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Measuring Abnormality in 
High Dimensional Spaces with 
Applications in Biomechanical Gait 
Analysis
Michael Marks1, Trevor Kingsbury2, Richard Bryant1, John David Collins2 & Marilynn Wyatt2

Accurately measuring a subject’s abnormality using high dimensional data can empower better 
outcomes research. Utilizing applications in instrumented gait analysis, this article demonstrates 
how using data that is inherently non-independent to measure overall abnormality may bias results. 
A methodology is then introduced to address this bias and accurately measure abnormality in high 
dimensional spaces. While this methodology is in line with previous literature, it differs in two major 
ways. Advantageously, it can be applied to datasets in which the number of observations is less than 
the number of features/variables, and it can be abstracted to practically any number of domains or 
dimensions. Initial results of these methods show that they can detect known, real-world differences in 
abnormality between subject groups where established measures could not. This methodology is made 
freely available via the abnormality R package on CRAN.

Recent advances in data collection have enabled researchers to collect large amounts of data to describe numer-
ous dimensions (i.e. variables, features, etc.) of their research subjects. Aggregating these many dimensions into 
a single measure that describes the subject in a meaningful way is often necessary. In the case of instrumented 
gait analysis (Fig. 1), describing a subject’s overall level of abnormality is meaningful to both researchers and 
clinicians. Therefore, measuring overall abnormality across the many dimensions of human gait is necessary to 
empower both clinical decision making and outcomes research.

Instrumented gait analysis has been widely used for a variety of pediatric and adult pathologies as a means of 
either quantifying a functional movement deficit or evaluating improvements due to rehabilitation treatments1. 
A typical gait data collection yields thousands of unique measurement dimensions that quantify joint position 
and force production. It is with these thousands of measurement dimensions that gait researchers need to define 
a patient’s overall abnormality.

Measuring a patient’s overall level of abnormality is typically done by comparing a patient’s gait data to a 
reference population data-set of able-bodied controls. When this comparison is done in a single measurement 
dimension, simple distance measures (e.g. Euclidean, Manhattan, etc.) provide unbiased results. However, typi-
cally collected gait data consists of thousands of non-independent measurement dimensions. If this dependency 
structure is not properly addressed, using standard distance measures to define overall abnormality can produce 
biased results.

The Mahalanobis distance measure2 attempts to address this bias, but it cannot be calculated when the number 
of observations (n) is less the number of measurement dimensions (p)3,4. This is problematic since p > n for many 
high-dimensional data-sets, especially those found in instrumented gait analysis. Schutte et al.1 also attempted to 
address this bias for a gait normalcy index; however, this measure was made up of only 16 univariate parameters 
that provide an incomplete picture of overall gait5.

Attempting to address this incompleteness, two new gait normalcy indexes were created by Schwartz and 
Rozumalski5 and Baker et al.6 to measure normalcy across 459 dimensions during a gait cycle. However, these two 
methodologies use standard distance measures and fail to address the dependency structure of the underlying 
data. Despite this, the results from these methodologies have become standard gait summary measures reported 
in various populations7–13.
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Having an overall gait abnormality measure that accounts for all the dimensions of human gait, while still 
accounting for the natural dependency between those dimensions, would ensure proper conclusions are drawn 
in clinical decision making and outcomes research. Therefore, the purpose of this study is to: (1) Demonstrate the 
inherent non-independent nature of data produced in instrumented gait analysis, (2) illustrate how this depend-
ency structure can bias measures of overall abnormality, and (3) put forth a methodology to accurately measure 
overall abnormality in high dimensional spaces.

Results
The Inherent Non-Independent Nature of Gait Data.  Human gait is a complex movement that con-
sists of both open and closed kinematic chain movements. While motion is typically analyzed at the joint level, 
movement of one joint can result in changes at other joints. Thus, gait elements are non-independent and the data 
representing it will not be either. To demonstrate this non-independence, gait data were collected for 32 able-bod-
ied males and assembled into a 32 × 459 matrix (See Methods section for collection methodology). These are the 
same 459 dimensions (9 kinematic joint angles × 51 points each) used by Schwartz and Rozumalski5 and Baker 
et al.6 for their overall gait abnormality measures (Fig. 2).

By projecting all 459 feature vectors of this reference matrix onto their first three eigenvectors (principal com-
ponents), the non-independent nature of the gait data can be seen visually (Fig. 3)14. There is a clear, non-random 
pattern to the vectors, demonstrating the dependent nature of the underlying variables they represent.

