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Case-mix heterogeneity across studies complicates meta-analyses. As a result of

this, treatments that are equally effective on patient subgroups may appear to have

different effectiveness on patient populations with different case mix. It is therefore

important that meta-analyses be explicit for what patient population they describe

the treatment effect. To achieve this, we develop a new approach for meta-analysis

of randomized clinical trials, which use individual patient data (IPD) from all trials

to infer the treatment effect for the patient population in a given trial, based on

direct standardization using either outcome regression (OCR) or inverse probability

weighting (IPW). Accompanying random-effect meta-analysis models are devel-

oped. The new approach enables disentangling heterogeneity due to case mix from

that due to beyond case-mix reasons.
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1 | INTRODUCTION

Meta-analysis is a cornerstone of comparative effectiveness
research, as it allows synthesizing the evidence from multi-
ple randomized controlled trials (RCTs) and inferring the
effect of interventions with increased precision.1,2 A key
issue in meta-analysis is heterogeneity, which arises due to
the fact that studies included in a systematic review often
differ to some degree in the case mix of participants, the
variant of the intervention, settings, and outcome measure-
ment.3 In view of this, one of the first steps in every system-
atic review and meta-analysis is to define the target
population of the meta-analysis as part of the population,
intervention, control, and outcome (PICO) criteria for con-
sidering studies for inclusion.2 Nevertheless, even when
studies are chosen to be as similar as possible in terms of
PICO, some amount of heterogeneity is usually inevitable,
and it is often challenging to make decisions upon how much
heterogeneity is acceptable.2 Restricting the inclusion criteria
not only would probably result in a sufficiently homogenous
database but also limits the generalizability of the findings.

In contrast, broadening the PICO criteria may result in
increased heterogeneity.

In the presence of statistical heterogeneity, meta-analysts
usually try to explain it using subgroup analyses and meta-
regression. A common concern with these methods is the
potential of aggregation bias. In particular, associations
observed between the outcome and study characteristics
across studies need not be present within studies, and vice
versa.2 This makes meta-analyses of individual participant
data (IPD) preferable, when such data are available, as they
allow to investigate the impact of different characteristics on
the outcome both within and across studies.4-6 There are two
main approaches for IPD meta-analysis: (i) a two-stage
approach where each study is first analyzed separately and
the study-specific estimates are then combined using similar
techniques as aggregate data meta-analysis; and (ii) a one-
stage approach where all IPD from all studies are analyzed
in a single model accounting for clustering.7 Despite the
advantage of IPD meta-analysis over meta-analysis of aggre-
gate data to handle differences in the case mix of the studies,
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the classical approaches to IPD meta-analysis still have
limitations.

Assume, for instance, that the intervention has a different
effect in different patient subgroups (eg, patients with small
and large lesions, as in the illustration presented in the
Supporting Information S1) but the subgroup-specific effect
is constant across studies. If the subgroups are differently
distributed across the trials, then the intervention effect in
each trial will be different. Upon pooling the different esti-
mates, one is then likely to detect heterogeneity, despite the
effect of the intervention being homogeneous across the
studies. A one-stage or two-stage IPD meta-analysis can
adjust for the prognostic value of the lesion size but then
returns subgroup effects.8-10 In certain situations, subgroup
effects might be of less interest than the population treatment
effect. In particular, in the analysis of binary or time-to-event
outcomes, effect measures like odds ratios and hazard ratios
are well known to suggest larger intervention effects when
being calculated for subgroups, compared with when being
calculated for the population (even when all subgroups expe-
rience the same effect on the odds or hazard ratio scale).11

In this paper, we propose a new approach for IPD meta-
analysis of RCTs that allows (a) to control for differences in
the case mix across studies and reduce heterogeneity and (b)
to infer the treatment effect for a population that is well
defined in terms of case mix. Building on recent work by
Bareinboim and Pearl,12,13 this is achieved by standardizing
the results from the different trials to the same patient popu-
lation, eg, the patient population observed in one of the trials
or any other population of interest, before meta-analyzing
them as in a classical two-stage IPD meta-analysis.5,6 As an
added advantage, this enables one to decompose the overall
heterogeneity between the trial results into two different
sources, which the usual approaches to IPD meta-analysis do
not provide: “case-mix heterogeneity” (ie, arising when the
treatment effect is modified by one or more of the factors
used to define case mix) and “beyond case-mix heterogene-
ity” (ie, arising due to the difference between studies in
design or methodological aspects).

We proceed as follows. In Section 2, we propose two
estimators that aim to standardize results of different trials
over the case mix of a target population. The subsequent
meta-analysis then infers the treatment effect in the given
population by using the outcome data standardized from
other trials. We show in Section 3 that under certain condi-
tions, this approach not only gives valid results but also
allows for a more insightful assessment of heterogeneity in
meta-analysis. The novel approach is illustrated by
reanalyzing a published IPD meta-analysis evaluating the
effect of vitamin D on the risk of respiratory infection in
Section 4. Some important challenges are then extensively
discussed in Section 5.

2 | CASE-MIX STANDARDIZATION
IN META-ANALYSIS OF
RANDOMIZED CONTROLLED
TRIALS: A CAUSAL FRAMEWORK

2.1 | Setting

Consider a meta-analysis of K RCTs to evaluate the compar-
ative effectiveness of two treatments (X = 1 vs 0) on a
dichotomous outcome Y (1 vs 0). Let S be an indicator of the
study from which a given patient originates, which takes
values from 1 to K. To make the beyond case-mix differ-
ence between studies explicit, we will label the versions of
treatment x as x1 to xK (ie,x = 0,1) for studies 1 to K, respec-
tively. Note that even when the same treatment is evaluated

WHAT IS ALREADY KNOWN

• Meta-analysis of individual participant data (IPD-
MA) is considered to be a gold standard of sys-
tematic review.

• A one-stage or two-stage IPD-MA can adjust for
the prognostic and predictive value of different
baseline characteristics but often returns sub-
group effects.

WHAT IS NEW

• We propose a new approach for IPD-MA of ran-
domized controlled trials (RCTs)that allows one
(a) to control for differences in the case mix
across studies and reduce heterogeneity and (b)
to infer the treatment effect for a population that
is well defined in terms of case mix.

• The overall heterogeneity across trials is
decomposed into case-mix heterogeneity and
beyond case-mix heterogeneity.

