaviour of plain concrete [25]. Other
authors have studied the flexural fatigue behaviour of concrete reinforced with micro
polymer fibres in unnotched specimens [26]. In such a study it could be seen that the
presence of fibres increased the number of cycles that the material could bear. Regarding
other studies performed in unnotched specimens where macro polymer fibres were used
for reinforcing concrete subjected to flexural fatigue, in [27] it was evident that volume
fractions of polypropylene fibres equal to 0.5%, 1.0%, and 1.5% improved the fatigue lives
of plain concrete but also introduced a greater variability. As it was mentioned, there are
a certain number of studies that dealt with the flexural fatigue of concretes reinforced
with polymer fibres; nevertheless, it cannot be overlooked that there are few of them that
considered the possibility of the material being pre-cracked [28].

Consequently, and seeking to improve the current state of the art regarding the fatigue
behaviour of FRC, this study carried out an experimental campaign in two formulations of
SFRC and PFRC with similar fibre volume fractions, seeking to assess the flexural fatigue
behaviour of PFRC and compare their fatigue flexural behaviour. In addition, the influence
of the pre-crack width in the behaviour of SFRC was determined. Obtaining results in
these three aspects will significantly increase the reliability of the use of SFRC and PFRC
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when employed in structures where fatigue loading conditions are relevant. Moreover,
the comparison of the fatigue behaviour of SFRC and PFRC will provide another parameter
for choosing the most apt FRC in structural applications.

2. Material Production and Preparation

In order to perform the present research, two formulations of concrete were used.
The first formulation was a conventional concrete, termed VCC-PFRC4.5, which included
4.5 kg/m3 of polyolefin fibres. The second formulation was a self-compacting concrete,
called SCC-SFRC50, where 50 kg/m3 of hooked-end steel fibres were added. VCC-PFRC4.5
and SCC-SFRC50 boasted a volume fraction of fibres of 0.49% and 0.64%, respectively.
The characteristics of the steel and polyolefin fibres can be seen in Table 1. Similarly,
the outlook of such fibres can be seen in Figure 1.

Table 1. Properties of the fibres employed.

Property Polyolefin Fibers Steel Fibers

Density (kg/m3) 910 7850
Length (mm) 60 35

Equivalent diameter (mm) 0.903 0.550
Tensile strength (MPa) 400 1100

Modulus of elasticity (GPa) 9 210
Fibers per kg 27,000 14,500

Ultimate strain (%) 20 8
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Figure 1. Appearance of the fibres used.

The cement used in both formulations was EN 197-1 CEM I 52.5 R-SR 5. Limestone
powder was employed as a micro-aggregate, having a specific gravity of 2700 kg/m3 and a
Blaine surface of 425 m2/kg. This material boasted high purity, as its calcium carbonate
content was greater than 98%. In order to obtain the required viscosity, a superplasticiser
based on polycarboxylates was employed. Regarding the characteristics of the aggregates,
it should be mentioned that the gravel (12–4 mm), grit (8–4 mm), and sand (0–2 mm) were
siliceous; the maximum and minimum aggregate sizes can be seen in parenthesis, respectively.

Both concrete formulations were manufactured in a planetary mixer with a maximum
capacity of 100l at laboratory conditions. Table 2 shows the mix proportioning used in
VCC-PFRC4.5 and SCC-SFRC50.

Using each type of concrete, six specimens of 430 × 100 × 100 mm3 were performed.
Regarding the pouring and consolidation methods, it should be highlighted that, in the
case of SCC-SFRC50, the moulds were filled from one of the sides and concrete was levelled
by the action of its own weight. In the case of VCC-PFRC4.5, the moulds were filled in
their sides and, afterwards, in the middle zone of the mould. Then, the specimens were
consolidated during 10 s by using a vibratory table [29,30]. As the fibres were added to the
mixer during the production process, they were randomly distributed in the fresh concrete
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before being poured. Nevertheless, as the different pouring and consolidating methods
employed in VCC-PFRC4.5 and SCC-SFRC50 might have influenced the positioning of
fibres, an analysis of the fracture surfaces generated in the fatigue tests was performed, as
shown in following sections. After the production process, all specimens were stored in
a climatic chamber at 20 ◦C and above 95% of relative humidity until testing. Cylindric
specimens were manufactured in order to obtain the mechanical properties of the concrete
mixes. While the mechanical properties were obtained at 28 days of age, the fatigue tests
were performed when the specimens were 55 months old. An extended explanation of the
production processes and the mechanical characterisation of the formulations can be found
in [31].