The Non-Independence Bias Problem.  This dependency structure can bias measures of overall abnor-
mality if not properly addressed. This bias is most easily demonstrated by visually exploring overall abnormal-
ity measurements of a subject against a reference population calculated with non-independent variables in 
two-dimensional space.

The four graphs in Fig. 4 show the values of two correlated variables (v1 and v2, r = 0.83) for a reference popu-
lation (blue dots, n = 32) and two different subjects (orange), Subject1 and Subject2. On the left, the variables are in 
their scaled and centered form (μ = 0, ρ = 1). We will refer to this basis as the standard basis = …ˆ ˆ ˆB b b b{ , , , }p1 2 . 
On the right, v1 and v2 are transformed into a basis of their orthonormal principal component vectors utilizing the 
methodology laid out in the methods section. We will refer to this basis as the principal component basis 

= …  B PC PC PC{ , , , }PC p1 2 . Combinations of v1 and v2, and PC1 and PC2, that are within two standard devia-
tions of the mean of the reference population will be inside the blue ellipse. Since the data have been centered and 
scaled (μ = 0, ρ = 1), the mean reference subject lies at the origin for both graphs.

The Euclidean distance between the subject and the origin represents the level of abnormality. When compar-
ing the Euclidean distances of Subject1 and Subject2, the issues with measuring normalcy in the standard basis, B, 
can be seen. In B (Fig. 4), both Subject1 and Subject2 are 2  units from the origin, indicating equal abnormality. 
However, due to the strong positive correlation between v1 and v2, Subject2’s combination of the two variables is 
more abnormal than Subject1’s. This is demonstrated by comparing locations in relation to the blue ellipse repre-
senting two standard deviations from the origin. This interesting example shows that not addressing multicollin-
earity can lead to biased results and how the proposed methodology negates this bias.

This example can be extended into higher dimensions as well. Figure 5 shows a simulated extension of the 
Fig. 4 example into higher dimensional spaces (Methods - Simulated Example of Bias in Higher Dimensional 

Figure 1.  An example of a patient preparing for instrumented gait analysis.
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Spaces). This simulated example shows that the bias seen in Fig. 4 actually gets larger as the number of dimen-
sions increase. When using a mean absolute deviation (MAD) in the standard basis, Subject 1 (all values of 1) and 
Subject 2 (half values of 1 and half values of −1) share the same level of normalcy in any number of dimensions. 
This is despite a reference population whose features are all positively correlated (r = 0.75). This strong posi-
tive correlation makes Subject 2’s values more and more abnormal as the number of dimensions increase. This 
expected level of abnormality is reflected when using a mean absolute deviation in the principal component (PC) 
space, thus demonstrating the effectiveness of this method.

As seen by the examples in Figs 4 and 5, not addressing the non-independent nature of the underlying data in 
a measure of overall abnormality can lead to biased results. This bias only gets worse as the correlation between 
the underlying variables increases (Supplemental Figure). However, as seen by these results, utilizing the meth-
odology laid out to transform the original variables into a basis of their orthonormal principal component vectors 
negates this bias.

Applications in Biomechanical Gait Analysis.  Research has shown that patients with an above knee 
amputation have more abnormal gait than patients with a below knee amputation for kinematic measures such as 
knee flexion15. An overall abnormality measure should be able to detect this difference. Figure 6 shows the average 
overall abnormality for these two patient groups using different overall abnormality methods. The known differ-
ences in gait abnormality between the groups were detected using the methods outlined in this paper (p = 0.002, 
power = 0.885 at α = 0.05). The methodologies that do not account for the non-independent nature of the under-
lying data were unable to detect these differences. These results demonstrate that accounting for multicollinearity 
when measuring overall abnormality enables a more accurate measurement.

Discussion
The purpose of this study was to demonstrate the inherent non-independent nature of data produced in instru-
mented gait analysis, illustrate how this non-independence can bias measures of overall abnormality, and put 
forth a methodology to produce a new coordinate system with which to accurately measure overall abnormality 
in high dimensional spaces. In addition to the new coordinate system, the number of principal components to 
retain and the proper distance measure to utilize are important discussion topics. The two applications depend on 
the specific clinical or research question but have several validated options available.

Determining the Number of Principal Components.  Selecting the right number of principal compo-
nents is an extremely well researched topic (Jackson16, Peres-Neto et al.17, and Ferré18 provide good surveys). The 
extensive research done on this problem speaks to its importance: if the number of axes is not correctly estimated, 
one can introduce noise (overestimation) or loss of information (underestimation) in the analysis19.

