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A B S T R A C T   

The absence of a specific treatment for SARS-CoV-2 infection led to an intense global effort in order to find new 
therapeutic interventions and improve patient outcomes. One important feature of COVID-19 pathophysiology is 
the activation of immune cells, with consequent massive production and release of inflammatory mediators that 
may cause impairment of several organ functions, including the brain. In addition to its classical role as a 
neurotransmitter, serotonin (5-hydroxytryptamine, 5-HT) has immunomodulatory properties, downregulating 
the inflammatory response by central and peripheral mechanisms. In this review, we describe the roles of 5-HT in 
the regulation of systemic inflammation and the potential benefits of the use of specific serotonin reuptake in-
hibitors as a coadjutant therapy to attenuate neurological complications of COVID-19.   

1. Introduction 

Serotonin (5-hydroxytryptamine, 5-HT) has been associated with a 
plethora of neurological and physiological responses (Berger et al., 
2009) and it also has immunomodulatory properties (Baganz and 
Blakely, 2013; Wu et al., 2019). We now know that different stages of 
SARS-CoV-2 infection take place, namely infection phase, asymptomatic 
or low-symptomatic phase, followed by a mildly symptomatic phase and 
eventually a severe phase (when an exacerbated inflammation is a major 
concern), which can be lethal (Ayres, 2020). One important aspect 
observed in severe patients is the positive association with cytokine 
release syndrome,i.e., an exacerbated systemic inflammatory response 
that may be triggered by infections, for instance (Chatenoud et al., 
1989), in particular the increase of peripheral interleukin (IL)-1β, IL-6, 
and tumor necrosis factor (TNF)-α levels. Interestingly, TNF-α levels 
highly correlate with SARS-CoV-2 load (Lucas et al., 2020) and IL-6 has 
been suggested as an early inflammatory marker to predict severe illness 
in patients with SARS-CoV-2 infection (Aziz et al., 2020; McElvaney 
et al., 2020; Tay et al., 2020). This hyper-inflammatory state that is also 
observed in the severe phase of SARS-CoV-2 infection can damage tis-
sues beyond the lungs, including the brain, and has deleterious neuro-
logical and neuropsychiatric consequences (Wu et al., 2020; Yuan et al., 
2020). The psychosocial effects of the striking economic and health 
system crises caused by the pandemic along with the pre-existing 

worldwide psychosocial factors must also be remembered as potential 
threats to psychiatric disorders (Ajilore and Thames, 2020; Batty et al., 
2020; Lassale et al., 2020). 

Given the broad spectrum of central and peripheral 5-HT actions and 
the urgency to find new perspectives for the management and treatment 
of COVID-19 patients, here we discuss the potential use of selective 5-HT 
reuptake inhibitors not only for treating anxiety/depressive disorders 
but also as an adjuvant therapy to decrease SARS-CoV-2-induced exac-
erbated inflammatory response. 

2. Central 5-HT and its role in systemic inflammation 

Serotonin arises from tryptophan metabolism and plays different 
roles in the brain. Sleep, body temperature, motor control and several 
behavioral effects (mood, memory, fear, perception, stress) are some of 
the central functions regulated by 5-HT (Berger et al., 2009). This 
neurotransmitter is mainly known due to the intense research over the 
last 40 years investigating the modulatory effects of serotonergic system 
by exploiting the effects of certain drugs aimed at the treatment of 
depression, a key area of research in psychiatry (Mann, 1999). More-
over, it is well-known that 5-HT is effective not only to treat depression 
but also to decrease the susceptibility to depression and suicide (Li and 
He, 2007). Interestingly, stimulation of the serotonergic pathway is 
thought to be so beneficial that the use of non-pharmacological methods 
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to increase 5-HT levels have been suggested as a potential strategies to 
prevent depression and/or improve mood and social functioning, by 
means of exercise (Sbolli et al., 2020) or exposure to bright light (Har-
rison et al., 2015), for instance. 