Table 2. Concrete formulation per m3.

Property VCC-PFRC4.5 SCC-SFRC50

Cement (kg/m3) 375 425
Limestone powder (kg/m3) 100 210

Water (kg/m3) 187.5 199
Sand (kg/m3) 916 947

Gravel (kg/m3) 450 492
Grit (kg/m3) 300 -

Superplasticizer (% relative to cement weight) 0.75 0.72

The prismatic specimens were prepared for the flexural fatigue tests according to
RILEM TC-187 [32]. A notch of a third of the ligament depth was performed on the central
section of the prismatic specimens. In order to avoid introducing any damage in the
material, the notches were carried out by using a water-cooled circular saw equipped with
a diamond disc. An image of one of the specimens can be seen in Figure 2.
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3. Test Setup

The test setup followed [24] in its main characteristics. However, the span between
the bearing cylinders that is usually 4D was reduced to 3.8D to avoid instabilities during
the fatigue cycles. Reducing the span between the bearing cylinders implies a certain
increment in the load registered during the tests. The loading cylinder was placed in the
middle section of the specimens, right above the tip of the notch. A sketch of the test setup
and some of the gauges used in the test can be seen in Figure 3.

The tests were carried out with an Instron 8803 testing machine (Instron, Buckkinghamshire,
UK) of 500-kN capacity. The crack mouth opening displacement (CMOD) was measured by
means of a clip-on gauge device attached to the lips of the notch. Regarding the deflection,
two linear variable differential transformers (LVDT) were placed at both sides of the notch
of the tested specimen. During the tests, the following data were registered: position of
the actuator, the applied load, the CMOD opening, and the deflection at both sides of the
sample. An image of a specimen while testing can be seen in Figure 4.
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Flexural fatigue tests were performed on pre-cracked specimens that had been pre-
viously tested under quasi-static conditions. Quasi-static tests were controlled by the
displacement rate of the actuator setting three different stages. The first two stages cor-
responded to loading stages, being the third an unloading one. During the first stage,
the actuator moved at 0.0425 mm/min until reaching 6 mm of displacement. In the second
stage, the rate increased up to 0.17 mm/min until the desired crack width was reached.
Two crack widths were chosen. In order to assess the residual bearing capacity under
fatigue, in the test of the elements that had reached the Ultimate Limit State (ULS) accord-
ing to [24], the displacement of the quasi-static test was stopped when a CMOD value of
2.5 mm was reached. In the mentioned recommendation, such opening is often referred
as fR3. The residual bearing capacity under flexural fatigue when specimens reached a
cracking state compatible with the Service Limit State (SLS) that corresponded to a CMOD
of 0.5 mm was also determined. Such a point is referred to in [24] as fR1. For each specimen
the load borne at the correspondent fRi value was recorded, as it will be the reference value
for the flexural fatigue tests.

The fatigue tests adopted the configuration shown in Figures 3 and 4. The test was
divided into two stages. In the first stage, the load increased up to 0.5 of the load at the fRi
value chosen (LfRi). The maximum and minimum loads of the tests were constant during
the tests, being equal to 0.7LfRi and 0.3LfRi, respectively. Such values define an amplitude
(0.7LfRi/0.3LfRi) of 0.43, which was constant during all tests. In order to reduce the number
of parameters studied, the frequency was kept constant at 5 Hz. The definition of the
loading parameters was based on previous studies [33–35]. A sketch of the test stages can
be seen in Figure 5.
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In order to determine the possible causes of scattering, a counting exercise regarding
the fibres present in the ligament section was carried out following the methodology
presented in [36,37]

4. Results

The formulations were tested in order to obtain their main mechanical properties,
such as compressive strength, indirect tensile strength, and modulus of elasticity. Such tests
were performed according to the following recommendations: EN 12390-3:2009 [38] (com-
pressive strength), EN 12390-6:2009 [39] (indirect tensile strength), and EN 12390-13 [40]
(modulus of elasticity). Table 3 shows the mechanical properties of all the formulations
performed. No sound remarks were found regarding the influence of the properties shown
in Table 3 and the results and conclusions obtained in the fatigue tests.

