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Background/Aims: The failure to correctly differentiate 
between intrahepatic cholangiocarcinoma (CC) and hepa-
tocellular carcinoma (HCC) is a significant clinical problem, 
particularly in terms of the different treatment goals for both 
cancers. In this study a specific gene expression profile to 
discriminate these two subgroups of liver cancer was estab-
lished and potential diagnostic markers for clinical use were 
analyzed. Methods: To evaluate the gene expression profiles 
of HCC and intrahepatic CC, Oligonucleotide arrays (Affyme-
trixU133A) were used. Overexpressed genes were checked 
for their potential use as new markers for discrimination and 
their expression values were validated by reverse transcrip-
tion polymerase chain reaction and immunohistochemistry 
analyses. Results: 695 genes/expressed sequence tags 
(ESTs) in HCC (245 up-/450 down-regulated) and 552 genes/
ESTs in CC (221 up-/331 down-regulated) were significantly 
dysregulated (p<0.05, fold change >2, ≥70%). Using a su-
pervised learning method, and one-way analysis of variance 
a specific 270-gene expression profile that enabled rapid, 
reproducible differentiation between both tumors and non-
malignant liver tissues was established. A panel of 12 genes 
(e.g., HSP90, ERG1, GPC3, TKT, ACLY, and NME1 for HCC; 
SPT2, T4S3, CNX43, TTD1, HBD01 for CC) were detected and 
partly described for the first time as potential discrimination 
markers. Conclusions: A specific gene expression profile 
for discrimination of primary liver cancer was identified and 
potential marker genes with feasible clinical impact were de-
scribed. (Gut Liver 2018;12:306-315)
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INTRODUCTION

Worldwide, primary liver cancer is one of the most human 
cancer leading to an overall incidence of over 5% of all cancer 
types.1 Beside hepatocellular carcinoma (HCC), cholangiocarci-
noma (CC) is the second most frequent primary malignant liver 
tumor. Both, HCC and CC, shows an increasing incidence2,3 and 
especially a high incidence in Africa and Asia. Despite the high 
incidence of primary liver cancer in developing countries, in 
Europe and the USA chronic hepatitis C an obesity leading to 
chronic inflammation of the liver nonalcoholic steatohepatitis 
are the main reasons for an increase of patients with HCC in the 
next decades.4 Whereas 70% to 80% of HCC occurs in cirrhotic 
liver, the etiology of CC remains in many cases unclear. As for 
HCC liver cirrhosis reasonable to chronic viral hepatitis leads 
to the increasing incidence of CC in Western countries, other 
typical risk factor in endemic areas includes diseases leading to 
chronic inflammation as liver fluke infection, hepatolithiasis or 
anatomical abnormalities of the biliary tract (e.g., Caroli syn-
drome).

A correct differentiation between CC and HCC is a relative 
frequent problem in clinical routine and very crucial because of 
different treatment goals and options for both cancers. Whereas 
orthotopic liver transplantation is a potentially curative option 
for some patients with HCC, intrahepatic CC (iCC) is considered 
a contraindication for transplantation because of high recur-
rence rate and poor overall outcome.5 Actually, sorafenib and 
intra-arterial chemoembolization are the best treatment options 
for unresectable HCC, whereas chemotherapeutic agents are 
not beneficial in comparison to CC, were unresectable iCCs are 
treated with gemcitabine- or platine-based regimen.6,7 

As noninvasive diagnostic of HCC so-called 4-phase multi-
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detector computed tomography or dynamic contrast enhanced 
magnetic resonance imaging (MRI) are actually recommended 
by the American Association for the Study of Liver Disease 
(AASLD) and by the European Organisation for Research and 
Treatment of Cancer (EORTC).8,9 However, especially small and 
well-differentiated iCC in cirrhotic liver tissues could show an 
atypical contrast enhancement pattern mimicking HCC.10-12

