Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rietveld refinement of $\mathrm{AgCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$ from X-ray powder data

Nataliya Yu. Strutynska,* Igor V. Zatovsky, Ivan V. Ogorodnyk and Nikolay S. Slobodyanik
Department of Inorganic Chemistry, Taras Shevchenko National University, 64/13 Volodymyrska str., 01601 Kyiv, Ukraine
Correspondence e-mail: Strutynska_N@bigmir.net

Received 14 February 2013; accepted 21 March 2013

Key indicators: powder X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.050 \AA ; R$ factor $=$ $0.094 ; w R$ factor $=0.125$; data-to-parameter ratio $=30.3$.

Polycrystalline silver(I) decacalcium heptakis(orthophosphate), $\mathrm{AgCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$, was obtained by solid-state reaction. It is isotopic with members of the series $M \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}(M=\mathrm{Li}$, Na, K and Cs), and is closely related to the structure of β $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. The crystal structure of the title compound is built up from a framework of $\left[\mathrm{CaO}_{9}\right]$ and two $\left[\mathrm{CaO}_{8}\right]$ polyhedra, one $\left[\mathrm{CaO}_{6}\right]$ octahedron (site symmetry 3.) and three PO_{4} tetrahedra (one with site symmetry 3.). The Ag^{+}cation is likewise located on a threefold rotation axis and resides in the cavities of the rigid $\left[\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}\right]^{-}$framework. It is surrounded by three O atoms in an almost regular triangular environment.

Related literature

For the structure of the mineral whitlockite, see: Calvo \& Gopal (1975); Yashima et al. (2003). For powder diffraction studies and Rietveld refinements of phosphate-based whitlockite-related compounds, see: Lazoryak et al. (1996); Morozov et al. (2000, 2002); Zatovsky et al. (2007, 2010, 2011). For physical properties of these materials, see: Dou et al. (2011); Enhai et al. (2011); Lazoryak et al. (2004); Teterskii et al. (2005); Zhang et al. (2011). For the crystal structure of isotypic $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$, see: Sandström \& Boström (2006). For bond-valence calculations, see: Brown (2002).

Experimental

Crystal data

$\mathrm{AgCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$
$M_{r}=1173.46$ Trigonal, R3c $a=10.43723(5) \AA$ $c=37.3379$ (7) A
$V=3522.50(7) \AA^{3}$
$Z=6$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.540560 \AA$
$T=293 \mathrm{~K}$
Flat sheet, $25 \times 25 \mathrm{~mm}$

Data collection

Shimadzu LabX XRD-6000 diffractometer
Specimen mounting: glass container
Data collection mode: reflection

Refinement

$R_{\mathrm{p}}=0.094$
$R_{\text {wp }}=0.125$
$R_{\text {exp }}=0.042$
$R_{\text {Bragg }}=0.051$
$R(F)=0.038$

$$
\begin{aligned}
& \text { Scan method: step } \\
& 2 \theta_{\min }=9.045^{\circ}, 2 \theta_{\max }=100.045^{\circ}, \\
& 2 \theta_{\text {step }}=0.020^{\circ}
\end{aligned}
$$

```
\chi2}=8.82
4551 data points
150 parameters
3 restraints
```

Data collection: PCXRD (Shimadzu, 2006); cell refinement: DICVOL (Boultif \& Louër, 2004); data reduction: FULLPROF (Rodriguez-Carvajal, 2006); program(s) used to solve structure: FULLPROF (Rodriguez-Carvajal, 2006); program(s) used to refine structure: FULLPROF (Rodriguez-Carvajal, 2006); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2726).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Boultif, A. \& Louër, D. (2004). J. Appl. Cryst. 37, 724-731.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Calvo, C. \& Gopal, R. (1975). Am. Mineral. 60, 120-133.
Dou, X., Zhao, W., Song, E., Zhou, G., Yi, C. \& Zhou, M. (2011). Spectrochim. Acta Part A, 78, 821-825.
Enhai, S., Weiren, Z., Guoxiong, Z., Xihua, D., Chunyu, Y. I. \& Minkang, Z. (2011). J. Rare Earths, 29, 440-443.