Table 3. Mechanical properties of the concrete mixes. Coefficient of variation shown in parenthesis.

Property VCC-PFRC4.5 SCC-SFRC50

Modulus of elasticity (GPa) 31 (0.07) 34.1 (1.48)
Compressive strength (MPa) 31.3 (0.07) 52.2 (1.23)

Tensile strength (MPa) 4.24 (0.13) 7.8 (4.49)

The results of the fatigue tests performed on the SCC-SFRC50 specimens that had been
pre-cracked up to fR1 can be seen in Figure 6. Each valid test can be seen in an individual
plot. In each plot appears one red curve that corresponds to the fracture test performed in
order to reach the SLS (when the CMOD was equal to 0.5mm). Moreover, in blue, one can
see the behaviour of material when subjected to the fatigue tests under the conditions
previously mentioned in Section 3. In every plot, it is easy to perceive three zones that
corresponded to three different processes in the material. The first zone is right next to the
fracture curve and shows how the material was able to withstand the loads imposed by
the fatigue cycles without suffering a notorious damage. In this zone the cycles were not
easy to perceive as there were no noticeable changes in the deflection and, consequently,
some of the cycles might be superimposed. The second zone can be described as the part
where the material begins to lose its load-bearing capacity and the amplitude of the loads
imposed was reduced. In this part of the curves, the deflection increased in a steady and
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low rate, while the load-bearing capacity decreased. The third zone corresponded to the
part of the curves where the material was not able to cope with the cyclic loads imposed
and the appearance of the fatigue load-deflection curve had a remarkable resemblance
to the load-deflection curve obtained in a fracture test. It should be underlined that the
difference in the fatigue cycles borne by the specimens was located in the initial part of the
curves, with the two final zones of the curves alike, at least in the specimens that sustained
750,000 and 809,000 cycles. Another feature that should be mentioned is that the maximum
load values of each cycle described a curve quite similar to the one that can be obtained in
a static fracture test.
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Figure 6. Fatigue behaviour of SCC-SFRC50 specimens pre-cracked at fR1: (a) specimen collapsed after approximately
208,000 cycles, (b) specimen collapsed after approximately 750,000 cycles, and (c) specimen collapsed after approximately
809,000 cycles.

When the specimens were pre-cracked until the ULS was reached (fR3, which corre-
sponded to a crack width of 2.5 mm) and then fatigue cycles, with the same characteristics
previously mentioned, were imposed, the curves that can be observed in Figure 7 were
acquired. Similarly to the curves of Figure 6, the red curves correspond to the fracture tests
and the blue ones to the fatigue tests. Regarding the fracture behaviour of the material,
it can be clearly seen that the initial zone of the curves that appear in Figure 6 does not
appear in Figure 7. On the contrary, the second part of the curves, where the increment
of the deflection and the reduction of the load-bearing capacity are observed, it can be
clearly noticed following the fracture curve. Additionally, the final part of the curves,
where the behaviour of the material was similar to that obtained in a static fracture test,
is also perceivable. Analogously to what was explained regarding the curves of Figure 6,
the difference in the cycles supported by the specimens seemed to be in the number of
cycles that did not generate a clear damage in the material.
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VCC-PFRC4.5 specimens were subjected to fatigue tests after carrying out a pre-
crack that corresponded to a SLS (fR1, which corresponded to a crack width of 0.5 mm).
The results of such tests can be observed in Figure 8. The characteristics of the load
cycles were quite similar to the ones applied to the SCC-SFRC50 specimens. However, the
specimens manufactured with VCC-PFRC4.5 were able to withstand up to 1,000,000 cycles
without collapsing or suffering remarkable damage. Reaching 1,000,000 cycles without
collapsing was considered the endurance of the material. As can be seen in Figure 8,
although a certain increment of the deflection is perceived, its values remained in within
the limits established for calculating the ULS. In addition, no remarkable changes in the
stiffness of the material can be noticed.
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Figure 8. Fatigue behaviour of VCC-PFRC4.5 specimens pre-cracked at fR1.