Because of the critical importance of a correct classification 
of primary liver tumors a routine histological evaluation us-
ing immunohistochemistry (IHC) is indispensable13,14 in most 
cases. Today immunohistochemical staining against hepatocyte 
paraffin antigen-1 (HepPar-1), polyclonal carcinoembryonic 
antigen (CEA), cluster of differentiation 10 and 34 (CD10/34), 
-fetoprotein (AFP) and glypican-3 (GPC3) are used to establish 
the diagnosis of HCC. However, similar to noninvasive diagnos-
tic, there are some pitfalls in clinical routine and the use of must 
of these markers is limited by low sensitivity leading to difficul-
ties by the interpretation of the marker profile,15,16 especially in 
poorly differentiated HCC.17,18 Similar problems of low sensitiv-
ity and specificity were seen by the use of the serum markers 
AFP or carbohydrate antigen 19-9 (CA19-9) for discrimination 
of primary or secondary liver tumors.19,20

A promising approach for better distinction between HCC and 
iCC is the analysis of differently expressed genes in tumor tissue 
by gene expression analysis or real-time quantitative reverse 
transcription polymerase chain reaction (RT-PCR).21-23 In this 
study we used oligonucleotide arrays for distinction and detec-
tion of potential biomarkers of primary liver tumors.

MATERIALS AND METHODS

1. Acquisition of samples

Surgical tumor probes (both tumorous and corresponding 
nonmalignant liver tissue) were received from 29 patients with 
proved primary liver tumors (10 CC, 19 HCC, for more details 
see Table 1). Ethics committee approval was obtained by the lo-
cal ethic board of the University of Tübingen (IRB No. FS 148-
2001) and in accordance with the Declaration of Helsinki. Only 
after obtained written informed consent from the patients parts 

of the tumor samples were used for gene expression analyses.

2. Histopathological and preoperative noninvasive evaluation

For each tissue sample, we obtained clinical, virological and 
pathological reports (including tumor typing, staging based on 
Union internationale contre le cancer [UICC] criteria, grading) 
were obtained for each tissue sample. A hematoxylin-eosin 
staining and additional immunohistochemical stainings with a 
panel of antibodies were performed routinely (HepPar-1, AFP, 
cytokeratin 7 [CK7], CA19-9, CD34, and CEA) for subclassifica-
tion between HCC and CC and to exclude other types of malig-
nancies. 

In all patients a preoperative, noninvasive diagnostic using 

computed tomography (CT) and/or MRI was performed (Table 1) 
and these results compared with the histopathological reports.

3. Preparation of labeled cRNA and hybridization to oligo-
nucleotide arrays

The SuperScript Choice system (Invitrogen, Carlsbad, CA, 
USA) was used for transcription of total RNA into double-
stranded cDNA. To assembly first-strand cDNA synthesis a T7-
(dT24) oligonucleotide primer with a RNA polymerase promoter 
site was used. In vitro transcription followed after second-strand 
synthesis in the presence of biotin-11-cytidine triphosphate and 
biotin-16-uridine triphosphate (Enzo Diagnostics, New York, 
NY, USA). Next, biotin-labelled cRNA were fragmented (20 g 
at 94°C for 35 minutes) and added to a hybridization solution 
to a final cRNA concentration (0.05 mg/mL). The solution was 
incubated for hybridization with an oligonucleotide array (Af-
fymetrixGeneChip [Hu133A]), containing 22,283 probe sets for 
known genes or expressed sequence tags (ESTs). After staining 
with streptavidin-phycoerythrin a Gene Array scanner G2500A 
(Hewlett Packard, Palo Alto, CA, USA) was used for scanning of 
the hybridisation products according to the recommendations of 
the manufacturer.