Figure 2.  Reference population (n = 32) means for nine joint angles across the gait cycle normalized to 
51 points. These 459 total dimensions are the same as those used by Schwartz and Rozumalski5 and Baker 
et al.6 for their overall gait abnormality measures. This data was aggregated into a 32 × 459 matrix for the 
multicollinearity analysis.
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In the case of this study’s gait data (and many other high dimensional datasets), there are fewer observations 
(n = 32) than measurement dimensions (p = 459). If n is smaller than p, the data cannot occupy more than an 
n-dimensional subspace of the p-dimensional space. Therefore, projection into a lower-dimensional space does 
not necessarily lose information. If the data really are a lower-dimensional manifold in the high dimensional 
space, then a projection can preserve its structure exactly20. This is the case with our example gait data-set as 
illustrated by the first 32 principal components accounting for 100% of the total variation in the data (Table 1).

One could choose to retain all these principal components for measuring overall abnormality. This is what was 
done by Schutte et al.1 for their gait normalcy index; however, the data used in that study only had 16 dimensions. 
Keeping all the principal components removes all risk that information relevant to a subject’s abnormality is lost. 
However, including principal components with small eigenvalues may introduce unnecessary noise (e.g. meas-
urement error) that could bias results. Furthermore, utilizing fewer principal components may be beneficial when 
making clinical interpretations since one could determine what data are represented in each PC and determine 
the most meaningful data that is being evaluated.

Deciding how many of those principal components (in this case 32) to keep is more of a subjective art than a 
perfect science. Figure 7 shows a scree plot with the results of some common methodologies used to determine 
the appropriate number of principal components when applied to the sample gait data. Percent total variance 
explained (% TVE) is a common, yet relatively arbitrary, method; three different cutoff values are presented (90%, 
95%, and 99%). Additionally, the results of the broken stick21, Kaiser-Guttman22,23, and parallel24 methods are 
included as well25.

For purely clinical applications, interest lies in utilizing a summary measure to enable specific interventions. 
To do this, some knowledge of why a subject is abnormal is necessary. Assessing the loading significance of the 
original variables on the resultant principal components26 can enable a clinician to see where a patient is most 
abnormal. This task becomes more complex with more principal components, so using fewer PCs would enable 
some clinical interpretability. As a result, even though a lower amount of variance would be explained, the clinical 
meaning would be improved with fewer principal components.

For the purposes of measuring abnormality in high dimensional gait analysis, it is likely that removing princi-
pal components with eigenvalues <1 (Kaiser-Guttman) strikes a good balance between the risks of unnecessary 
noise and information loss. An eigenvalue greater than one indicates that its corresponding principal component 

Figure 3.  All 459 feature vectors of the reference gait data matrix projected onto their first three eigenvectors 
(principal components). The non-random distribution of the vectors in this space indicate a strong dependency 
among the gait features.
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contains more information than any single original variable16. If an eigenvalue equals one for a given principal 
component, that variability could be associated exclusively with one single original variable that is orthogonal 
to the rest of the data. While this scenario is highly unlikely, one would probably not want to exclude a variable 
which exhibits these properties for the purposes of abnormality measurement. Keeping all principal components 
with an eigenvalue >1 would ensure this does not happen.

An additional consideration is that for very high dimensional datasets with p much larger than n, the eigen-
values from the data are not consistent estimators of the population eigenvalues27. Therefore, caution should be 
exercised before drawing conclusions from the eigenvalues or TVEs from the sample. A possible approach in this 
circumstance is to use bootstrapping. This allows one to create a confidence interval either of the true eigenvalue 
corresponding to each principal component, or the percentage of variance explained by the first k PCs, through 
resampling the data. This confidence interval can be used to test, at a specified confidence level, that an eigenvalue 
<1 or TVE is 90%. Therefore, the first PC that satisfies this test can be used as the cutoff point for PCs to retain. 
To maintain a balance between clinical interpretability and variance explained as well as keep the procedure com-
putationally simple, we recommend the Kaiser-Guttman approach to selecting number of principal components, 
with bootstrapping in cases of p being much greater than n.

Selecting a Distance Measure.  Measuring distances and the properties of different distance measures in 
high-dimensional spaces is a well-studied topic for the purposes of outlier detection in computer science28–33. 
However, computer scientists are typically more concerned with how points relate to one another in terms of 
distance, instead of normalcy which would simply be distance from average (i.e. the origin if the variables are 
standardized). Further research is required to truly understand the implications of measuring distance from the 
origin in these higher dimensional spaces.