POTENTIAL IMPACT FOR RSM
READERS

• In the original trial reports, trialists may consider
producing an effect measure estimate standard-
ized to the case-mix distribution of a reference
population. Meta-analysts could then base a stan-
dard meta-analysis on these mutually standard-
ized estimates, which would have the advantage
of describing the effect for the same population.
This would overcome the need for an IPD-MA.
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across studies, the version of treatment will still likely be dif-
ferent, eg, because of differences in standard of care or
patient management between studies or because in one
study, there is a greater attempt to prevent noncompliance
than in other studies. Besides, we denote Y(xk) as the out-
come that would be observed in a patient if this patient were
assigned to the version of treatment xk. Each patient, there-
fore, will have 2K potentially observed outcomes. However,
since each patient is only assigned to one specific version of
treatment or control, not all of these outcomes can actually
be observed for each patient in practice. Due to this, the pro-
posed outcomes Y(xk) are often referred to as counterfactual
outcomes. A more detailed discussion about the counterfac-
tual outcome framework can be found elsewhere.14,15

Let P{Y(xk) = 1| S = j} (x = 0,1) denote the chance of
success if the patients in population j were given the version
of treatment/control used in study k. On the basis of these
probabilities, the effect of the treatment version k in popula-
tion j can be expressed as a risk difference, relative risk, or
odds ratio. For instance, on the relative risk scale, we denote
the following:

RR j,kð Þ= P Y 1kð Þ=1jS= jf g
P Y 0kð Þ=1jS= jf g ,

which expresses the treatment effect when all individuals
from population S = j were given the (version of) treatment
versus control used in trial k. As discussed below, the effects
RR( j,k) for different k = 1,…,K, but the same j are poten-
tially more homogeneous, since the case-mix heterogeneity
is canceled out and all RR( j,k) describe the treatment effects
for the same population j.

2.2 | Assumptions

To identify RR( j,k) and the corresponding probabilities, the
following assumptions are made:

a Ignorable study assignment,12,13 which states that the trial
indicator is independent of all counterfactual outcomes,
conditioning on the prognostic factors L; that is,
Y(xk) ⊥ S j L for x = 0,1 and k = 1,…,K, where A ⊥ B j C
for random variables A, B, and C means that A is condi-
tionally independent of B, given C. This implies that indi-
viduals with the same characteristics L in different trials
would have the same outcome risks if given the same
treatments. This is satisfied when L contains all prognos-
tic factors of the outcome that are differentially distrib-
uted between studies. This assumption cannot be tested in
practice. However, it is partially testable when the control
is the same in different studies, in the sense that
Y(01) = Y(02) = … = Y(0K) = Y(0), for then, it should

imply that Y ⊥ S j X = 0,L, which is testable. In practice,
when there is evidence against the assumption that out-
come is independent of trial indicator given X = 0 and L,
one should first carefully verify the added assumption of
common control (eg, whether the control groups in differ-
ent trials are really similar in terms of pharmacological
properties or of associated risks of bias). If this is indeed
the case, then the considered set of covariates L is likely
insufficient to define the case mix of the included studies.
Such a limitation should be acknowledged. Note that
standard meta-analysis approaches are also biased when
this assumption is violated. This is because summaries
over studies that include very different case mix are prone
to bias, as explained in Section 1, unless they involve an
appropriate case-mix adjustment.

b Positivity,16 which states that any individual with charac-
teristics Li in study Si = k has a positive probability,
based on these characteristics, of being included in study
j: 0 < P(Si = j| Li) < 1. Violations of positivity may be
deterministic or random.16 A deterministic violation
occurs when the target populations of trials are relatively
different; eg, one study only includes children, whereas
the others recruit adults. In contrast, random violations of
positivity may occur when there are trials of small sample
size. In that case, it may happen by chance that no one in
a given age class participates in one trial, even though the
restrictions on age for eligibility are the same across tri-
als. Besides, note that what is meant by positivity here is
different from the conventional positivity assumption that
appears in causal theory.16 The former basically assumes
that P(S = j| L) for patients in trial k is nonzero, which
guarantees an adequate overlap between different trial
populations in terms of case mix. This is important to be
able to learn about the treatment effect in the target popu-
lation from what is observed in the original one.

c Consistency,17 which states that Y (xk) agrees with the
observed outcome Y for all individuals in study k (k=1,...,
K) who received treatment x (x = 0,1). This assumption is
generally plausible in randomized trials.18

d Ignorable treatment assignment within study,17 which
states that within each trial, the treatment is independent
of all counterfactual outcomes −Y(xk) ⊥ X j S for x = 0,1.
This assumption is guaranteed to hold because of ran-
domization within each individual trial.19

2.3 | Outcome regression approach

Under the aforementioned assumptions, it can be shown
(Supporting Information S2) that

P Y xkð Þ=1jS= jf g=E½E Y X = x,L,S= kj ÞjS= jð �
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=
X
l

P Y =1jX = x,L= l,S= kð Þ×P L= ljS= jð Þ:

Intuitively, this formula amounts to a simple recalibration
(or reweighting) of the L-specific effects to account for the
new L's distribution.12 Assume that in population k, the out-
come for each patient follows a logistic model:

P Y =1jX,L,S= kð Þ= expit β0k + β1kX + β2kL+ β3kXLð Þ,
ð1Þ

where expit (a) = {1+exp(−a)}−1. Under Model (1), a
straightforward estimator of P{Y(xk) = 1| S = j} is obtained
by using outcome regression (OCR):

P̂ Y xkð Þ=1jS= jf g=
P

iI Si = jð Þexpit β̂0k + β̂1kx+ β̂2kLi + β̂3kxLi
� �P

iI Si = jð Þ :

As a result, RR( j,k) can be estimated as follows:

R̂R j,kð Þ=
P

iI Si = jð Þexpit β̂0k + β̂1k + β̂2kLi + β̂3kLi
� �P

iI Si = jð Þexpit β̂0k + β̂2kLi
� � ,

where β̂0k , β̂1k, β̂2k, and β̂3k are estimates obtained by
fitting Model (1) to the data from trial k. This strategy suf-
fers from two drawbacks. First, the result of transporting the
findings across studies may be heavily dependent upon the
choice of model for the outcome, eg, on the decision to
include interactions of treatment with some baseline
covariates. Second, this approach comes with a high risk for
extrapolation when patients in different studies have very
different case mix.20 Such extrapolation is the result of mak-
ing the outcome model fit well over the case mix of study k
but then using it to make outcome predictions for the possi-
bly different case mix in study j. The severity of that extrap-
olation may easily go unnoticed in practice.