4. Data mining, statistical analysis, tumor subclassification 
and identification of altered metabolic pathways involved 
in human hepato- and cholangiocarcinogenesis

The utilization of the scanned expression data was performed 
using the Affymetrix microarray suite (MAS version 5.0.1). For 
statistical analysis and post-processing of the obtained data the 
software programs GeneSpring version 6.1 (Silicon Genetics, 
Redwood City, CA, USA) and GeneExplore version 1.1 (Applied 
Maths, Sint-Martens-Latem, Belgium) were used. Only Chip 
results of different scaling factors (0.5 to 1.8) were selected for 
further analyses. Using the signal log ratio which is determined 
by the comparison of two-array results between tumorous and 
nontumorous tissues expression values were obtained and then 
log2-transformed. A p-value of less than 0.05 (t-test) and a 
fold-change of 2 in 60% or more of all analyzed tumor probes 
were considered as significant. Using this data a specific gene 
expression profile was established by two-dimensional cluster 
and one-way analysis of variance (ANOVA) analysis.

For identification of involved specific signaling or metabolic 
pathways in human hepato- or cholangiocarcinogenesis, data 
of significantly expressed genes were transferred in GenMapp, 
a public domain software program 2.0 betaⓒ (Gladstone Insti-
tutes, San Francisco, CA, USA). GenMapp allows the graphic 
representation of various pathways and the expression levels of 
involved genes.

The statistical analyses and presentation of the data were per-
formed in accordance with the Minimum Information About a 
Microarray Experiment (MIAME) criteria and will be published 
online at http://www.paracelsus-kliniken.de/scheidegg/Forsc-



308  Gut and Liver, Vol. 12, No. 3, May 2018

hung/gene-profilesHCCvs.CCC.2017.

5. Validation of expression data by RT-PCR and IHC

Four of the most significantly overexpressed genes in at least 
80% of the HCC and CC tissue samples were used for valida-
tion of the expression levels estimated by microarray analysis: 
karyopherin alpha 2 (KNPA2, GPC3), serine protease inhibitor 
type Kazal 1 (SPINK1) and osteopontin (OPN). Primers corre-
sponding to the coding regions of these genes were designed us-
ing OLIGO primer analysis software (Molecular Biology Insights, 
Colorado Springs, CO, USA) and used for RT-PCR analyses 
using the LightCyclerⓒ system (Roche Diagnostics, Mannheim, 
Germany). Primer sequences were as follows: 

OPN: 696U; GGACAGCCGTGGGAAGG

OPN: 810L; TCAATCACATCGGAATGCTCA
SPINK1: 151U; GCCTTGGCCCTGTTGAGTCTA 
SPINK1: 273L; CACGCATTCATTGGGATAAGTATTT
KPNA2: 328U; GAAAACCGCAACAACCA
KPNA2: 501L; GCCCAAGAAGGACACAAAT
GPC3: 1808U; CAGCAGGCAACTCCGAAGG 
GPC3: 1929L; TGGGCACCAGGCAGTCAGT

For RT-PCR reactions LC RNA Amplification Kit SYBR Green I,
(Roche Diagnostics) were used. Amplification was followed by 
melting-curve analysis and the values for the initial target con-
centration in each sample were determined using LightCyclerⓒ 
software 3.5. For each patient the relative change in gene expres-
sion was estimated by pairwise comparison of tumor and nonma-
lignant liver tissue samples. 

Table 1. Patient Demographics, Histopathological Data and Noninvasive Diagnostic Results (n=29)