2.1. Central 5-HT in severe systemic inflammation (as observed in 
cytokine release syndrome) 

Adding to this scenario, we have recently reported the potential ef-
fects of central 5-HT in lipopolysaccharide (LPS)-induced severe septic 
like systemic inflammation (Mota et al., 2019). We have found reduced 
5-HT levels in the hypothalamus that coincided with hypotension, 
increased heart rate, hypothermia followed by fever, increased plasma 
prostaglandin E2, nitric oxide, and cytokine levels after LPS intravenous 
administration. Interestingly, exogenous 5-HT given intra-
cerebroventricularly prevented hypotension, reduced plasma nitric 
oxide (NO), blunted hypothermia, and potentiated fever, which were 
associated with reduced LPS-induced TNF-α, IL-6, and IL-1β surges. 

2.2. Central 5-HT in mild systemic inflammation 

These aforementioned data add support to previous studies about the 
role of brain 5-HT during systemic inflammation (Mota et al., 2017; 
Voronova et al., 2016). The role of central 5-HT in inflammation was 
first described by evaluating serotonin 5-HT2A receptor activation 
reversing LPS-induced neuroinflammation by attenuating NO levels 
(Voronova et al., 2016). However, the first anti-inflammatory effect in 
the periphery in a model of LPS-induced mild systemic inflammation 
was described by Mota et al. (2017), by observing that intra-
cerebroventricular injection of 5-HT effectively reduces 
pro-inflammatory cytokines surges. 

2.3. Central 5-HT in low-grade systemic inflammation 

Low-grade systemic inflammation is characterized by sustained low- 
levels of some peripheral cytokines. This phenomenon is observed in a 
myriad of diseases such as neuropsychiatric and metabolic disorders 
(Minihane et al., 2015; Osimo et al., 2019; Rorato et al., 2017). There is 
an understanding that this inflammatory response has a significant 
impact in neuropsychiatric alterations (Heneka et al., 2015; Miller and 
Raison, 2016; Perry, 2010; Shastri et al., 2013) and metabolic disorders 
(Hotamisligil, 2006) in some cases. Importantly, adipose macrophage 
abundance is correlated with adiposity in high-fat diet (HFD) model 
(Weisberg et al., 2003). HFD also increases hypothalamic inflammation 
(De Souza et al., 2005; Milanski et al., 2009). Interestingly, obesity is 
associated with a range of neurodegenerative and psychiatric disorders, 
such as anxiety and depression (Gariepy et al., 2010; Hryhorczuk et al., 
2013). In a systematic review about obesity as a factor that raises the risk 
of developing anxiety disorders, a mild association was observed be-
tween these two disorders (Gariepy et al., 2010). More recently, it was 
speculated that one of the connections between obesity and anxiety is 
inflammation (Capuron and Miller, 2011; Lasselin and Capuron, 2014), 
and metabolic disorders have been suggested as a link between obesity 
and depression (Hryhorczuk et al., 2013). 

This is relevant information since severe SARS-CoV-2 infection has 
also been correlated with increased body mass index (Lucas et al., 2020) 
which can also be epidemiologically translated by the high death 
prevalence between patients with metabolic disorders (KHAN et al., 
2020 preprint). It is suggested that the pre-existing underlying inflam-
mation in obese patients may result in a dysfunctional immune response 
during COVID-19, predisposing to a more severe condition (Seidu et al., 
2020). Obesity is often associated with type 2 diabetes and it has been 
shown that uncontrolled glucose levels promote SARS-CoV-2 replica-
tion, increase cytokine release and induce T cell dysfunction (Codo et al., 
2020; Seidu et al., 2020). Hypercoagulopathy, an important component 
of COVID-19 pathophysiology, is also exacerbated in people with 

obesity (Pasquarelli-do-Nascimento et al., 2020). Metabolic disorders 
have increased in low and middle-income countries populations 
(Miranda et al., 2019), which are also greatly impacted by the economic 
crises initiated by the pandemic outbreak. 

There are plenty of articles using HFD as a pre-clinical model to 
evaluate depressive and anxiogenic-like behavior in obesity (Haleem 
and Mahmood, 2019; Kim et al., 2013; Zemdegs et al., 2016). Most of 
them have demonstrated that HFD decreases plasma and brain 5-HT 
levels (Haleem and Mahmood, 2019; Kesic et al., 2020) followed by 
an increase in anxiogenic and depressive-like behaviors (de Noronha 
et al., 2017; Gomes et al., 2020; Zemdegs et al., 2016). Interestingly, 
peripheral and central 5-HT have opposite roles on metabolic homeo-
stasis: while circulating 5-HT favors the onset of obesity (Crane et al., 
2015), brain serotonin diminishes weight gain by regulating food intake 
and brown adipose tissue activity (Kesic et al., 2020). Pharmacological 
interventions that restore central serotoninergic levels in obese people 
could be helpful not only to regulate immune response during an 
infection, like COVID-19, but also to treat and prevent consequent 
neuropsychiatric alterations. 