2.4 | Inverse probability weighting approach

In view of the aforementioned concerns, we considered an
alternative approach based on inverse probability weighting
(IPW). IPW is a method commonly used to obtain marginal
effects in observational studies, especially when there is
time-dependent confounding.21,22 It can be shown
(Supporting Information S2) that

P Y xkð Þ=1jS= jf g= 1
P S= jð ÞE

I S= kð Þ:Y :I X = xð Þ: P S= jjLð Þ
P S= kjLð Þ :

1
P X = xjS= kð Þ

� �
:

Assume further that for a given patient with the covariate
profile L, the probability to be in trial j vs in trial k follows a
logistic propensity score (PS) model:

P S= jjLð Þ
P S= kjLð Þ =expit γ0 + γ1Lð Þ: ð2Þ

This suggests estimating P{Y(xk) = 1| S = j} as follows:

P̂ Y xkð Þ=1jS= jf g=P
i I Si = kð Þ:Yi:I Xi = xð Þ:expit γ̂0 + γ̂1Lið Þ: 1

P̂ Xi = xjSi = kð Þ

n o
P

iI Si = jð Þ ,

where γ̂0 and γ̂1 are the estimates obtained by fitting
Model (2) to the data from trials j and k. This results in the
following estimator for RR( j,k):

R̂R j,kð Þ= 1
Rk

×
P

iI Si = kð ÞYiXiexpit γ̂0 + γ̂1Lið ÞP
iI Si = kð ÞYi 1−Xið Þexpit γ̂0 + γ̂1Lið Þ ,

where Rk is the ratio between the number of treated vs
untreated patients in the trial k. Calculating this requires no
modeling assumption about the outcome generating mecha-
nism. Therefore, the estimator does not require a model for
the outcome, which is important because huge extrapolations
could otherwise be made if the outcome model ignored cer-
tain forms of heterogeneity (eg, covariate by study interac-
tions). Instead, a PS model for P(S = j| L) now must be
correctly specified (eg, by using multinomial regressions) to
ensure that the estimator is unbiased in sufficiently large
samples.21-23

The IPW approach can be susceptible to the presence of
unstable weights, that is, to some weights
P̂ Si = jjLið Þ
P̂ Si = kjLið Þ = expit γ̂0 + γ̂1Lið Þ being very large for some indi-

viduals.22 The estimation by IPW is then dominated by these
large weights, which results in a huge reduction in effective
sample size.22,24 In extreme cases, the IPW estimate for
P{Y(xk) = 1| S = j} can even exceed the theoretical boundary
of 1. This can be remedied by noting that (see Supporting
Information S2)

P Y xkð Þ=1jS= jf g=
E I S= kð Þ:Y :I X = xð Þ: P S= jjLð Þ

P S= kjLð Þ
n o
E I S= kð Þ:I X = xð Þ: P S= jjLð Þ

P S= kjLð Þ
n o ,

which suggests alternatively estimating RR( j,k) as
follows:
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R̂R j,kð Þ=

P
i
I Si = kð ÞYiXiexpit γ̂0 + γ̂1Lið ÞP
i
I Si = kð ÞXiexpit γ̂0 + γ̂1Lið ÞP

i
I Si = kð ÞYi 1−Xið Þexpit γ̂0 + γ̂1Lið ÞP
i
I Si = kð Þ 1−Xið Þexpit γ̂0 + γ̂1Lið Þ

:

The additional denominators ensure weight stabilization,
in the sense that they deliver weights between 0 and 1,
thereby preventing the resulting stabilized IPW estimate for
P{Y(xk) = 1| S = j} from exceeding the boundary22 of 1.
Extreme weights will often appear in settings where the dif-
ferent trials consider very different case mix. They thus give
the user a warning that it can be tricky to pool the results
from such different trials, which could go unnoticed with the
OCR approach as well as with the standard meta-analysis
approach.

Other effect measures (such as risk difference and odds
ratio) can also be defined and estimated in a similar way.
The definition of the odds ratio OR( j,k) and its two
corresponding estimators is given in Supporting Information
S3.

2.5 | Deriving summary estimates and
dismantling the two sources of heterogeneity

To summarize the results R̂R j,kð Þ obtained from the same
population j, a random effect meta-analysis of the form

log R̂R j,kð Þ� �eN log RR j,kð Þð Þσ2jk
� �

,

log RR j,kð Þð ÞeN log RR j:ð Þð Þ,ϑ2j
� �

,

may now be performed. Here, log(RR( j.)) expresses the
treatment effect for the target population j, which can then
be estimated via a weighted average of the log relative risks
log R̂R j,kð Þ� �

:

log R̂R j:ð Þ� �
=

PK
j=1wj: log R̂R j,kð Þ� �PK

j=1wj
withwj =

1

σ̂2jk + ϑ̂
2
j

:

This pooled estimate describes the summary treatment
effect for the underlying population j. The standard error σjk
of log R̂R j,kð Þ� �

can be estimated by either bootstrap or

sandwich estimators. Further, ϑ2j expresses how much results

from different trials vary even when considered for the same
patient population. This may result, for instance, from the
differential effect of different treatment versions in the differ-
ent trials. Importantly, since all estimates R̂R j,kð Þ focus on
the same patient population (in terms of covariates L), ϑ2j

does not express heterogeneity due to differential case mix
(in covariates L).

An added advantage of the proposed framework is that,
in view of the above, it results in a more informative way of
assessing heterogeneity. Indeed, since different RR( j,k) of
the same population j are standardized over the same covari-
ate distribution, these may only be heterogeneous due to
beyond case-mix reasons across the different population k.
As a result, by testing the equality of RR( j,k), k = 1,…,K, for
the same population j, one may develop insight in beyond
case-mix heterogeneity. Similarly, when different RR ( j,k),
j = 1,…,K, differ for the same population k, there is hetero-
geneity due to differential case mix among the populations.

Comparison among different RR( j,k) can be done by
using a Wald test. Consider, for instance, the null hypothesis
H0 : RR( j,1) = RR( j,2) = … = RR( j,K), which states that
there is no beyond case-mix heterogeneity. This can be
rewritten in matrix form as H0 : M. RR = 0, where

RR= RR 1ð Þ,RR 2ð Þ,…,RR Kð Þð Þt,

RR(j) = (logRR( j,1), logRR( j,2), …, logRR( j,K)),
and M is an appropriately chosen (K − 1) × K2 matrix.

Under this null hypothesis, the test statistic

T= M:R̂R
� �t

M
X̂� �

Mt
h i−1

M:R̂R
� �eχ2K−1,

where
P̂

is the estimate of the covariance matrix of R̂R.

Here,
P̂

is derived by using conventional methods like
bootstrap or sandwich estimators.25

As a final remark, note that when all trials have the same
control treatment, the assumption Y ⊥ S j X = 0,L naturally
implies that beyond case-mix heterogeneity can be inter-
preted as treatment effectiveness heterogeneity. Indeed, sup-
posing, for instance, that the outcome generating mechanism
in population k (k = 1, …, K) obeys the logistic model (1),
for then,

P Y =1jX =0,L,S= kð Þ=expit β0k + β2kLð Þ:

The assumption that Y ⊥ S j X = 0,L then implies that
expit(β01+β21L) = … = expit(β0K+β2KL) for each L. This
holds if and only if β01 = … = β0K and β21 = … = β2K,
which means that all coefficients that are not related to the
treatment must be constant over different studies. Beyond
case-mix heterogeneity, if present, is then due to differential
treatment-related coefficients across populations.
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3 | A SIMULATION STUDY

3.1 | Design
We apply the proposed methods in numerically simulated
meta-analyses of RCTs that evaluate a (binary) active treat-
ment (X) versus control with respect to a binary outcome (Y).
We consider five settings. In each setting, the meta-analysis
includes five trials with a total of 3750 patients. In settings
1 to 4, the impact of treatment X and of five continuous out-
come predictors Li (i = 1, …, 5) on Y in population
k (k = 1, …, 5) is generated using the following logistic
models:

P Y =1jX,L,S= kð Þ= expit β0 + β1kX +
X5
i=1

β2iLi + β3kX:L1

 !
,

in line with the discussion in the previous section. The
control group is assumed to be similar in the five trials, in
the sense that Y ⊥ S j X = 0,L. This implies that β0 and
β2i (i = 1, …, 5) are fixed across the trials. In contrast, the
two coefficients β1k and β3k take different values in each dif-
ferent population k.