No. Sex Age, yr Histology Staging Grading Etiology Noninvasive diagnostic result

1 F 57 CC pT3 G3 HBV, LC CT (sd: CC, metastasis)

2 F 65 CC pT3 G2 HCV, LC CT/MRI (sd: CC)

3 F 68 CC pT2 G2 C2, LC CT/MRI (sd: CC/HCC)

4 M 74 CC pT3 G2 LC CT/MRI (sd: CC)

5 F 62 CC pT3 G2 PBC, LC CT (sd: CC)

6 F 47 CC pT3 G2 nk MRI (sd: metastasis)

7 M 73 CC pT3 G2 nk CT (sd: CC/HCC)

8 F 71 CC pT2 G2 nk CT/MRI (sd: CC)

9 M 52 CC pT3 G2 nk CT/MRI (sd: CC, metastasis)

10 M 65 CC pT3 G1 nk CT/MRI (sd: metastasis)

11 M 62 HCC pT4 G3 HCV, LC CT/MRI (sd: HCC)

12 M 60 HCC pT3 G2 HCV, LC CT/MRI (sd: HCC/CC)

13 M 75 HCC pT3 G3 HCV, LC MRI (sd: HCC)

14 F 58 HCC pT4 G3 HCV, LC CT/MRI (sd: HCC)

15 M 69 HCC pT3 G2 HBV, LC CT/MRI (sd: CC)

16 F 55 HCC pT3 G3 HBV, LC CT/MRI (sd: HCC, CC)

17 F 78 HCC pT3 G3 HBV, LC CT/MRI (sd: HCC)

18 M 59 HCC pT3 G2 HBV, LC CT (sd: HCC)

19 M 60 HCC pT4 G2 C2, LC CT/MRI (sd: HCC)

20 M 73 HCC pT3 G2 C2, LC CT/MRI (sd: CC)

21 F 69 HCC pT3 G2 C2, LC CT/MRI (sd: HCC/CC)

22 M 70 HCC pT4 G3 C2, LC CT/MRI (sd: HCC)

23 F 63 HCC pT2 G2 C2, LC MRI (sd: HCC)

24 F 70 HCC pT3 G3 C2, LC CT/MRI (sd: HCC)

25 M 54 HCC/CC pT4 G3 C2, LC CT/MRT (sd: HCC)

26 F 56 HCC pT2 G1 Stea, LC CT/MRI (sd: HCC/CC)

27 M 61 HCC pT2 G2 Stea, LC CT/MRI (sd: metastasis)

28 F 64 HCC pT3 G2 nk CT/MRI (sd: HCC)

29 M 57 HCC pT3 G3 Hämo CT/MRI (sd: HCC)

F, female; CC, cholangiocarcinoma; HBV, chronic hepatitis B; LC, liver cirrhosis; CT, computed tomography; sd, suspected diagnosis; HCV, chronic 
hepatitis C; MRI, magnetic resonance imaging; C2, alcohol abuse; M, male; PBC, primary biliary cirrhosis; nk, not known; HCC, hepatocellular 
carcinoma; Stea, steatohepatitis.
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For second validation of the measured gene expression data 
we compared the mRNA expression level estimated by gene ex-
pression analysis of CK7 and AFP in the resected tumors using 
IHC. In formalin-fixed paraffin-embedded tissue sections were 
incubated with a dilution (1:50) of a monoclonal mouse anti-
human CK7 antibody (Clone OV-TL 12/30; Dako Deutschland 
GmbH, Hamburg, Germany) and for AFP using a polyclonal 
mouse antihuman antibody (Cell Marque, Rocklin, CA 95677, 
USA) according to the procedures developed by the manufac-
turer. Because of the different used labeling scores in literature 
we used the following definition of marker positivity: (1) 1% to 
10% CK7 or AFP positive tumor cells, + (low); (2) 11% to 50% 
CK7 or AFP positive tumor cells: ++ (mean), or (3) >50% CK7 or 
AFP positive tumor cells, +++ (strong). 

RESULTS

1. Gene expression profiling of primary liver cancer

On average, 43.3% (CC) compared with 42.6% (HCC) and 
39.4% (corresponding normal liver tissue) of 22,283 genes and 

ESTs were expressed in the analysed tissue samples. 
Of the approximately 13,000 genes expressed in the HCC and 

adjacent nonmalignant tissue samples, approximately 1,200 
genes were either up- or down-regulated significantly. All 
significantly dysregulated genes (p<0.05; fold change 2 in at 
least 70%) were used to generate a databank of 695 genes/ESTs 
in HCC (245 up-/ 450 down-regulated) and 552 genes/ESTs 
in CC (221 up-/ 331 down-regulated). Using this data set, we 
implemented a supervised learning method based on neuronal 
networking and a one-way ANOVA analysis to obtain a specific 
gene expression profile of 270 significantly dysregulated genes 
for HCC and CCC. Using this analytic approach a rapid, repro-
ducible differentiation between these primary liver tumors and 
malignant versus nonmalignant liver tissues was possible in all 
cases with a positive and negative prediction value of 100% 
(p<0.0001) (Fig. 1).