Lazoryak, B. I., Morozov, V. A., Belik, A. A., Khasanov, S. S. \& Shekhtman, V. Sh. (1996). J. Solid State Chem. 122, 15-21.

Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Yu., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I. \& Tendeloo, G. V. (2004). Solid State Sci. 6, 185-195.
Morozov, V. A., Belik, A. A., Kotov, R. N., Presnyakov, I. A., Khasanov, S. S. \& Lazoryak, B. I. (2000). Crystallogr. Rep. 45, 13-20.
Morozov, V. A., Belik, A. A., Stefanovich, S. Yu., Grebenev, V. V., Lebedev, O. I., Tendeloo, G. V. \& Lazoryak, B. I. (2002). J. Solid State Chem. 165, 278288.

Rodriguez-Carvajal, J. (2006). FULLPROF. Laboratoire Léon Brillouin (CEA-CNRS), France.
Sandström, M. H. \& Boström, D. (2006). Acta Cryst. E62, i253-i255.
Shimadzu (2006). PCXRD. Shimadzu Corporation, Kyoto, Japan.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Teterskii, A. V., Morozov, V. A., Stefanovich, S. Yu. \& Lazoryak, B. I. (2005). Russ. J. Inorg. Chem. 50, 1072-1076.
Yashima, M., Sakai, A., Kamiyama, T. \& Hoshikawa, A. (2003). J. Solid State Chem. 175, 272-277.
Zatovsky, I. V., Ogorodnyk, I. V., Strutynska, N. Y., Slobodyanik, N. S. \& Sharkina, N. O. (2010). Acta Cryst. E66, i41-i42.
Zatovsky, I. V., Strutynska, N. Y., Baumer, V. N., Shishkin, O. V. \& Slobodyanik, N. S. (2007). Acta Cryst. E63, i180-i181.
Zatovsky, I. V., Strutynska, N. Yu., Baumer, V. N., Slobodyanik, N. S., Ogorodnyk, I. V. \& Shishkin, O. V. (2011). J. Solid State Chem. 184, 705-711.
Zhang, J., Wang, Y., Wen, Y., Zhang, F. \& Liu, B. (2011). J. Alloys Compd, 509, 4649-4652.

supplementary materials

Acta Cryst. (2013). E69, i23 [doi:10.1107/S1600536813007848]

Rietveld refinement of $\mathrm{AgCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$ from X-ray powder data

Nataliya Yu. Strutynska, Igor V. Zatovsky, Ivan V. Ogorodnyk and Nikolay S. Slobodyanik

Comment

In recent years phosphates which are isotypic with $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (whitlockite; Calvo \& Gopal, 1975; Yashima et al., 2003) or whitlockite-related structures have attracted a growing interest due to their ferroelectric (Lazoryak et al., 2004), nonlinear optical (Teterskii et al., 2005) or luminescent (Dou et al., 2011; Enhai et al., 2011; Zhang et al., 2011) properties. The structure of $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ contains three phosphorus ($\mathrm{P} 1-\mathrm{P} 3$) and five metal $(M 1-M 5)$ sites, that are amenable to different types of substitutions, thus yielding a large number of closely related compounds. The Ca sites in the $M 1$ and $M 2$ positions ($6 a$) are prone to substitution by univalent metals under formation of $M \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}$ compounds $(M=\mathrm{Li}, \mathrm{Na}$, K, Cs; Morozov et al., 2000; Sandström \& Boström, 2006; Zatovsky et al., 2011), or by trivalent metals under formation of $\mathrm{Ca}_{9} M\left(\mathrm{PO}_{4}\right)_{7}(M=\mathrm{Cr}$, Fe , In; Lazoryak et al., 1996; Morozov et al., 2002; Zatovsky et al., 2007), or combinations of univalent and trivalent metals (Zatovsky et al., 2010; Zatovsky et al., 2011). The new title compound $\mathrm{AgCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$, (I), is likewise isotopic to the family of $M \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}(M=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Cs})$ phosphates.