The trial indicator S is generated using a multinomial
logistic model in the first three settings (see Table 1 for
details). In setting 4, all five trials share a similar target

TABLE 1 The mathematical symbols in this table are not well written. Please see attached how we want this table to look like. AllNumerical
setup of the simulation study

Note. From settings 1 to 4, we first generate the covariate vector L¼ L1L2L3L4L5ð Þt by using the multivariate normal distribution N ℓ ,
Pð Þ. The trial indicator S is then

generated by using the multinomial model log P S¼jjLð Þ
P S¼1jLð Þ
n o

¼ β:jM
t for j¼ 2,…,5, where M is specific for each setting and β.j is the jth row of β. In setting 5, the covariate

L1 in each study is generated by a separate uniform distribution. Across settings, the outcome Y in each trial is then generated by using a logistic model, ie,
logitP(Y = 1 j X,L,S) = lp, where lp = γPt with γ and P specific for each setting
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Setting Numerical Setup

1 ℓ ¼ −0:5 − 0:25 0:00 0:25 0:50ð Þt Σ ¼ diag 0:50; 0: 50; 0:50; 0:50; 0:50ð Þ

M ¼ 1 L1 L2 L3 L4 L5 L1 × L2ð Þ β ¼

0:01 0:45 0:30 0:30 0:30 0:01 0:01

0:01 −0:20 0:20 0:20 0:20 0:50 −2:25

0:01 0:45 0:10 0:10 0:10 0:50 −2:25

−0:25 −0:55 −0:25 0:55 −0:45 0:25 −1:50

0
BBB@

1
CCCA

P ¼ 1 X L1 L2 L3 L4 L5 X × L1ð Þ
γ ¼ −0:25 − 0:5 0:5 − 0:25 − 0:5 0 :25 −0:5 −1:5ð Þ
RR 1; 1ð Þ ¼ 1:30; RR 2; 2ð Þ ¼ 1:08; RR 3; 3ð Þ ¼ 1:20; RR 4; 4ð Þ ¼ 0:91; RR 5; 5ð Þ ¼ 1:32

2 ℓ ¼ −0:5 − 0:25 0:00 0:25 0:50ð Þt Σ ¼ diag 0:50; 0: 50; 0:50; 0:50; 0:50ð Þ

M ¼ 1 L1 L2 L3 L4 L5 L1 × L2ð Þ β ¼

0:25 1:00 0:55 −0:25 0:75 −0:25 −0:5

0:25 0:35 0:45 −0:35 0:65 0:25 0:5

0:25 1:00 0:35 −0:45 0:55 0:25 0:5

0:25 0:55 0:25 −0:55 0:45 −0:25 −0:5

0
BBB@

1
CCCA

P ¼ 1 X L1 L2 L3 L4 L5 X × L1ð Þ
γ ¼ −0:25 β1k 0:5 − 0:25 − 0:5 0 :25 −0:5 −1:5ð Þ
β1k = − 0.25 × I(S = 1)+0.65 × I(S = 2)+0 × I(S = 3)+0.5 × I(S = 4)+0.25 × I(S = 5)
RR 1; 1ð Þ ¼ 1:55; RR 2; 2ð Þ ¼ 1:58; RR 3; 3ð Þ ¼ 1:60; RR 4; 4ð Þ ¼ 1:57; RR 5; 5ð Þ ¼ 1:52

3 ℓ ¼ 0:5 − 0:25 0:00 0:25 0:50ð Þt Σ ¼ diag 7:50; 2: 00; 2:00; 2:00; 2:00ð Þ

M ¼ 1 L1 L2 L3 L4 L5 L1 × L1ð Þ β ¼

−0:14 −1:16 0:20 −0:20 0:20 −0:20 1:18

−1:60 −2:02 0:20 −0:40 0:40 0:30 2:04

−1:46 −2:00 0:30 −0:30 0:30 0:20 2:03

−1:33 −2:00 0:20 −0:20 0:40 −0:30 2:02

0
BBB@

1
CCCA

P ¼ 1 X L1 L2 L3 L4 L5 X × L1ð Þ
γ ¼ −0:25 −0:5 0:5 − 0:25 − 0:5 0 :25 −0:5 −2ð Þ
RR 1; 1ð Þ ¼ 0:48; RR 2; 2ð Þ ¼ 0:55; RR 3; 3ð Þ ¼ 0:86; RR 4; 4ð Þ ¼ 0:82; RR 5; 5ð Þ ¼ 0:81

4 ℓ ¼ −0:5 − 0:25 0:00 0:25 0:50ð Þt Σ ¼ diag 0:50; 0: 50; 0:50; 0:50; 0:50ð Þ
M = 0 β = 0
P ¼ 1 X L1 L2 L3 L4 L5 X × L1ð Þ
γ ¼ −0:25 β1k 0:5 − 0:25 − 0:5 0 :25 −0:5 −1:5ð Þ
β1k = 0.25 × I(S = 1)+0.05 × I(S = 2) − 0.15 × I(S = 3) − 0.35 × I(S = 4) − 0.50 × I(S = 5)
RR 1; 1ð Þ ¼ 1:60; RR 2; 2ð Þ ¼ 1:49; RR 3; 3ð Þ ¼ 1:37; RR 4; 4ð Þ ¼ 1:25; RR 5; 5ð Þ ¼ 1:16

5 L1 ∣ S = 1~Unif(0,0.50); L1 ∣ S = 2~Unif(−1.5,0.20); L1 ∣ S = 3~Unif (−0.20,0.45);
L1 ∣ S = 4~Unif(−0.15,0.40); L1 ∣ S = 5~Unif(−0.20,0.50);

P ¼ 1 X L1 L21 L31 X × L1
� �

γ ¼ 1 −0:75 1 2 2 1ð Þ
RR 1; 1ð Þ ¼ 0:89; RR 2; 2ð Þ ¼ 0:55; RR 3; 3ð Þ ¼ 0:82; RR 4; 4ð Þ ¼ 0:79; RR 5; 5ð Þ ¼ 0:84



population and hence have the same case mix. In settings 1
and 3, the treatment effect is heterogeneous on the popula-
tion level, although it is actually equally beneficial for
patients with the same covariate profile regardless of their
origin. While all assumptions (see Section 2.2) are fulfilled
in setting 1, setting 3 assesses the behavior of the two esti-
mators when the positivity assumption is nearly violated (ie,
in Figure 1A, individuals with extreme values of L1 are
nearly never recruited in the first two trials).