2. Involved signaling and metabolic pathways and dysregu-
lated genes in hepato- and cholangiocarcinogenesis

Of these 1,247 dysregulated genes/ESTs in primary liver can-
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Fig. 1. Two-dimensional cluster analysis using 270 dysregulated genes in hepatocellular carcinoma (HCC) versus cholangiocarcinoma (CC) versus 
nonmalignant corresponding liver tissues (NL) (2-fold change in 70%: red, upregulated genes; green, downregulated genes; p<0.05).
HBV, chronic hepatitis B.
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cer, 466 were upregulated and 781 genes downregulated in both 
tumor subgroups. 

Using the GenMAPP® software involved metabolic pathways 
were detected and the specific gene descriptions determined 
by public gene databases as UniGene (U.S. National Library of 
Medicine, Bethesda, MD, USA) and GeneCards® (Weizmann 
Institute, Rehovot, Israel). By these methodical approaches 885 
genes/ESTs could be dedicated to specific signaling and meta-
bolic pathways.

Most of the significantly overexpressed genes were related to 
DNA replication and cell cycle regulation (HCC: 27 genes, e.g., 
cyclin-dependent kinase 1 [CDC2], cyclin B1 [CCNB1], tubulin 
gamma 1 [TUBG1], KPNA2, cell division control 4 [CDC4], cell 
division control 25 beta [CDC25B], calcyclin [S100A6], topoi-
somerase II alpha [TOP2A], proliferating cell nuclear antigen 
[PCNA]; CC: 15 genes, e.g., Calgizzarin [S100A11], S100A6, 
BUB mitotic checkpoint protein 1 [BUB1B]), genes coding for 
transcription factors and G-protein depending signaling (HCC: 
seven genes, e.g., Rac GTPase activating protein 1 [RACGAP1], 
Ras homolog enriched in brain [RHEB], ADP-ribosylation 
factor-like 2 [ARL2] and other members of the RAS oncogene 
family as RAN and RAB16; CC: six genes, e.g., sex determining 
region Y [SRY]-box 9 [SOX9]). Most of the other overexpressed 
genes could be attributed to gene groups such as genes coding 
for cell adhesion molecules, cytoskeleton structure, and extra-
cellular matrix (HCC: 22 genes, e.g., OPN, SPINK1, osteonectin 
[SPARC], different collagens [COL1A2, COL4A2, COL6A3], cap-
ping protein [GAPG], tropomyosin 2 [TPM2], metalloproteinase 
12 [MMP12], and integrin alpha 6 [ITGA6]); CC: 53 genes, e.g., 
OPN, ADAM metallopeptidase domain 9 [ADAM9], thymosin 
beta-10 [TMSB10], ITGA6, TPM2, CK 7, and CK19). Consistent 
with an upregulation of genes coding for cell cycle regulating 
proteins and DNA replication, various genes involved in ribo-

somal protein synthesis and proteasome degradation were also 
upregulated.

In contrast, pro-apoptotic genes (HCC: four genes, e.g., clone 
36 protein [CNL3], chromosome segregation 1 [yeast homolog]-
like [CSE1L], DNA fragmentation factor, 45 kD,  polypeptide 
[DFFA], NFKB inhibitor alpha [NFKBIA]; CC: seven genes, e.g., 
growth-arrest specific protein 2 [GAS2], cell death-inducing 
DFFA-like effector B [CIDE-B]) were downregulated in both 
liver tumors. Moreover, genes coding for proteins important 
for metabolic pathways like carbohydrate, fat and amino acid 
metabolism were also significant downregulated in comparison 
with the corresponding nontumorous liver tissue. 
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Fig. 2. Overexpressed mRNAs of established immunohistochemistry 
markers to discriminate primary liver cancers, as detected by microar-
ray analysis (fold change 2: hepatocellular carcinoma [HCC] white; 
cholangiocarcinoma [CC], grey columns). 