In Figure 9 the curves obtained in the fracture, up to fR3, and fatigue tests performed
on VCC-PFRC4.5 specimens can be seen. Similarly to what is seen in Figure 6, the fatigue
behaviour seemed to feature the same three zones previously mentioned. Moreover,
the shape of the envelope of the maximum load of each cycle clearly resembles the shape
obtained in a static fracture test of the material. However, it seemed that the load values
were somewhat lower than those obtained in the fracture test. This can be partially
explained as the loads that defined the cycles were only a certain percentage of the ones
that the material could sustain in a static fracture test.
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In Table 4 a summary of the fatigue test results can be seen. In this table it can be
clearly perceived that, after reaching the SLS or the ULS alike, if a structural member
was subjected to fatigue cycles, a greater reliability was obtained if such a member was
manufactured with VCC-PFRC4.5 if compared with SCC-SFRC50.

Table 4. Number of load cycles when the specimens collapsed. Fatigue tests were stopped at
1,000,000 cycles. The pre-crack width is stated in the table (SLS or ULS).

Service Limit State (fR1) Ultimate Limit State (fR3)

VCC-PFRC4.5 SCC-SFRC50 VCC-PFRC4.5 SCC-SFRC50

>1,000,000 ≈750,000 ≈416,000 ≈11,000
>1,000,000 ≈809,000 ≈334,000 ≈8000

- ≈208,000 ≈301,000 ≈35,000

5. Discussion

The scattering in the fatigue tests was studied for both formulations in which speci-
mens collapsed. In the case of SCC-SFRC50 specimens that had been pre-cracked at fR1,
we observed a great discrepancy in one of the three tests conducted. In such a test, only
280,000 cycles could be performed, whereas in the other two, around 800,000 were achieved.
In order to analyse the potential differences in the cracking process among the specimens
tested, Figure 10 was performed. Moreover, a counting exercise was carried out to detect
if there was any relation between the number of fibres in the fracture surfaces and the
number of cycles that the specimens were able to sustain.

Materials 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

0

1

2

3

4

5

0.8 0.85 0.9 0.95 1.0

SCC-SFRC50 at f
R1

750,000 cycles
809,000 cycles
280,000 cycles

C
ra

ck
 w

id
th

 (m
m

)

n/N  
Figure 10. Crack width evolution comparison among the SCC-SFRC50 specimens pre-cracked at 
fR1. 

The influence of the number of cycles was reduced by dividing the cycle n by the 
number N of cycles that the specimen was able to sustain before collapsing N. By doing 
this, the curves of all tests could be compared. In Figure 10, it can be seen that in all spec-
imens there was a reduced, but steady, growth of the crack width as the number of cycles 
increased. It should be mentioned that the slope in such curves before the final fracture 
appeared was similar in all specimens. Additionally, the appearance and progress of the 
final fracture seemed to be similar no matter the number of cycles that the specimen was 
capable of bearing. 

If a similar analysis was performed on the SCC-SFRC50 specimens pre-cracked at fR3, 
it could be seen that there were no remarkable differences among them. As shown in Fig-
ure 11, at this scale, the steady growth that the crack width of the specimens underwent 
can be hardly perceived. Once the growth of the final fracture began, slightly above a n/N 
value of 0.9, the shapes of the curves had a great resemblance. Nevertheless, it should be 
mentioned that in the case of the specimen that was able to sustain a greater number of 
cycles, the growth of the final fracture appeared at a slightly greater value of n/N. 