Figure 4.  A two-dimensional example of the non-independence bias problem when measuring overall 
abnormality with two correlated variables (r = 0.83) and how that bias is addressed with the proposed 
methodology.
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Established measures of overall gait abnormality use various distance measures in their methodologies. 
Schutte et al.1 uses the square of a Euclidean distance. Schwartz and Rozumalski5 use the natural logarithm of a 
Euclidean distance as a raw score, and utilize a scaled version (μ = 100, σ = 10) of the raw score for clinical inter-
pretation purposes. Baker et al.6 utilize a simple root mean squared (RMS) difference.

Figure 6.  The results of measuring overall gait abnormality utilizing the methodology proposed in this paper 
and established methodologies in gait research. The average abnormality is shown for two groups with known 
gait differences: unilateral above-knee amputation patients (n = 10) and unilateral below-knee amputation 
patients (n = 63). This paper’s proposed methodology is able to detect the known differences between the two 
groups across these dimensions, while the established methodologies cannot.

Figure 5.  The results of a simulated extension of the example from Fig. 4 into higher dimensional spaces. 
The results show that the bias when measuring overall abnormality can actually increase as the number of 
dimensions increase and the true abnormality is reflected when using the proposed methodology.
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Any number of distance measures (e.g. Euclidean, MAD, RMS, Manhattan, etc.) all have their merit, but ulti-
mately, the metric used to measure distance should be chosen based on the use case. If the resultant abnormality 
measure is for statistical tests, one would want a measure whose output has good mathematical properties (e.g. 
normally distributed so parametric tests can be used). This was the rationale for Schwartz and Rozumalski5 using 
the natural logarithm of a Euclidean distance. If it is for interpretation purposes, one would want something the 
user of the data will understand (the rationale for Schwartz and Rozumalski’s scaled version5). Ideally, usability 
testing would be done to establish a unit of measurement that is most valuable to its users. For example, if the 
users are familiar with the idea of a standard deviation, a mean absolute deviation (MAD) of the standardized 
principal components could be used. This would improve clinical interpretability and likely enhance utility in a 
multidisciplinary setting.

Conclusion
Biomechanical gait analysis is a powerful tool for collecting large amounts of outcomes data. Aggregating all this 
data into a single measure of abnormality greatly aids in clinical decision making and outcomes research. As 
a result, previous attempts at creating such measures have become widely used in many academic and clinical 
circles5,6. These measures have been a big step forward for the gait community; however, as this study has demon-
strated, these measures can bias results because they fail to address the inherent dependent nature of gait data.

This study has given the researcher a methodology to address these dependency issues when creating overall 
abnormality measures. These methods are not exclusive to measuring abnormality in gait and could be applied 
to other high-dimensional, multicollinear data-sets. Given each researcher/clinician has their own needs when 
using or creating outcome measures, different considerations can be utilized that will affect the resultant measure. 
Application of these methods and considerations will empower researchers to create useful measures of overall 
abnormality in domains like instrumented gait analysis. Utilizing these new measures will improve the accuracy 
of outcomes research in such fields where multicollinear, high-dimensional datasets exist.