In setting 2, both case-mix heterogeneity and beyond
case-mix heterogeneity are present, but the two sources of
heterogeneity compensate each other and result in 5 (approx-
imately) similar RR( j,j) ( j = 1, …, 5) across studies
(Table 1). In setting 4, the five trials have nontrivial beyond
case-mix heterogeneity.

We dedicate the final setting 5 to illustrate the risk of
extrapolation when using the OCR approach. In this setting,
we let one baseline characteristic L1 be differently distributed
among studies. Moreover, the case mix of the trial S = 2 is
chosen to be considerably different from that of the
remaining four trials (see Table 1 and Figure 1B). The
impact of treatment and of the baseline factor L1 (as well as
L21 and L31) on the outcome is generated using a logistic
model that is identical across the five trials (Table 1).

3.2 | Analysis

3.2.1 | Bias

The new meta-analysis approach is assessed on both proba-
bility and relative risk scales. Note that although the outcome
obeys a logistic model, the use of relative risks is valid since

we merely evaluate population relative risks. Across the first
four settings, we investigate the bias of the two estimators
when the logistic outcome model (for OCR-based approach)
and the multinomial PS model (for IPW-based approach) are
correctly specified. In setting 1, the two estimators are fur-
ther assessed when the PS model (for the IPW-based estima-
tors) is misspecified by not including the interaction between
L1 and L2 and the outcome models (for the OCR-based esti-
mators) are misspecified by not including the interaction
between X and L1 (Table 1).

In setting 5, a logistic model without the cubic term L31 is
used for the OCR-based estimator that transfers the informa-
tion from population 1 toward the other populations. In con-
trast, the outcome model is correctly specified when using
the OCR-based estimator to transfer results of other trials
toward trial 1, and the PS model only includes the main
term of L1 when using the IPW-based estimator (Table 1).

In each setting, the true values (θ) of all estimands,
namely, (a) P{Y(xk) = 1| S = j} with x = 0,1 and (b) RR( j,k),
are derived as the average result across an independent
5000-run simulation, which make use of the true model coef-
ficients. For instance, in settings 1 to 4, the true value for
P{Y(xk) = 1| S = j} with x = 0,1 is calculated as
1

5000

P5000
m=1P̂m, where

P̂m =

P3750
i=1 I Si = jð Þexpit β0 + β1kx+

P5
a=1

β2aLa, i + β3kx:L1

� 	
P3750

i=1 I Si = jð Þ :

The mean �θð Þ of the corresponding OCR/IPW-based esti-
mator is computed over the main simulations. The bias and

FIGURE 1 Simulation study: the
distribution of L1 across the five trials in
settings 3 (A) and 5 (B)
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the relative bias are computed as �θ−θð Þ and �θ−θð Þ=θ,
respectively.

3.2.2 | Summary estimates and heterogeneity
assessment

The variance of the two proposed estimators for logRR( j,k)
is derived using sandwich estimators.25 After case-mix stan-

dardization, the results log R̂R j,kð Þ obtained from the same
population j are summarized by a random-effect model spe-
cific for population j (see Section 2.5). The between-trial
variances, the I2 statistics, and the performance of the hetero-
geneity tests conducted after case-mix standardization are
compared with when a standard two-step meta-analysis of

log R̂R j, jð Þ j=1,…,5ð Þ without covariate adjustment is con-
ducted. The comparison of different relative risks is realized
using Wald tests.

3.3 | Result

3.3.1 | Bias

The evaluation of bias when estimating P{Y(1k) = 1| S = j}
and RR( j,k) is presented in Table 2. In setting 1, the OCR-
based estimator yields no bias when the outcome model is
correctly specified. In contrast, the IPW-based estimator is
slightly biased when standardizing results of trials 3 and 4
over the case mix of trial 1, although the PS model is cor-
rectly specified. This can be explained by the fact that
patients with large absolute values of both L1 and L2 are
more likely to be recruited in trial 3 (and 4) than in trial 1
(Table 1). These patients are then strongly weighted and
influence the IPW-based estimator. While this minor viola-
tion of positivity is flagged by the presence of the large
weights, it is overlooked by the OCR-based estimator.
Besides, both estimators are biased when the essential inter-
actions are not included in the PS model or the outcome
model (setting 1, Table 2).

In setting 2, both estimators behave properly. In setting
3, the information from trial 1 cannot be standardized over
the case mix of trials 3 to 5 via an IPW-based estimator
(although the PS model is correctly specified). In fact, the
IPW-based estimator is strongly driven by outcomes occur-
ring in some patients with extremely large weights. This is
most clearly seen in estimates of the probabilities
P{Y(xk) = 1| S = j}, which in some simulations exceed the
boundary of 1. Roughly speaking, to standardize the results
of one study over the case mix of the other, we learn from
subjects in different studies with similar characteristics. As
individuals with extreme values of L1 present only in trials 3
to 5, there is no information about the effect of treatment
assignment in trial 1 (and 2) for these individuals. Such lack
of information becomes apparent through the unstable

behavior of the IPW-based estimator (Table 2). While this is
not problematic for the OCR-based estimator when the
model is correctly specified, it does rely on extreme
extrapolation.

In the same setting 3, the IPW-based estimator is slightly
biased when standardizing the results of trials 3 to 5 over
the case mix of trial 1 (Table 2). The reason is that patients
with L1 value being closed to 0 will have a higher chance to
be recruited in trials 3 to 5 than in trial 1 (see Table 1). The
weights of these patients, therefore, can be fairly large. In
contrast, such a fairly weak overlap between the two trials'
case mix is not notified by the OCR-based estimator.

In setting 4, the two estimators both give valid results
when the involved models are correctly specified. In setting
5, the OCR-based estimator standardizing the results of trial
1 over the case mix of population 2 is biased (Table 2). In
fact, the model without the cubic term L31 properly fits the
data in trial 1. However, as there is little overlap between
the two populations, using such a model for prediction in
study 2 results in severe extrapolation. The OCR approach
simply ignores such concern and hence yields relatively
severe bias. In contrast, as the outcome model is correctly
specified when transporting the information from trial 2
(which also has a much more heterogeneous case mix)
toward population 1, the OCR-based estimator has no bias.
While using the IPW approach also results in bias as the PS
model is incorrectly specified, the presence of extreme
weights could at least provide an alert on such bias and on
the nonoverlap between trials in terms of case mix.

3.3.2 | Summary estimates and heterogeneity
assessment

The summary estimates derived from the population-specific
meta-analyses are provided in Table 3. These summaries
have a larger variance when the case-mix standardization is
conducted by using the IPW approach.