Table 2. Twelve Unique Overexpressed Genes in HCC and CC That Are Potentially Useful as Markers for the Discrimination of Primary Liver Cancers 

SwissName Gene ID Gene description CC inc, % CC inc, fc* HCC inc, % HCC inc, fc*

CNX43_HUMAN 443455 Connexin 43 100 3.0

SPT2_HUMAN O43291 Serine protease inhibitor, Kunitz type, 2 100 2.5

TTD1_HUMAN P16422 Tumor-associated Ca signal transducer 1 80 5.9

BD01_HUMAN Q09753 Defensin, beta 1 70 2.7

LUM_HUMAN P51884 Lumican 70 2.5

T4S3_HUMAN P19075 Transmembrane 4 superfamily member 3 70 2.2

GPC3_HUMAN L47125 Glypican 3 82 8.3

TKT_HUMAN BF696840 Transketolase 82 3.7

HSP90B_HUMAN 191175 Heat shock protein 90 82 3.0

ACLY_HUMAN 108728 ATP cytrate lyase 82 2.1

ERG1_HUMAN 152427 Squalene epoxidase 82 2.0

NME1_HUMAN 156490 NM23A 76 2.1

HCC, hepatocellular carcinoma; CC, cholangiocarcinoma.
*Fold-change (fc) 2.0, overexpressed in 70%.



 Hass HG, et al: Subclassification of Primary Liver Tumors by Gene Expression Analysis  311

3. Gene expression levels of established immunohisto-
chemical markers and potential new biomarkers for dif-
ferentiation of primary liver cancer

The gene expression levels of established markers used for 
IHC and discrimination of primary liver cancer were analyzed. 
Chosen marker genes for HCC included AFP, GPC3, CK8/18, and 
CD34 which were overexpressed in 14 (CD34) up to 76% (GPC3) 
of all tumor probes. Classical marker genes for CC contained 
CEA, CA19-9, CK7/19. These genes showed an overexpression 
in 30 (CEA) up to 80% (CK19). For a better clearance the ana-
lyzed marker genes for HCC and CC are compared in Fig. 2.

In comparison to these established markers a set of 12 genes 
was detected using gene expression analysis with higher expres-

sion levels and better value for discrimination of primary liver 
cancer. For HCC six genes were chosen with significant overex-
pression in 76% to 82% (fold change, 2.0 to 8.3; downregulated 
in all CC). In comparison to the group of HCC 6 genes with sig-
nificant overexpression (fold change, 2.2 to 5.9; downregulated 
in all HCC) in 80% to 100% were chosen for discrimination 
of CC (Table 2). A literature research (PubMed, U.S. National 
Library of Medicine) to investigate the potential function and 
importance of these genes in human carcinogenesis was per-
formed.

4. Validation of marker genes using RT-PCR and IHC

To validate the expression levels of highly overexpressed 
candidate genes in primary liver cancer (HCC and CC), we con-
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firmed the expression levels of AFP, OPN, SPINK1, GPC3, and 
KNPA2 in malignant and corresponding nonmalignant tissue 
samples with quantitative RT-PCR. Generally, the gene expres-
sion values estimated by RT-PCR reproduced very well with the 
genetic levels obtained by microarray analysis. As described 
earlier,24,25 the dynamic reach of the gene expression levels iden-
tified by RT-PCR was significantly higher (10- to 70-fold) than 
the ranges estimated using the microarray technique. 

In CC expression of CK7 was one of the most overexpressed 
genes (fold change 4.35 in >70% of all tumor probes). Using 
IHC a strong correlation between gene expression levels of 
CK7 and CK7 positive cells was seen. In tumors with low CK7 
expression only 5% of all tumor cells show a positive staining, 
whereas a mean expression level correlated with a stronger CK7 
staining (18.3%±9.2%). In tumors with high CK7 expression 
levels (fold change >5), CK7 staining was significantly stronger 
(67.5%±20.6%, p=0.004) (Fig. 3).