Component Number Eigenvalue % Variance Explained Cumulative %

1 129.96 0.2831 0.2831

2 67.59 0.1473 0.4304

3 52.57 0.1145 0.5449

4 36.59 0.0797 0.6246

5 34.56 0.0753 0.6999

6 30.43 0.0663 0.7662

7 23.10 0.0503 0.8165

8 15.77 0.0343 0.8509

9 12.05 0.0262 0.8771

10 9.35 0.0204 0.8975

11 7.50 0.0163 0.9139

12 6.88 0.0150 0.9288

13 4.87 0.0106 0.9394

14 4.43 0.0097 0.9491

15 4.14 0.0090 0.9581

16 3.39 0.0074 0.9655

17 2.47 0.0054 0.9709

18 2.40 0.0052 0.9761

19 2.05 0.0045 0.9806

20 1.47 0.0032 0.9838

21 1.46 0.0032 0.9870

22 1.32 0.0029 0.9899

23 0.89 0.0019 0.9918

24 0.89 0.0019 0.9937

25 0.72 0.0016 0.9953

26 0.61 0.0013 0.9966

27 0.42 0.0009 0.9976

28 0.37 0.0008 0.9984

29 0.33 0.0007 0.9991

30 0.25 0.0006 0.9996

31 0.16 0.0004 1.0000

32 0.00 0.0000 1.0000

Table 1.  A breakdown of the first 32 Principal Components for the 459 Dimension Gait Data Sample.
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Methods
Subject Data Collection.  Thirty-two able-bodied males, with no history of orthopedic injuries or surgeries 
that would affect gait, were studied while walking at their self-selected speed. The average age of these subjects 
was 30 ± 6 years, and their average BMI was 27 ± 2 kg/m2. The study protocol was approved by the Naval Medical 
Center San Diego Institutional Review Board in compliance with all applicable federal regulations governing the 
protection of human subjects. Informed consent was obtained from all subjects who participated in the study. 
Additionally, informed consent was obtained from the subject in Fig. 1 to have their photo disseminated in the 
public domain, this includes an open-access publication.

All subjects were studied using a 34-marker modified Helen Hayes marker set and data were collected using 
a 12-camera Motion Analysis Eagle system (Motion Analysis Corporation, Santa Rosa, CA). This marker set 
allowed for nine joint angles (pelvic and hip angles in all three planes, knee flex/extension, ankle dorsi/plantar-
flexion, and foot progression) to be calculated at 2% increments throughout the entire gait cycle of 100%, giving 
51 data points per joint angle. The analysis of the volunteer’s left side only resulted in 459 total measurement 
dimensions for each subject with which to measure normalcy (9 angles × 51 points each = 459 dimensions) 
(Fig. 2). To mirror the data used by Schwartz and Rozumalski5 and Baker et al.6, the exported data on these sub-
jects were aggregated into a 32 × 459 matrix for the multicollinearity analysis.

Methodology to Address the Non-Independence Bias Problem.  To address the multicollinearity 
bias problem to accurately measure normalcy in p dimensions:

Let Refn × p be the matrix representing the reference population.

=
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The rows of the matrix represent n subjects in the reference population; the columns represent p features of the 
subjects in the reference population.

Let 
→
Subj  be the vector of those same p features for the subject with whom we want to compare to the reference 

population.


→

= … ′ ∈


s s sSubj ( , , , )p
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1 2

To get these two objects into the principal component basis, BPC, we must first scale and center both based on μ→ref  
and σ→ref  where:

μ μ μ μ→ = … ′ ∈( , , , )ref p
p

1 2

and the pth element of μ→ref  is:

Figure 7.  A scree plot with the results of some common methodologies used to determine the appropriate 
number of principal components when applied to the sample gait data.



www.nature.com/scientificreports/

9SCIeNtIfIC REPOrTS | (2018) 8:15481 | DOI:10.1038/s41598-018-33694-3

∑μ =
=n

Ref1
p

i

n

i p
1

,

And where:

σ σ σ σ→ = …( , , , )ref p1 2

where the pth element of σ→ref  is:

σ
μ

=
∑ −

−
= Ref

n

( )

1p
i
n

i p p1 ,
2

To get the scaled and centered version of ×Ref n p (We will call this ×RefZ
n p), μ→ref  is subtracted from all n rows of 

×Ref n p, all n rows are then divided by σ→ref . The same process is done on 
→
Subj  to convert it to 

→
SubjZ:
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To determine the change of basis matrix, let →E B BPC
 represent the change of basis matrix from basis B to basis 

BPC. →E B BPC
 which is simply composed of the eigenvectors of the covariance matrix of Ref n p

Z
, . Since the covari-

ance matrix is symmetric, its eigenvectors are orthogonal, thus using a matrix of these eigenvectors as a change of 
basis matrix results in a rotation of the original data. A change of location (or translation) by scaling and centering 
followed by a rotation does not alter the intrinsic statistical properties of the data34. The overall goal of this trans-
formation is to create a new set of uncorrelated variables with which to measure the distinct properties of the 
reference population and how a subject differs from that population.

We will refer to the results of the projection of ×RefZ
n p and 

→
SubjZ onto the eigenvectors of ×cov Ref( )Z

n p  as, ×RefPC
n p 

and 
→
SubjPC respectively.