As can be seen from Tables 3 and 4, the proposed
approaches correctly specify the source(s) of the total het-
erogeneity when the two estimators behave properly. For
instance, the population-specific meta-analyses in setting
1 return a between-trial variance and I2 statistic of 0,
which indicates correctly that no heterogeneity presents
after case-mix standardization (Table 4). The OCR-based
tests assessing the beyond case-mix heterogeneity in set-
ting 1 also show statistical significance in only 5% of
the simulations, which is the conventional level of type I
error. Across the settings, the proposed tests are more
powerful when using the OCR-based estimator. In setting
2, simply meta-analyzing logRR( j,j) may suggest that no
heterogeneity is present. In settings 1, 3, and 5, a stan-
dard heterogeneity assessment correctly detects the
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TABLE 3 Simulation results: summary estimates, between-trial variance, and I2 statistics in the population-specific meta-analyses

Settinga

OCR IPW

Summaryb Between-Trial Variancec I2 Valued Summaryb Between-Trial Variancec I2 Valued

1 (C) 0.14 (0.002) 0.019 (0.011, 0.030) 71 (57, 79) 0.14 (0.003) 0.018 (0.007, 0.033) 57 (34, 70)

1, j = 1 0.26 (0.002) 0.0 (0.0, 0.002) 0 (0, 24) 0.25 (0.006) 0.0 (0.0, 0.016) 0 (0, 36)

1, j = 2 0.07 (0.002) 0.0 (0.0, 0.002) 0 (0, 21) 0.07 (0.006) 0.0 (0.0, 0.011) 0 (0, 30)

1, j = 3 0.18 (0.002) 0.0 (0.0, 0.003) 0 (0, 22) 0.17 (0.006) 0.0 (0.0, 0.012) 0 (0, 32)

1, j = 4 −0.09 (0.003) 0.0 (0.0, 0.003) 0 (0, 22) −0.09 (0.006) 0.0 (0.0, 0.012) 0 (0, 31)

1, j = 5 0.28 (0.002) 0.0 (0.0, 0.003) 0 (0, 23) 0.27 (0.006) 0.0 (0.0, 0.010) 0 (0, 27)

1.1, j = 1 0.13 (0.001) 0.017 (0.009, 0.026) 72 (59, 79) 0.22 (0.004) 0.002 (0.0, 0.015) 11 (0, 44)

1.1, j = 2 0.14 (0.002) 0.020 (0.011, 0.029) 72 (59, 79) 0.03 (0.004) 0.0 (0.0, 0.009) 0 (0, 32)

1.1, j = 3 0.15 (0.002) 0.022 (0.012, 0.033) 72 (59, 79) 0.14 (0.004) 0.003 (0.0, 0.017) 13 (0, 46)

1.1, j = 4 0.15 (0.002) 0.022 (0.013, 0.034) 72 (59, 79) −0.13 (0.005) 0.0 (0.0, 0.012) 0 (0, 36)

1.1, j = 5 0.15 (0.002) 0.022 (0.012, 0.033) 72 (59, 79) 0.24 (0.004) 0.0 (0.0, 0.009) 0 (0, 31)

2 (C) 0.45 (0.001) 0.0 (0.0, 0.003) 0 (0, 30) 0.45 (0.002) 0.0 (0.0, 0.004) 0 (0, 27)

2, j = 1 0.61 (0.002) 0.013 (0.006, 0.022) 62 (44, 73) 0.60 (0.005) 0.011 (0.0, 0.030) 38 (0, 61)

2, j = 2 0.30 (0.002) 0.018 (0.010, 0.027) 71 (59, 79) 0.31 (0.004) 0.014 (0.001, 0.031) 42 (7, 62)

2, j = 3 0.54 (0.002) 0.013 (0.007, 0.021) 65 (49, 75) 0.53 (0.004) 0.011 (0.0, 0.026) 39 (0, 60)

2, j = 4 0.35 (0.002) 0.017 (0.010, 0.026) 71 (58, 79) 0.35 (0.004) 0.014 (0.002, 0.030) 46 (12, 64)

2, j = 5 0.40 (0.002) 0.015 (0.008, 0.022) 70 (56, 78) 0.40 (0.004) 0.011 (0.0, 0.026) 40 (1, 61)

3 (C) −0.35 (0.002) 0.040 (0.030, 0.050) 85 (81, 88) −0.35 (0.003) 0.042 (0.026, 0.061) 76 (66, 81)

3, j = 1 −0.74 (0.005) 0.0 (0.0, 0.006) 0 (0, 22) −0.76 (0.019) 0.0 (0.0, 0.044) 0 (0, 35)

3, j = 2 −0.59 (0.004) 0.0 (0.0, 0.002) 0 (0, 15) −0.60 (0.013) 0.0 (0.0, 0.025) 0 (0, 31)

3, j = 3 −0.16 (0.003) 0.0 (0.0, 0.0) 0 (0, 0) −0.20 (0.010) 0.011 (0.0, 0.034) 33 (0, 60)

3, j = 4 −0.19 (0.003) 0.0 (0.0, 0.0) 0 (0, 0) −0.23 (0.009) 0.010 (0.0, 0.030) 32 (0, 59)

3, j = 5 −0.21 (0.003) 0.0 (0.0, 0.0) 0 (0, 0) −0.26 (0.010) 0.011 (0.0, 0.034) 28 (0, 56)

4 (C) 0.32 (0.001) 0.015 (0.008, 0.023) 68 (52, 77) 0.31 (0.003) 0.014 (0.004, 0.026) 52 (23, 67)

4, j = 1 0.32 (0.002) 0.015 (0.007, 0.023) 68 (51, 76) 0.31 (0.003) 0.013 (0.004, 0.025) 51 (22, 66)

4, j = 2 0.32 (0.002) 0.015 (0.007, 0.023) 68 (51, 76) 0.31 (0.003) 0.013 (0.004, 0.026) 51 (23, 66)

4, j = 3 0.32 (0.002) 0.015 (0.007, 0.023) 68 (51, 76) 0.31 (0.003) 0.013 (0.004, 0.025) 51 (22, 66)

4, j = 4 0.32 (0.002) 0.015 (0.007, 0.023) 68 (51, 76) 0.31 (0.003) 0.013 (0.004, 0.025) 51 (23, 66)

4, j = 5 0.32 (0.002) 0.015 (0.007, 0.023) 68 (51, 76) 0.31 (0.003) 0.013 (0.004, 0.026) 51 (22, 66)

5 (C) −0.24 (0.001) 0.016 (0.012, 0.020) 87 (84, 89) −0.24 (0.002) 0.024 (0.015, 0.035) 74 (64, 81)

5, j = 1 −0.12 (0.001) 0.0 (0.0, 0.0) 0 (0, 25) −0.12 (0.002) 0.0 (0.0, 0.004) 0 (0, 27)

5, j = 2 −0.31 (0.009) 0.051 (0.026, 0.080) 89 (80, 91) −0.36 (0.005) 0.024 (0.007, 0.045) 52 (25, 67)

5, j = 3 −0.18 (0.001) 0.0 (0.0, 0.0) 0 (0, 26) −0.18 (0.002) 0.0 (0.0, 0.004) 0 (0, 27)