Altogether, taking the effect of central 5-HT in attenuating severe 
septic like inflammation and mild systemic inflammation, we believe 
that this decrease in central 5-HT levels might have a role in low-grade 
inflammation observed in these disorders. 

Reconciling available data in the literature, a potential central effect 
of 5-HT on systemic inflammation is suggested and the mechanisms 
would involve inhibition of pro-inflammatory cytokines production that 
would compensate a reduced endogenous central serotonin production 
that take place in systemic inflammation. 

2.4. Central 5-HT and its anti-inflammatory mechanism 

One may wonder how does brain 5-HT exerts its anti-inflammatory 
effects in the periphery in such an effective way that LPS-induced hy-
potension and hypothermia are abolished. The answer may reside in the 
finding that pro-inflammatory responses seem to actually be modulated 
by neural circuits that link the areas of physiology, immunology, and 
neuroscience (Martelli et al., 2014; Okusa et al., 2017; Tracey, 2002). 
The “inflammatory reflex” has been documented as an effective 
anti-inflammatory mechanism in systemic inflammation (Tracey, 2002). 
The afferent pathway of the “inflammatory reflex” relies on the vagal 
nerve that is sensitized by circulating cytokines (Komegae et al., 2018), 
leading to reduced production of pro-inflammatory cytokines in the 
spleen (Okusa et al., 2017). Mota et al. (2019) showed that 5-HT may 
activate the splenic inflammatory reflex, since i.c.v. 5-HT administration 
reduced the production of spleen TNF-α, which is in agreement with the 
notion that specific signaling pathways inhibit spleen TNF-α production 
(de Jonge et al., 2005; Lu et al., 2014). The effect of hypothalamic 5-HT 
has been elegantly reviewed by Rummel (2019). 

3. Peripheral 5-HT and systemic inflammation 

Besides the central effects of 5-HT, it is important to mention that 
most of the body’s 5-HT is actually found in the circulating platelets of 
the bloodstream (Berger et al., 2009) and this peripheral 5-HT plays 
several roles. Systemic 5-HT arises from the enterochromaffin cells of 
the gastrointestinal tract. Under resting conditions, plasma 5-HT con-
centration is about 10 nmol, but it increases to micromolar levels when 
platelets become activated by inflammation, for instance (Mossner and 
Lesch, 1998). Once released, 5-HT functions are mediated by at least 7 
(so far documented in mammals) serotonin 5-HT receptors classes 
(5-HT1 through 5-HT7), as well as by the 5-HT transporter (SERT) 
located presynaptically on serotonergic axon terminals. 

Circulating serotonin modulates numerous functions not only in the 
cardiovascular system, respiration and gastrointestinal functions but 
also in nociception, coagulation and reproduction (Berger et al., 2009). 
In addition to regulating hemostasis, several immunoregulatory 
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functions of peripheral 5-HT have been reported to be mediated through 
a direct effect of 5-HT on circulating immune cells (Roszman et al., 
1985). 

These immune cells express different serotonin receptors subtypes, 
SERT, the enzymes for serotonin synthesis, i.e., tryptophan hydroxylase, 
and for serotonin degradation, i.e., monoamine oxidase (Herr et al., 
2017). In the innate immune system, the first line of defense against 
pathogens, it has been shown that 5-HT inhibits LPS-induced proin-
flammatory cytokines and induces M2 (anti-inflammatory) polarization 
of human macrophages through serotonin 5-HT2B and 5-HT7 receptors 
(Quintero-Villegas and Valdes-Ferrer, 2019). The use of a serotonin 
5-HT7 receptor agonist in experimental sepsis reduces plasma IL-1β and 
IL-6 and also lung NFκB, increasing survival (Cadirci et al., 2013). 
Dendritic cells express several receptor subtypes and are able to use 
serotonin to promote T-cell proliferation and naive T-cell differentia-
tion, showing a serotoninergic action also in adaptative immunity 
(O’Connell et al., 2006). Interestingly, some studies report that seroto-
nin can have inflammatory effects in the gut through serotonin 5-HT3 
and 5-HT4 receptors (Salaga et al., 2019), showing that serotoninergic 
action is tissue- and receptor-specific. 