In the crystal structure of (I) four types of Ca sites (three in general positions $18 b$ and one in special position $6 a$), three P sites (two in $18 b$ one in $6 a$), ten O atoms (nine in $18 b$ and one in $6 a$) and one Ag in $6 a$ are present (Fig. 1).
The anionic framework $\left[\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}\right]^{-}$of (I) is formed by interconnection of four types of $\left[\mathrm{CaO}_{x}\right]$ and $\left[\mathrm{PO}_{4}\right]$ tetrahedra (Fig. 2). The silver cations reside in cavities and compensate the charge of the rigid framework.

The $\mathrm{Ca}-\mathrm{O}$ distances in the three types of $\left[\mathrm{CaO}_{x}\right]$ polyhedra (one $\left[\mathrm{CaO}_{9}\right](\mathrm{Ca} 4)$ and two $\left[\mathrm{CaO}_{8}\right](\mathrm{Ca} 2, \mathrm{Ca} 3)$) are in the range 2.28 (4)-2.97(4) \AA which is close to that in the series of $M \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}$ structures $(M=\mathrm{K}, \mathrm{Cs}$; Sandström \& Boström, 2006; Zatovsky et al., 2011). The polyhedron $\left[\mathrm{CaO}_{6}\right](\mathrm{Ca} 1)$ is more irregular with $\mathrm{Ca}-\mathrm{O}$ distances spread over the range 2.17 (4) to $2.40(4) \AA$. In the case of $M \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}(M=\mathrm{K}, \mathrm{Cs})$, the corresponding distances are 2.23-2.31 \AA. The nearest oxygen environment of the Ag site corresponds to an almost regular triangular arrangement. The position of the Ag site is slightly shifted by 0.30 (3) \AA from the plane of the O_{3} triangle (Fig. 3). On both sides from the central triangular plane two further groups of $\mathrm{Ag}-\mathrm{O}$ contacts can be observed. Three O 2 atoms, which belong to a single orthophosphate tetrahedron, coordinate the Ag atom from one side of the plane and three O 9 atoms, which belong to three different orthophosphate tetrahera, complete the other part of the $\left[\mathrm{AgO}_{9}\right]$ coordination sphere. Such kind of arrangement of O atoms can be described as a distorted three-capped triangular antiprism (Fig. 3). The lengths of Ag-O contacts are 2.476 (19), 3.15 (4) and 3.35 (4) \AA. In comparison with $M \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}(M=\mathrm{Na}, \mathrm{Cs})$ the corresponding $M — \mathrm{O}$ distances are: $d(\mathrm{Na}-\mathrm{O})=2.452,2.981,3.362$ (Morozov et al., 2000) and $d(\mathrm{Cs}-\mathrm{O})=2.803,3.200,3.252 \AA$ (Zatovsky et al., 2011) and the coordination numbers of the alkaline metal are six for Na and nine for Cs (Fig. 4(b,c)). For the Ag atom, the $\mathrm{Ag}-\mathrm{O} 2$ distance $(3.15(4) \AA)$ significantly exceeds that of $\mathrm{Ag}-\mathrm{O} 10(2.471(15) \AA)$ thus indicating that the coordination number should rather be described as $[3+6]$ (Fig. 4a). Bond valence calculations (Brown, 2002) of the Ag^{+} cation resulted in 0.60 valence units considering the three close O atoms, and 0.67 v.u. considering also the six remote O atoms, thus indicating a rather low contribution to the overall bonding of the latter O atoms.