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5 0.6 0.7 0.8 0.9 1.0

SCC-SFRC50 at f
R3

11,000 cycles
35,000 cycles
8,000 cycles

C
ra

ck
 w

id
th

 (m
m

)

n/N  
Figure 11. Crack width evolution comparison among the SCC-SFRC50 specimens pre-cracked at 
fR3. 

Figure 10. Crack width evolution comparison among the SCC-SFRC50 specimens pre-cracked at fR1.

The influence of the number of cycles was reduced by dividing the cycle n by the
number N of cycles that the specimen was able to sustain before collapsing N. By doing
this, the curves of all tests could be compared. In Figure 10, it can be seen that in all
specimens there was a reduced, but steady, growth of the crack width as the number of
cycles increased. It should be mentioned that the slope in such curves before the final
fracture appeared was similar in all specimens. Additionally, the appearance and progress



Materials 2021, 14, 7087 10 of 16

of the final fracture seemed to be similar no matter the number of cycles that the specimen
was capable of bearing.

If a similar analysis was performed on the SCC-SFRC50 specimens pre-cracked at
fR3, it could be seen that there were no remarkable differences among them. As shown in
Figure 11, at this scale, the steady growth that the crack width of the specimens underwent
can be hardly perceived. Once the growth of the final fracture began, slightly above a n/N
value of 0.9, the shapes of the curves had a great resemblance. Nevertheless, it should be
mentioned that in the case of the specimen that was able to sustain a greater number of
cycles, the growth of the final fracture appeared at a slightly greater value of n/N.
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Regarding the crack width evolution in the VCC-PFRC4.5 specimens, a completely
different tendency can be observed in Figure 12.

Materials 2021, 14, x FOR PEER REVIEW 11 of 17 
 

 

Regarding the crack width evolution in the VCC-PFRC4.5 specimens, a completely 
different tendency can be observed in Figure 12. 

0

1

2

3

4

5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1,0

VCC-PFRC4.5 at f
R3

334,000 cycles
217,000 cycles

C
ra

ck
 w

id
th

 (m
m

)

n/N  
Figure 12. Crack width evolution comparison among the VCC-PFRC4.5 specimens pre-cracked at 
fR3. 

Observing Figure 12, it should be mentioned that the shape that displayed any of the 
crack width evolution curves of VCC-PFRC4.5 was remarkably different from the ones 
displayed for SCC-SFRC50, both for the fR1 and fR3 cases. The steady growth part of the 
curve is not clearly noticed and is difficult to detect where the growth of the final fracture 
appears. This phenomenon can be perceived in the case of the specimen that collapsed at 
217,000 cycles, being not so evident in the case of the other specimen. Another point that 
is worth to mention is that the onset of the steady growth phase was between a n/N value 
of 0.4 and 0.55. 

In order to determine the influence of the pre-crack width in the residual fatigue load-
bearing capacity of SCC-SFRC50, a comparison of the average curves shown in Figures 10 
and 11 was carried out. Such curves can be seen in Figure 13. It can be seen that in the case 
of the specimens pre-cracked at fR1 the growth of the crack width is remarkably steadier 
than in the case of the specimens pre-cracked at fR3. This is of a great importance because 
it supposes that when ULS is reached in a structural member without any other reinforce-
ment the propagation of damage if fatigue cycles are introduced is sudden and develops 
rapidly. On the contrary, when SLS is applied in a SCC-SFRC50 structural element and 
later fatigue cycles are applied, the crack growth onsets right after 80% of the endurance 
of the material is surpassed. Moreover, the crack growth is progressive almost until the 
total endurance of the material is reached. 

Figure 12. Crack width evolution comparison among the VCC-PFRC4.5 specimens pre-cracked at fR3.