Similar results were seen in HCC with high AFP mRNA levels 
(fold change >3). In these cases AFP levels estimated by IHC 
were also significant overexpressed (63.3%±12.6%, p=0.021) in 
all cases (Fig. 4).

DISCUSSION

Because of the different treatment options in primary liver 
cancer, a fast and secure differentiation in clinical routine is in-
dispensable for affected patients.

Despite of recent progress in noninvasive diagnostic of liver 
tumors using latest CT and MRI technology (e.g., quadri-phasic 
multidetector CT) there are still some pitfalls in preoperative 
clarification and discrimination between HCC and iCC, especial-
ly in underlying liver cirrhosis and poorly differentiated iCCs. 
In our study 20% of all iCC were misdiagnosed as metastases, 
whereas 15.8% of all HCC were considered as iCC or metastasis 
in preoperative CT or MRI scans. In 21% (HCC) and 40% (iCC) 
other differential diagnoses were also postulated. As a conse-
quence the positive predictive value ranged between 80% and 
84.2%. 

Due to heterogeneity and similarities in morphology the his-
tologic distinction between CC and HCC in clinical routine may 
also be complicated.13,26 Although several immunohistochemical 
markers such as cytokeratins (CK7 and CK20), and HepPar-1 
are widely used to distinguish primary liver cancer, these mark-
ers can be expressed by both cancers.27,28 In addition, diagnosis 
of HCC can be difficult in well and poor differentiated tumors. 
Whereas poorly differentiated HCC or unusual subtypes as clear-
cell, sarcomatoid or pleomorphics variants may be mistaken for 
metastases,14,29 distinction of well differentiated tumor nodes 
from regenerative, cirrhotic liver tissue may be very difficult.

Therefore, novel diagnostic markers for a fast and secure di-
agnostic differentiation of primary liver tumors are required.

In the actual study we used gene expression analysis to estab-

lish a unique gene expression profile for discrimination of HCC 
and CC. Using a primary data set of 695 genes/ESTs significant-
ly dysregulated in HCC and 552 genes/ESTs dysregulated in CC 
a one-way ANOVA analysis generated a specific genetic profile 
of these tumors using 270 genes. This profile enables a fast and 
secure differentiation between all analyzed tumor probes and 
the corresponding, nonmalignant liver tissue in all cases with 
a high specify, sensitivity and positive predictive value (respec-
tively 100%). 

In line with the clinical experience that there is no “perfect” 
marker for discrimination of HCC and iCC we found that the 
genetic expression levels of actually recommended markers for 
routinely application showed a wide range and often an overex-
pression in both liver cancers. The two markers with the highest 
specificity for HCC were GPC3 and AFP, both markers uni-
formly overexpressed in HCC (76% and 33.3%; 0% CC). These 
data are in line with immunohistochemical data and illuminate 
the hitch of AFP as tumor marker in clinical routine30-32 with 
very low sensitivity (20% to 60%) and specificity (76% to 96%), 
reasonable to an overexpression and elevated serum levels of 
AFP in various, nonmalignant liver diseases, such as viral hepa-
titis or liver cirrhosis and low expression especially in small and 
early HCC.

Interestingly, the current recommended13,27 hepatocyte-spe-
cific marker arginase 1 (ARG1) was indeed significantly down-
regulated in our collective of CCs (mean fold change, –4.97; 
80%) but also downregulated in 68% of all HCC probes. At least 
on the genetic level ARG1 does not appear as “good” marker for 
discrimination of primary liver cancer.