5, j = 4 −0.18 (0.001) 0.0 (0.0, 0.0) 0 (0, 26) −0.18 (0.002) 0.0 (0.0, 0.004) 0 (0, 27)

5, j = 5 −0.17 (0.001) 0.0 (0.0, 0.0) 0 (0, 25) −0.17 (0.002) 0.0 (0.0, 0.004) 0 (0, 27)

Abbreviations: IPW, inverse probability weighting approach; IQR, interquartile range; OCR, outcome regression approach.
a1(C) to 5(C), in bold: results of the standard two-step meta-analysis in each setting (from setting 1 to setting 5); 1, j to 5, j: results of the population-j-specific
meta-analysis (j=1,...,5) in each setting (from setting 1 to 5), when the models involved in the OCR and IPW estimators are correctly specified (except for the IPW
estimators in setting 5), 1.1,j: results of the population-j-specific meta-analysis in setting 1 when the models involved in the OCR and IPW estimators are incorrectly
specified.
bSummary estimate (variance).
cMedian (IQR).
dMedian (IQR).
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presence of heterogeneity but is unable to indicate that
such heterogeneity is due to the differential case mix
across studies (Tables 3 and 4).

In setting 1, the IPW-based tests assessing beyond case-
mix heterogeneity are slightly inflated in terms of type I error
(Table 4), which results from the minor bias in the IPW-
based estimates that have been discussed above. As the bias
is small, the between-trial variance and I2 statistics of the
population-specific meta-analyses are still properly esti-
mated. In contrast, the heterogeneity assessment becomes
inaccurate when the outcome model for the OCR-based
approach or the PS model for the IPW-based approach is
severely misspecified.

In setting 3, results of the meta-analysis and subsequent
heterogeneity assessment specific for trials 3 to 5 are biased
when using the IPW-based estimator. Similar to setting 1,
the beyond case-mix heterogeneity tests using IPW-based
estimates are slightly inflated in type I error when the popu-
lation of interest is of trials 1 and 2 (Table 4). The
between-trial variance and I2 statistics in the meta-analyses
specific for populations 1 and 2 still correctly specify that
no beyond case-mix heterogeneity is present (Table 3).

In setting 4, the tests assessing case mix heterogeneity
are likely too conservative. The Wald statistics in these tests
are shrunken toward 0, which makes the type I error lower
than the conventional level of 5% (Table 4). The reason is
that the estimates log R̂R j,kð Þ with the same k are strongly

correlated under the null hypothesis of no case-mix heteroge-

neity, which makes the matrix M
P̂� �

Mt
h i

in the Wald sta-

tistic have extremely small entries. In such a situation, a
slight bias in estimating the covariance matrix

P
can result

in a considerable bias on the Wald statistic. More sophisti-
cated methods for variance estimation may then be indicated.
This may however not be a major practical concern as we
did not observe it in any other settings, in which the distribu-
tions of the covariates L1 to L5 across the five populations
are truly heterogeneous.

In setting 5, only the results of the meta-analysis and
subsequent heterogeneity assessment specific for trial 2 give
valid results when using the OCR-based estimator. In con-
trast, results are invalid when using the IPW-based estimator
due to the bias discussed above.

In summary, both the OCR-based and IPW-based esti-
mators are effective for case-mix standardization across
different populations. They enable a more accurate and
refined heterogeneity assessment as compared with a stan-
dard meta-analysis and deliver a pooled estimate that
expresses the effect for a well-defined patient population.
The OCR-based estimator is optimal if the outcome
model in each population is correctly specified. However,
model misspecification is likely and difficult to diagnose
when the different studies have very different case mix.
Therefore, when using this estimator, it is best based on a

TABLE 4 Simulation results: heterogeneity tests (the percentage of simulations showing statistically significance at a type I error risk of 5%)

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

OCR IPW OCRw IPWw OCR IPW OCR IPW OCR IPW OCR IPW

New approach:
beyond case-mix
heterogeneity testsa

j = 1 4.4 8.1 76.5 12.5 60.4 29.5 5.2 9.3 70.1 41.2 4.3 5.9

j = 2 4.6 6.3 76.4 7.4 78.8 32.2 5.1 7.7 70.2 41.2 87.2 45.1

j = 3 4.5 6.3 76.4 14.0 64.9 29.2 4.1 30.0 70.1 41.1 5.2 5.3

j = 4 4.8 6.2 76.1 9.1 77.1 35.3 4.1 28.5 70.1 41.1 5.1 5.5

j = 5 4.3 5.7 76.6 6.5 75.4 30.2 4.3 25.4 70.1 41.2 5.1 5.4

New approach:
case-mix
heterogeneity testsb

k = 1 100 87.0 33.3 88.7 99.9 77.9 97.7 36.1 1.8 0.3 22.4 2.5

k = 2 99.8 81.7 0.1 92.7 99.4 56.3 100 29.2 1.8 0.2 97.0 31.6

k = 3 100 98.2 4.8 97.3 100 96.7 99.9 28.8 1.7 0.4 47.6 4.5

k = 4 100 94.0 2.8 91.6 99.9 82.8 99.6 28.9 1.9 0.5 48.0 3.3

k = 5 99.9 74.1 13.2 78.4 99.8 72.0 99.9 30.4 1.9 0.5 44.7 5.2

Conventional
heterogeneity testc

j = k 74.3 48.9 74.2 48.9 6.2 5.9 99.0 85.8 67.9 40.6 99.7 82.7

Abbreviations: IPW, inverse probability weighting approach with correctly specified propensity score model (except for setting 5); IPWw, inverse probability weighting
approach with the propensity score model incorrectly specified (ie, by not including the essential covariate-covariate interaction term—setting 1); OCR, outcome
regression approach with correctly specified outcome model; OCRw, outcome regression approach with the outcome model incorrectly specified (ie, by not including
the essential treatment-covariate interaction term—setting 1).
aTests comparing logRR( j,k) with the same value of j.
bTests comparing logRR( j,k) with the same value of j.
cTests comparing logRR( j,j) ( j,k = 1,…,5).
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flexible model that incorporates many possible treatment-
covariate and covariate-covariate interactions, regardless of
whether there is significant evidence for them. To lessen
the risk of overfitting, the IPW approach seems more
promising. First, it does not require modeling treatment-
covariate interactions. Second, when the different trials in
the meta-analysis are at least similar on the PICO basis,
then positivity violations and thus extreme weights are
less likely. Future frameworks should focus on improving
the performance of this IPW approach.