Materials 2021, 14, 7087 11 of 16

Observing Figure 12, it should be mentioned that the shape that displayed any of the
crack width evolution curves of VCC-PFRC4.5 was remarkably different from the ones
displayed for SCC-SFRC50, both for the fR1 and fR3 cases. The steady growth part of the
curve is not clearly noticed and is difficult to detect where the growth of the final fracture
appears. This phenomenon can be perceived in the case of the specimen that collapsed at
217,000 cycles, being not so evident in the case of the other specimen. Another point that is
worth to mention is that the onset of the steady growth phase was between a n/N value of
0.4 and 0.55.

In order to determine the influence of the pre-crack width in the residual fatigue
load-bearing capacity of SCC-SFRC50, a comparison of the average curves shown in
Figures 10 and 11 was carried out. Such curves can be seen in Figure 13. It can be seen that
in the case of the specimens pre-cracked at fR1 the growth of the crack width is remarkably
steadier than in the case of the specimens pre-cracked at fR3. This is of a great importance
because it supposes that when ULS is reached in a structural member without any other
reinforcement the propagation of damage if fatigue cycles are introduced is sudden and
develops rapidly. On the contrary, when SLS is applied in a SCC-SFRC50 structural element
and later fatigue cycles are applied, the crack growth onsets right after 80% of the endurance
of the material is surpassed. Moreover, the crack growth is progressive almost until the
total endurance of the material is reached.
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According to the data that can be seen in Table 4, it can be stated that the average
number of fatigue cycles that a SCC-SFRC50 specimen can sustain when ULS is reached
was only 2.94% of the number of cycles resisted at SLS. If a comparison between the fatigue
life expectancy of SCC-SFRC50 and VCC-PFRC4.5 at ULS is performed, it can be stated that
the one of SCC-SFRC50 is on average only 5.14% of the correspondent of VCC-PFRC4.5.

Another point that should be compared is the behaviour under cyclic loads of struc-
tural members manufactured with SCC-SFRC50 and VCC-PFRC4.5 that have reached the
ULS. To perform such a comparison, the average behaviour of the correspondent formula-
tions is plotted in Figure 14. While in the case of the SCC-SFRC50 curve there is a part of
the curve where a steady increase of the crack width and later a progression of the fracture
process appears, when dealing with VCC-PFRC4.5 such two parts are not clearly perceived.
This phenomenon was noticed because the slope of the steady growth part was notably
greater than in the SCC-SFRC50 curves. In addition, the slope of the curve in the final
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fracture process was remarkably lower than in the SCC-SFRC50 curve. Consequently, the
change in the slope was much more moderated and these two parts were more difficult
to notice. Another feature that should be highlighted is that the steady progress of the
crack width was only obtained with the VCC-PFRC4.5 formulation. This characteristic is
directly related to the presence of the polyolefin fibres. Thus, with the use of the concrete
formulation with an addition of polyolefin fibres, a greater safety is obtained if the ULS is
reached when it was compared with SFRC.
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A fracture surface analysis was carried out to assess the cause of the scattering obtained
in the tests. Not only the number of fibres in the fracture surfaced was determined, but also
their positioning within the fracture surface was registered. Figure 15 shows the steel fibres
found in each fracture surface of SCC-SFRC50. In addition, the fracture surface was divided
into nine sectors and the number of fibres present in such sectors was found. Regarding
VCC-PFRC4.5, the number of fibres located in the ligament and the notch can be observed
in Figure 16. Moreover, the number of broken and pulled-out fibres was also determined.
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Comparing the results shown in Table 4 and the fracture surface analysis that can be
seen in Figure 15, the discrepancies in the fatigue behaviour of the SCC-SFRC50 specimens
pre-cracked at fR1 can be explained. The fibres present in the specimen that was able to
sustain around 208,000 cycles had approximately 50% of the fibres present in the fracture
surface of the other two specimens. However, if the number of cycles sustained are
compared, such a specimen only sustained around 25% of the cycles borne by the other two
specimens. This phenomenon might imply that the damage introduced in the pre-crack
test was remarkably higher in the specimen with a fewer number of fibres. In the case of
the VCC-PFRC4.5 specimens, it was not possible to perform an analogue analysis because
there were no notable discrepancies among the test results.