Experimental

The title compound has been prepared by solid state reactions from a mixture of $\mathrm{Ag}_{3} \mathrm{PO}_{4}, \mathrm{CaCO}_{3}$ and CaHPO_{4} in the stoichiometric molar ratio $\mathrm{Ag}: \mathrm{Ca}: \mathrm{P}=1: 10: 7$. The starting components were finely ground in an agate mortar and then placed in a porcelain crucible. The thermal treatment has been carried out in two steps. The first one included preheating to 873 K to decompose the carbonate and calcium hydrogen phosphate. After that, the mixture was annealed at 1173 K for 20 h . The final product was a white powder.

Refinement

Structure refinement was performed using $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$ (Sandström \& Boström, 2006) as a starting model. For profile refinement Pearson VII function was used. For the oxygen atoms of each orthophosphate group the isotropic temperature factors were restrained as equal. The result of the final Rietveld refinement is given in Fig. 5.

Computing details

Data collection: PCXRD (Shimadzu, 2006); cell refinement: Dicvol (Boultif \& Louër, 2004); data reduction: FULLPROF (Rodriguez-Carvajal, 2006); program(s) used to solve structure: FULLPROF (Rodriguez-Carvajal, 2006); program(s) used to refine structure: FULLPROF (Rodriguez-Carvajal, 2006); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Figure 1

The asymmetric unit of the structure of compound (I).

Figure 2
The environment of the four different Ca sites (violet plane corresponds to Ca 2 sites, the green plane to Ca 3 sites and the blue plane to Ca 4 sites) and the Ag^{+}cation in the structure of (I). PO_{4} groups are represented as purple tetrahedra.

supplementary materials

Figure 3
The coordination environment of the Ag^{+}cation. [Symmetry codes: (i) $-x+y,-x, z$; (ii) $-y, x-y, z$; (iii) $-2 / 3+x,-1 / 3+x-y$, $1 / 6+z$; (iv) $1 / 3-y, 2 / 3-x, 1 / 6+z$; (v) $1 / 3-x+y,-1 / 3+y, 1 / 6+z]$.

Figure 4
Comparison of the coordination environment of M^{1} in the series $M \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}$; a) $M=\mathrm{Ag}$; b) $M=\mathrm{Na}$; c) $M=\mathrm{Cs}$.

Figure 5
Rietveld refinement of $\mathrm{AgCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$. Experimental (dots), calculated (red curve) and difference (blue curve) data for 2θ range $9-72^{\circ}$.

Silver(I) decacalcium heptakis(orthophosphate)

Crystal data

$\mathrm{AgCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$
$D_{\mathrm{x}}=3.319 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1173.46$
Trigonal, R3c
Hall symbol: R 3 -2"c
$a=10.43723$ (5) \AA
$c=37.3379(7) \AA$
$V=3522.50(7) \AA^{3}$
$Z=6$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.540560 \AA$
$T=293 \mathrm{~K}$
Particle morphology: isometric
white
flat sheet, $25 \times 25 \mathrm{~mm}$
Specimen preparation: Prepared at 293 K and 101.3 kPa

Data collection

Shimadzu LabX XRD-6000
diffractometer
Radiation source: X-ray tube, X-ray
Graphite monochromator
Specimen mounting: glass container
Data collection mode: reflection
Scan method: step
$2 \theta_{\min }=9.045^{\circ}, 2 \theta_{\max }=100.045^{\circ}, 2 \theta_{\text {step }}=0.020^{\circ}$

Refinement

$R_{\mathrm{p}}=0.094$
$R_{\text {wp }}=0.125$
$R_{\text {exp }}=0.042$
$R_{\text {Bragg }}=0.051$
$R(F)=0.038$
$\chi^{2}=8.821$
4551 data points
Profile function: Pearson VII
150 parameters

3 restraints
3 constraints
Standard least squares refinement
$(\Delta / \sigma)_{\max }=0.001$
Background function: Linear Interpolation between a set background points with refinable heights
Preferred orientation correction: March-Dollase
Numeric Multiaxial Function