The square root of the eigenvalue is the standard deviation of its corresponding eigenvector, so each new 
uncorrelated variable is divided by the square root of its corresponding eigenvalue to ensure equal variance 
(Fig. 8). According to Schutte et al.1, scaling the new variables this way accounts for the magnitude of variation 
inherent in certain variables. In other words, if one of the original p variables (or some linear combination of the 
p variables) has a large variation within the reference population, then a large deviation from the average value of 
that variable will not count excessively against the ‘normalcy’ of a subject. It could be argued that the eigenvectors 
associated with small eigenvalues represent variable combinations that may be small random fluctuations and 
should not be magnified through division by their eigenvalue1. This is a valid concern which could be addressed 

Figure 8.  A two-dimensional example of the scaling that is done to ensure that each of the new uncorrelated 
variables has equal variance. This is done by dividing each new variable by the square root of its corresponding 
eigenvalue. The square root of the eigenvalue is the standard deviation of its corresponding eigenvector.
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by removing principal components with small eigenvalues from the analysis altogether. This is a common practice 
and its merits are considered in the discussion section.

The re-scaled versions of ×RefPC
n p and 

→
SubjPC will be referred to as ×RefPC

n p
Z

 and →
SubjPCZ

. It is with respect to 
these variables that normalcy can be accurately measured.

These new variables are a different representation of the original points defining a subject in space. The original 
points have not changed their location in space, but only the construct in which they are expressed has changed.

Since ×RefPC
n p

Z
 and →

SubjPCZ
 have been scaled and centered, the mean for each variable lies at the origin (i.e. 

...(0, 0, , 0 )p ) of the p dimensional space in which they occupy. The distance from the origin can therefore be 
thought of as a level of abnormality. The further away a subject is from the origin, the more abnormal they are.

Simulated Example of Bias in Higher Dimensional Spaces.  Let Σ ×p p be the matrix representing the 
covariance matrix used to generate a reference population ( ×Ref p100 ) from a multivariate normal distribution35 
with μ = 0.
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For each simulation iteration, a reference population, ×Ref p100 , is generated from Σ ×p p. A subject 
→

= … ′


s s sSubj ( , , , )p1 2  is then generated as either 
 →

= …Subj (1, 1, , 1 )p1  or 
 →

= … ′ ∈ −s s sSubj ( , , , ) {1, 1}p2 1 2  
with a random distribution of p

2
 values equal to 1 and p

2
 values equal to −1.

The Euclidean distance and mean absolute deviation are taken between ×Ref p100  and 
 →
Subj1 , and ×Ref p100  and  →

Subj2 . These distance measures are taken in both the standard basis, and the principal component basis (follow-
ing the methodology outlined and utilizing all principal components).

The random sampling of ×Ref p100 , 
 →
Subj1 , and 

 →
Subj2  and the subsequent abnormality calculations (Euclidean 

and MAD in standard and PC basis) were done 500 times for each value of p (2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 
45, 50). Results were averaged for each value of p and reported as seen in Fig. 5.

Applications in Biomechanical Gait Analysis Experiment.  A group of 73 patients with amputation 
(63 below knee, and 10 above knee) were studied as soon as they could ambulate without an assistive device after 
their amputation. Data was collected using the same methodology outlined above for the able-bodied patients. 
Measurements were taken on the patient’s affected side using the same 459 gait dimensions used by Schwartz and 
Rozumalski5 and Baker et al.6. Abnormality measurements were then calculated for each patient using the meth-
ods outlined in this paper, those by Schwartz and Rozumalski5, and those by Baker et al.6.

The reported metrics generated with the methods outlined in this manuscript used the Kaiser-Guttman22 cri-
teria for selecting the appropriate number of principal components and a mean absolute deviation for a distance 
measure. Results using Schwartz and Rozumalski’s methodology5 are reported in their raw, z-score format; this 
was done for interpretability and does not affect the conclusions drawn in this experiment.

Effect size was defined by a bias-corrected Hedge’s g statistic. At an effect size of 0.977 and a significance level 
of 0.05, the power of this test was 0.885. All data was tested for violations of the assumptions of a t-test: homo-
geneity of variance and samples from a normally distributed population. The reference population data was also 
tested for being sampled from a multivariate Gaussian population using Royston’s test36,37, resulting in a failure 
to reject the null hypothesis that the data was drawn from a multivariate Gaussian population (p = 0.06). Further 
tests should be done to validate these methods in other multivariate populations.

Disclaimer.  The views expressed in the article are those of the authors and do not reflect the official policy of 
Department of the Navy, Department of the Army, Department of Defense, or the US Government.

Data Availability
This article was written with RMarkdown38,39. All source data and code to reproduce the entire manuscript are 
organized into an R Project38,40 and are freely available at https://github.com/ImprovementPathSystems/Measur-
ing_Abnormality_in_High_Dimensional_Spaces. The methodology is also made available via the abnormality R 
package on CRAN41.
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