4. 5-HT and viral infections 

The bidirectional communication between the serotoninergic system 
and viral infections has also been investigated, although to a lesser 
extent. Polyinosinic: polycytidylic acid (poly I:C) is a potent immunos-
timulant and has been used as a methodological approach to mimic viral 
infections, given its interaction with toll-like receptor 3 (TLR3), which is 
involved in the activation of the immune response following virus 
recognition (Lever et al., 2015). Systemic administration of poly I:C 
increases the expression of the serotonin transporter (SERT) and reduces 
extracellular 5-HT in the prefrontal cortex (PFC) of rats, an area asso-
ciated with essential cognitive and limbic functions (Katafuchi et al., 
2006). The increased SERT expression in astrocytes of this brain region 
is at least partially mediated by TLR3 pathway signaling, microglial 
activation, and IL-1β production (Ifuku et al., 2014). Furthermore, poly 
I:C increases tryptophan in the hippocampus and PFC, but this amino 
acid is directed to the kynurenine pathway which produces several 
metabolites that may disrupt normal brain function (Gibney et al., 
2013). 

Peripheral 5-HT is also able to modulate several mechanisms of 
different viral infections. Subpopulations of human dendritic cells ex-
press serotonin 5-HT2B receptor that when activated suppresses the 
production of inflammatory cytokines and chemokines during a viral 
stimulus (Szabo et al., 2018). Serotonin also increases the cytotoxicity of 
natural killers (NK) cells, probably through serotonin 5-HT1A receptor 
(Hellstrand and Hermodsson, 1990). 

The role of 5-HT in the immune response in specific viral infections 
has also been addressed. For example, 5-HT decreases HIV infection in 
human macrophages by down-regulating the expression of CCR5, an 
essential receptor for virus entry in the cell, probably via serotonin 5- 
HT1A receptor (Maneglier et al., 2008). Additionally, buspirone, a 
serotonin-receptor agonist, was able to decrease T-CD8 cell count and 
increase CD4/CD8 ratios in HIV-infected patients (Eugen-Olsen et al., 
2000). Inhibition of chikungunya (Bouma et al., 2020), reovirus 
(Mainou et al., 2015), and parainfluenza (Rabbani and Barik, 2017) 
infection has also been shown to be mediated by this monoamine. 
However, 5-HT immunomodulatory actions may be virus and/or 
receptor-dependent, as exemplified by JC virus infection, where virus 
internalization is stimulated by serotonin 5-HT2A receptors (Assetta 
et al., 2013; O’Hara and Atwood, 2008). 

5SARS-CoV-2 and neuropsychiatry disorders 

The outbreak of the COVID-19 pandemic raised global attention after 
the rapid spread of this disease, reaching more than 15 million cases and 

600,000 deaths less than eight months after the first documented cases 
in December 2019 in Wuhan, China. The infection by this new virus, 
named SARS-CoV-2 led to worldwide efforts to rapidly understand the 
pathophysiology of this disease and the search for efficient treatments. 

Primary targets of SARS-CoV-2 are airway epithelial cells and 
pneumocytes, which are invaded after the virus binding to the 
angiotensin-converting enzyme 2 (ACE2) receptor and TMPRSS2 acti-
vation (Hoffmann et al., 2020). Following replication in the infected 
cells, new virions are released and this acute and severe infection pro-
motes initially a local inflammatory response, with the release of 
proinflammatory cytokines (Wiersinga et al., 2020). Macrophages and 
mononuclear cells infiltrate alveolar tissue and induce edema formation, 
which may explain the respiratory symptoms of this disease, like cough, 
difficulty breathing, and even pneumonia (Wiersinga et al., 2020; Xu 
et al., 2020). 