As can be seen in Figure 17a, there was a linear relation between the number of fibres
present in the ligament of the SCC-SFRC50 specimens pre-cracked at fR1 and the number of
cycles that the specimens were able to sustain before collapsing. On the contrary, no relation
could be found between the number of cycles before failure of the SCC-SFRC50 specimens
pre-cracked at fR3 and the number of fibres of the ligament, central third, or the complete
section. This phenomenon might imply that when reaching ULS, which corresponded to
a crack width of fR3, the improvement that the steel fibre provided to the material was
heavily consumed.

As can be seen in Figure 17b, there was a linear relation between the number of fibres
in the ligament of the VCC-PFRC4.5 specimens pre-cracked at fR3 and the cycles that such
specimens could bear before collapsing. In the case of the specimens of such formulation
pre-cracked at fR1, no relation could be established as the fatigue tests ended when reaching
1,000,000 cycles The discrepancies in the behavior of SCC-SRFC50 and VCC-PFRC4.5 could
be attributed to the different mechanical properties of the fibers and fiber-matrix anchorage
mechanisms. Consequently, while the polyolefin fibers were capable of changing the FRC
behavior both at fR1 and fR3, steel fiber seemed to be more relevant at fR1.
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6. Conclusions

Steel and polyolefin fibre-reinforced concrete specimens were subjected to fatigue
cycles after reaching the crack width that corresponded to SLS and ULS. The fatigue
cycles were defined to apply loads from 30% to 70% of the load registered at SLS or ULS,
respectively, with a frequency of 5 Hz. For all the pre-crack widths and formulations, it was
observed that the shape of the load-deflection curves resembled the shape that could be
obtained in fracture tests. It is important to highlight that no sudden or brittle collapse
appeared in any of the tests performed. Consequently, FRC seemed to be a reliable and
suitable material for structural applications where cyclic loads play a significant role.

The results of the fatigue tests applied to VCC-PFRC4.5 showed that pre-cracked
specimens at SLS did not collapse after 1,000,000 cycles. Nevertheless, it should be men-
tioned that, as the crack width increased, certain damage was inflicted in such specimens.
However, the crack width did not reach the values that corresponded to ULS. In the case
of the SCC-SFRC50 specimens pre-cracked at fR1, all of them collapsed before reaching
1,000,000 cycles. Regarding the test results that were carried out after pre-cracking the spec-
imens at ULS, it should be mentioned that the number of fatigue cycles that the specimens
suffered before collapsing was remarkably higher in the case of VCC-PFRC4.5 than in the
case of SCC-SFRC50. The differences in the behaviour of the materials noticed in the tests
supposed that VCC-PFRC4.5 provides a greater reliability than SCC-SFRC50 for the case
of structural members subjected to fatigue cycles after reaching SLS and ULS alike. Thus,
it seems that the addition of a certain dosage of polyolefin fibres provides greater reliability
than the addition of a similar volume fraction of steel fibres.

When a specimen of SCC-SFRC50 reached the ULS, the evolution of the crack width
as the cycles progressed was limited to the last 10% of the cycles, having hardly any steady
growth. In contrast, if such a specimen had only reached SLS, the steady growth of the
crack almost covered the last 20% of the cycles. Regarding VCC-PFRC4.5 at ULS, it can be
stated that once past the 50% of the cycles the crack growth began and continued almost
until the fracture of the specimen.

After the counting exercise was performed it can be stated that in the case of the VCC-
PFRC4.5 formulation there was a linear relation between the number of fibres present in
the fracture surface and the endurance of the specimens pre-cracked at fR3. No correlation
could be found in the case of the tests carried out in VCC-PFRC4.5 specimens pre-cracked
at fR1 because such specimens withstood 1,000,000 cycles without collapsing. Regarding
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SCC-SFRC50, there was also a linear relation between the number of fibres in the fracture
surface and the number of cycles before the failure of the specimens pre-cracked at SLS.
In the specimens of SCC-SFRC50, where ULS was reached, it seemed that the bridging
action of the fibres was heavily damaged because there was no relation between the number
of fibres in the fracture surface, the central third, or the complete section.
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