For the immunohistochemical diagnosis of CC a panel of dif-
ferent cytokeratins (e.g., CK7 and CK19) is routinely used. In 
our collective these markers were significantly overexpressed 
in nearly complete all CC tissue (70% to 80%) and especially 
the genetic expression of CK7 correlated well with the results 
obtained by IHC. Nevertheless, there are reports about an ex-
pression of these markers in up to 28% to 40%33,34 also in HCC, 
maybe in the subgroup of tumors originating from liver stem 
cells. In consideration of the fact, that cytokeratins are also sig-
nificantly expressed in different intestinal cancers, e.g., stomach 
cancer,35 the immunohistochemical discrimination between CC 
and secondary adenocarcinomas of the liver is often difficult 
in clinical routine and underlines the need for specific genetic 
markers for cholangiocarcinogenesis.

Adjacent to the establishment of a specific gene expression 
profile for subclassification of primary liver tumors another aim 
of the study was the detection of new and specific markers for 
the discrimination of these tumors in clinical routine.

By microarray analysis we found a panel of potential new 
marker for HCC and CC (each six genes), most of them to date 
not described in primary liver cancer. The most overexpressed 
gene in over 80% of all HCC was the gene coding for GPC3 and 
distinguished the importance of this marker in clinical routine. 
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Another potential marker for HCC whose was not expressed 
in CC is transketolase, a key protein in glucose metabolism of 
cancer cells. Transketolase promotes cell growth and is overex-
pressed in different human cancers.36 Until now there are only 
few reports about an upregulation of this gene in HCC.37,38 An-
other interesting group of genes related to hepatocarcinogenesis 
are different heat shock proteins (HSPs). Especially the expres-
sion of HSP90, is frequently upregulated in HCC, however, there 
is low evidence about the function of HSP90 in multistep hepa-
tocarcinogenesis. One hypothesis postulates the function of this 
stress inducible chaperon for tumor angiogenesis and because of 
its strong overexpression HSP90 is current under investigations 
as a target for anticancer therapy.39

As specific and unique in CC, the gene coding for the serine 
protease inhibitor 2, Kunitz type (SPT2) was overexpressed 
detected. In literature there are no reports about a dysregula-
tion of this protease inhibitor in CC and the actual data of the 
protein function in human carcinogenesis is still confusing. 
Normally the function of this proteinase inhibitor is described 
as pro-apoptotic and anti-cancerous by inhibiting tumor cell 
invasion.40 As for SPT2 there are no data about the potential 
role of defensin beta in carcinogenesis of CC. Beta-defensins are 
especially expressed in lung epithelial cells and act as antimi-
crobial agents. As an important component of the innate im-
mune response, the gene is lost at high frequencies in malignant 
prostatic tissue underlines the theory of the function of defens-
ing beta as tumor suppressor41 and thereby may be indirectly 
elevated as a reaction of the immune system to the tumor.42 
Further studies must execute to clear the function of SPT2 and 
defensing beta in cholangiocarcinogenesis and their utility as 
specific markers for CC. As for the last two reported genes, the 
natural role of connexin 43 (CNX43) as important gap junction 
protein is tumor suppressive,43 but other data suggests that con-
nexin 43 may play a role in tumor angiogenesis and therefore 
in early tumor metastasis44 and serve as a potential marker of 
early CC.

Limitations of our study is the manageable amount of ana-
lyzed liver tumors and thereby the small group of well-differen-
tiated tumors (n=2) and the absence of rare subgroups of HCC 
as scirrhous carcinoma or combined hepatocellular-cholangio-
carcinoma. Nevertheless, even in these cases gene expression 
analysis may be a helpful tool in clinical routine.45

In conclusion, a specific and unique gene expression profile 
which allows a fast and secure distinction of primary liver can-
cer was established. In comparison to noninvasive imaging and 
immunohistochemical analytic approaches this profile showed a 
higher specify and sensitivity to discriminate HCC against iCC. 
Second, using gene expression data potential better markers for 
primary liver cancer were described, in some cases for the first 
time in hepato- and cholangiocarcinogenesis. Further investiga-
tions must explore the use of these markers as diagnostic tools 
or potential molecular targets for liver cancer therapy in clinical 

routine.
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