This progressive and dysregulated host response to infection, with a 
sustained innate inflammatory response, extrapolate to a systemic level, 
with progressive immune effects and excessive circulating inflammatory 
cytokines. Plasma concentrations of IL-1β, IL-1 receptor antagonist, IL-6, 
IL-8, IL-10, IL-17, IFN-γ, and other mediators are increased in severe 
COVID-19 patients (Huang et al., 2020). At the cellular level, it is re-
ported that SARS-CoV-2 infection decreases TCD4+ and TCD8+ lym-
phocytes, monocytes and eosinophils (Chen et al., 2020; Qin et al., 2020; 
Zhao et al., 2020). Patients with metabolic disorders (e.g. obesity and 
type 2 diabetes) are at a higher risk of developing a more severe form of 
the disease, since they are predisposed to an even more uncontrolled 
inflammatory response, with additional production of cytokines and 
deficient cell immunity in COVID-19 and other infections (Andersen 
et al., 2016; Codo et al., 2020). 

This abnormal immune state and the cytokine release syndrome play 
an important role in the clinical manifestations, including neurological 
alterations. One of the early symptoms in patients with COVID-19 is the 
loss or reduction of smell and taste (Lechien et al., 2020; Spinato et al., 
2020). Although not yet proved to occur in humans, SARS-CoV-2 is able 
to invade the olfactory bulb of transgenic mice expressing ACE2 receptor 
and spread to other brain regions (Netland et al., 2008). 

Some of the most common complications of SARS-CoV-2 infection 
are the cerebrovascular events, mainly ischemic stroke (Beyrouti et al., 
2020; Bridwell et al., 2020). These events could be associated with 
coagulation alterations, given that COVID-19 infection is characterized 
by high fibrinogen and D-dimer (a fibrin degradation product) concen-
trations that lead to a prothrombotic state and disseminated intravas-
cular coagulation (Goshua et al., 2020). Cytokine release syndrome is a 
major component of coagulopathy since it activates the coagulation 
cascade and promotes endothelial dysfunction (Colantuoni et al., 2020). 

The inadequate blood supply and concomitant impaired pulmonary 
function may critically decrease cerebral oxygenation and have delete-
rious consequences in brain function. Low oxygen levels may result in 
tissue hypoxia, which further causes cell death, activation of brain im-
mune cells, oxidative stress and the consequent production of inflam-
matory mediators, like cytokines and chemokines (Liu and McCullough, 
2013). Post-mortem analysis of COVID-19 patients revealed astrocytosis 
and loss of neurons in the hippocampus, cerebral cortex, and cerebellum 
(Solomon et al., 2020). Increased cytokine release during COVID-19 
could induce the onset of cerebrovascular and neurological alterations 
or worsen pre-existing conditions, since these disorders are associated 
with the production of inflammatory mediators (Deleidi and Isacson, 
2012; Ellul et al., 2020). 

In addition to neurological disorders, neuropsychiatric complica-
tions are also a concern in SARS-CoV-2 infection. Individual reports and 
case series have described alterations including delirium, mild cognitive 
impairment, psychosis, and mood swings (Dinakaran et al., 2020). A 
nationwide surveillance study identified altered mental status in 31% of 
COVID-19 patients, including syndromic diagnosis like encephalitis but 
also primary psychiatric disorders like psychosis, dementia, and mania 
(Varatharaj et al., 2020). 
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6. Therapeutic perspectives 

The rapid spread of the disease and the absence of immediate ther-
apeutic interventions to effectively treat SARS-CoV-2 infection led the 
scientific and medical community to rethink the use of already available 
drugs in order to improve clinical outcomes. In this scenario, the use of 
selective 5-HT reuptake inhibitors (SSRI) could be considered an adju-
vant in COVID-19 pharmacological therapy. 

This class of drugs was launched in the market more than three de-
cades ago and has well described pharmacodynamic and pharmacoki-
netic properties, making it a safer option as a possible treatment. Clinical 
and experimental studies support the hypothesis that 5-HT could help to 
dampen the excessive production of cytokines during the systemic in-
flammatory condition caused by COVID-19 and diminish its deleterious 
consequences. Serotonin could not only act directly in circulating pe-
ripheral immune cells by binding to specific serotonin 5-HT receptors 
(Herr et al., 2017) but also through central neural mechanisms like the 
anti-inflammatory vagal reflex (Mota et al., 2019). 