4 | META-ANALYSIS OF THE
EFFECT OF VITAMIN D
SUPPLEMENTATION ON ACUTE
RESPIRATORY TRACT INFECTION

We apply the proposed approach to a recently published IPD
meta-analysis assessing the overall effect of vitamin D sup-
plementation on the risk of experiencing at least one acute
respiratory tract infection.26 Data for six eligible trials that
include information on six baseline covariates are available
for analysis (Supporting Information S4). For this illustra-
tion, we only consider the covariates that were collected
across all trials. These are gender, age, body mass index
(BMI), influenza vaccination status, and vitamin D concen-
tration at baseline. All six trials adopt a randomization ratio

of 1:1. One trial is a cluster randomized trial, and one other
has a relatively small sample size (ie, 34 participants). We
exclude the small trial and, for this illustration, ignore the
potential clustering effect in the cluster randomized trial. The
target population of one trial was moreover found to be very
different from the others; ie, it only includes male partici-
pants with 18 to 21 years of age (Supporting Information
S4). To prevent potential violations of positivity, this trial is
excluded from the meta-analysis, leaving four trials.

We apply the new IPW approach to meta-analyze the
dataset on the log odds ratio scale. The main terms of all
baseline covariates are included in the multinomial PS
model. To decide on the inclusion of two-way interactions,
we run two independent backward elimination processes:
one for the logistic outcome model and the other for the mul-
tinomial PS model. Any interaction term that is included in
one of the two final sets is considered for adjustment in the
meta-analysis. This approach leads to the inclusion of five
interaction terms, namely, between sex and BMI, between
sex and flu vaccination status, between age and gender,
between age and influenza vaccination status, and between
age and BMI.

For each IPW estimate, the weights are truncated by
resetting the value of weights greater than the 95th percentile
to the value of the 95th percentile. The presence of large
weights after truncation (ie, higher than 200) indicates a

FIGURE 2 Data analysis: the population-specific meta-analyses
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potential violation of the positivity assumption. If this is the
case, we keep the corresponding IPW estimate in the meta-
analysis to see its impact on the final summary.

Results of the population-specific meta-analyses are
given in Figure 2 and Supporting Information S5. The
weight distributions after truncation are shown in Supporting
Information S6. As can be seen from these weights, there is
a clear violation of positivity when transporting the result
from trial 4 (Martineau, 2015c) to trial 2 (Martineau, 2015a).
This gets translated into a large standard error for the
corresponding IPW estimate for OR(2,4) (Supporting Infor-
mation S6), whose impact on the final result is therefore
dampened.

The population-specific summary effects are not statisti-
cally significant across different trial populations. However,
vitamin D tends to be less effective than placebo in popula-
tion 2, and the two treatments appear equally effective in the
other populations, although these findings are not statisti-
cally significant (possibly due to the lack of power). Besides,
there is no statistically significant evidence of heterogeneity,
neither due to case mix nor due to beyond case mix
(Supporting Information S5). Finally, since the IPD were
only obtained for six trials, the findings reported here might
be subject to selection bias. We thus illustrate the proposed
approach but do not aim to make clinical inference.

5 | DISCUSSION

Assessing the impact of case-mix variation across the eligi-
ble studies is an important task in every meta-analysis. Case-
mix heterogeneity, when it exists, can be quite a nuisance as
it can make the result from different trials difficult to pool.
In this paper, we propose a novel framework that standard-
izes evidences across different trials to one well-defined pop-
ulation before summarizing them. Simulation results
demonstrate the adequacy of the new approach and indicate
that such an approach allows for a more informative hetero-
geneity assessment. Dismantling case-mix heterogeneity
from the total heterogeneity is especially meaningful since
case-mix heterogeneity and beyond case-mix heterogeneity
may sometimes compensate each other, thereby resulting in
approximately equal marginal effect estimates (eg, see set-
ting 2 of the simulation study).

Our proposal is readily extended to meta-analyses of
observational studies. In the OCR approach, this merely
requires that the OCR model additionally includes con-
founders of the treatment-outcome association. It is just
slightly more involved in the IPW approach, where this
would require additional weighting by the reciprocal of the
probability of the observed treatment, given confounders.
The resulting procedure for observational studies is arguably
of even greater importance. Here, different studies typically

adjust for different covariate sets, which may result in excess
heterogeneity. Indeed, even if all studies evaluated the same
study population and controlled for a sufficient set of con-
founders, typical effect measures (such as odds ratios and
hazard ratios) would differ systematically between studies
when some adjust for additional covariates and others do
not. This is the result of noncollapsibility of these effect
measures. 11,17,27,28 It can make the treatment effects from
different observational studies difficult to pool. The pro-
posed procedure overcomes this by standardizing the results
from all studies to the same population.

We did not discuss a number of important issues, such as
the problem of covariates being systematically missing in
some trials or how to take into account the trials with limited
sample size or with special study designs (eg, clustered or
noninferiority trials). A relatively large sample size was also
chosen in the simulation study, as the primary objective was
to investigate the validity of the new meta-analysis and het-
erogeneity assessment approaches under reasonably good
conditions in terms of power. The new approaches, there-
fore, should be further evaluated in a wider range of settings
and of various sample sizes. Further, as individual patient
data can be difficult to obtain in practice, it is important that
the proposed approaches can be extended to aggregated data,
so as to make it more data-friendly and more widely
applicable.

Finally, a drawback of the proposed approaches is that
they require different random-effects meta-analyses, each
targeted to the population of a different trial. This can easily
be avoided, however, by instead standardizing the results to
the population of only one of the trials j. From the viewpoint
of generalizability, this is ideally the trial with the most het-
erogeneous case mix. To avoid positivity violations, this is
ideally the trial with the tightest case mix. Alternatively, one
may standardize the results to the population observed in an
external reference electronic health registry. As noted by a
referee, trialists may then consider mutual standardization in
the original trial reports. In particular, each trial might then
use inverse probability weighting to produce an effect mea-
sure estimate standardized to the case-mix distribution in that
reference register. Then, meta-analysts could base a standard
meta-analysis on these mutually standardized estimates,
which would have the advantage of describing the effect for
the same population. This would overcome the need for an
IPD meta-analysis. As an added advantage, this may often
lead to a reduction in between-trial heterogeneity. In practice,
such an approach is also useful for supporting the decision-
making process. For instance, public health authorities in a
given population might consider standardizing results of the
different trials conducted elsewhere over the realistic case
mix encountered in their population. Results of the meta-
analysis after this standardization will reflect more honestly
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the treatment effectiveness for such population structure,
which is informative to decide whether or not the new inter-
vention should be recommended in the interested population.
While such a strategy contributes to increase the generaliz-
ability of the findings by directly addressing the issues of
case mix, it does not take into account other types of non-
generalizability, such as the one arising from differences
between the real and anticipated trial interventions. To
address this, the estimates RR( j,k) from trials k that come
closest to being “pragmatic” are likely the ones that should
receive most emphasis in the final meta-analysis. We will
investigate this in future work.

To summarize, we developed a novel meta-analysis
approach for randomized clinical trials, which uses individ-
ual patient data from all trials to infer the treatment effect for
the patient population in a given trial, based on either OCR
or IPW. We investigated the new approach via numerically
simulated data and showed that the new approach can lead
to insightful heterogeneity assessment in practice. Via
reanalyzing the real dataset of a published IPD meta-analy-
sis, we also showed that the new approach is applicable in
practice.
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