Selective 5-HT reuptake inhibitors increase brain 5-HT availability 
by crossing the blood-brain barrier and inhibiting central SERT (Hervas 
and Artigas, 1998), but it has been shown that vagus nerve stimulation 
can augment central production of 5-HT in some brain areas, indicating 
an alternative neural mechanism of monoaminergic system control 
(Manta et al., 2013). It must be highlighted that the decrease of anxiety 
and depressive-like symptoms during fluoxetine and sertraline treat-
ment is partially dependent on indirect CNS activity by vagus nerve 
signaling (McVey Neufeld et al., 2019) and that vagal stimulation has 
been recently described as a therapeutic approach to treat depression 
(Aaronson et al., 2017; Krahl et al., 2004). Interestingly, one main 
feature of vagal stimulation is systemic inflammation attenuation 
(Pavlov and Tracey, 2012). However, more studies must be conducted to 
evaluate if SSRI/vagus association might also have a role increasing 
central 5-HT levels and thus, attenuating systemic inflammation. 

In agreement with this perspective, fluoxetine (the first and one of 
the most prescribed 5-HT reuptake inhibitors) inhibits viral replication 
(Bauer et al., 2019; Zuo et al., 2012) and increases NK cells activity in 
HIV patients (Evans et al., 2008; Frank et al., 1999). Centrally, this drug 
inhibits microglial activation and decreases cytokine production by 
these cells (Liu et al., 2011). Interestingly, an in vitro study showed that 
fluoxetine has a specific action inhibiting SARS-CoV-2 infection (Zim-
niak et al., 2020 preprint). A clinical trial (NCT04377308) is currently 
investigating the effect of this drug on clinical outcomes and cytokine 

storm in COVID-19 patients. Obviously, other selective 5-HT reuptake 
inhibitors may also regulate immune function during viral infections 
(Greeson et al., 2016; Jiang et al., 2014; Sharma et al., 2013). 

Furthermore, selective 5-HT reuptake inhibitors may modulate the 
inflammatory response not only by direct serotonergic mechanisms. 
Fluvoxamine, for example, has significant immunomodulatory proper-
ties by downregulating inflammatory pathways and cytokine production 
in monocytes through its high affinity to sigma-1 receptor (S1R) (Rosen 
et al., 2019). Also, interestingly, an ongoing clinical trial 
(NCT04342663) is currently exploring the potential benefits of this drug 
in COVID-19. Several other selective 5-HT reuptake inhibitors interact 
with S1R and could also have anti-inflammatory properties (Ishima 
et al., 2014). 

To summarize, there is significant evidence in the scientific literature 
to encourage the use of 5-HT reuptake inhibitors as a complementary 
intervention during SARS-CoV-2 infection. The direct immunomodula-
tory action of central and peripheral 5-HT, associated with other indirect 
mechanisms, could effectively dampen the exacerbated immune 
response and prevent neurological complications (Fig. 1). Additionally, 
it would be relevant to consider that patients under long-term SSRI 
therapy should continue the use of their medication when hospitalized 
due to COVID-19. 

As always, for any treatment, the adverse effects must be kept in 
mind, especially when patients are being treated with several combined 
drugs that may increase the risk to develop serotonin syndrome, for 
example (Mas Serrano et al., 2020). Serotonin syndrome (SS) is a 
potentially lethal drug-induced disorder caused by serotoninergic 
over-activity at synapses of both central and peripheral nervous systems 
(Scotton et al., 2019). In SS an altered mental state, tachycardia, hy-
perthermia, hyperreflexia with clonus, ocular clonus, myoclonus, 
tremors, or rigidity may be observed (Buckley et al., 2014). This serious 
condition is usually caused by the combination of selective 5-HT reup-
take inhibitors and serotonin-norepinephrine reuptake inhibitors, 
monoamine oxidase inhibitors, opiates, or tricyclic antidepressants 
among others drugs (Scotton et al., 2019). 
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Fig. 1. Potential role of selective serotonin (5-HT) reuptake inhibitors decreasing systemic inflammation induced by SARS-CoV-2 infection and ameliorating patient 
prognosis. The excessive production of inflammatory mediators may be attenuated by augmenting central and systemic 5-HT levels and also by the activation of non- 
serotoninergic pathways in immune cells. We believe that 5-HT reuptake inhibitors can blunt the exacerbated immune response in COVID-19 and ameliorate clinical 
consequences, such as the development of neuropsychiatric disorders and death. 
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