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Ag 1	0.00000	0.00000	$0.1780(8)$	$0.042(2)^{*}$
Ca 1	0.33333	0.66667	$0.1632(9)$	$0.002(2)^{*}$
Ca 2	$0.4650(10)$	$0.5260(11)$	$0.0955(8)$	$0.0044(14)^{*}$
Ca 3	$0.2864(7)$	$0.1558(12)$	$0.0625(8)$	$0.004(2)^{*}$
Ca 4	$0.3992(5)$	$0.1876(9)$	$0.1565(8)$	$0.0044(14)^{*}$
P 1	0.66667	0.33333	$0.0976(8)$	$0.002(4)^{*}$
P 2	$0.1577(14)$	$0.3495(13)$	$0.0288(8)$	$0.009(3)^{*}$
P 3	$0.1366(11)$	$0.3111(7)$	$0.1306(8)$	$0.003(3)^{*}$
O1	0.66667	0.33333	$0.1387(11)$	$0.006(11)^{*}$
O2	$0.5229(16)$	$0.325(2)$	$0.0860(9)$	$0.006(6)^{*}$
O3	$0.082(3)$	$0.1873(15)$	$0.0421(9)$	$0.005(3)^{*}$
O4	$0.051(2)$	$0.394(3)$	$0.0420(10)$	$0.005(3)^{*}$
O5	$0.173(2)$	$0.3689(18)$	$-0.0111(9)$	$0.005(3)^{*}$
O6	$0.316(2)$	$0.440(2)$	$0.0462(10)$	$0.005(3)^{*}$
O7	$-0.0093(19)$	$0.267(3)$	$0.1100(9)$	$0.006(4)^{*}$
O8	$0.241(3)$	$0.4824(13)$	$0.1261(9)$	$0.006(4)^{*}$

supplementary materials

O9	$0.221(2)$	$0.243(3)$	$0.1161(10)$	$0.006(4)^{*}$
O10	$0.0887(18)$	$0.267(2)$	$0.1700(10)$	$0.006(4)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$?$	$?$	$?$	$?$	$?$	$?$	$?$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ag1-O10	2.476 (19)	$\mathrm{Ca} 3-\mathrm{O} 4{ }^{\text {ii }}$	2.62 (4)
Ag1-O10 ${ }^{\text {i }}$	2.476 (19)	$\mathrm{Ca} 3-\mathrm{O} 6$	2.89 (3)
Ag1-O10 ${ }^{\text {ii }}$	2.476 (19)	$\mathrm{Ca} 4-7^{\text {ii }}$	2.40 (4)
Ca1-O8	2.17 (4)	$\mathrm{Ca} 4-\mathrm{O} 6^{\text {ix }}$	2.45 (4)
$\mathrm{Ca} 1-\mathrm{O} 8^{\text {iii }}$	2.17 (4)	$\mathrm{Ca} 4-\mathrm{O} 4{ }^{\text {vi }}$	2.46 (4)
$\mathrm{Ca}-\mathrm{O}^{\text {iv }}$	2.17 (4)	$\mathrm{Ca4-O1}$	2.510 (14)
Ca1-O3 ${ }^{\text {v }}$	2.40 (4)	Ca4-O5ix	2.55 (3)
$\mathrm{Ca}-\mathrm{O}^{\text {vi }}$	2.40 (4)	Ca4-O5 ${ }^{\text {vi }}$	2.59 (2)
$\mathrm{Ca} 1-\mathrm{O} 3{ }^{\text {vii }}$	2.40 (4)	Ca4-09	2.67 (4)
Ca2-O6	2.28 (4)	$\mathrm{Ca} 4-\mathrm{O} 10^{\text {ii }}$	2.692 (18)
$\mathrm{Ca} 2-\mathrm{O} 5^{\text {vi }}$	2.41 (4)	$\mathrm{Ca4-O2}$	2.97 (4)
$\mathrm{Ca} 2-\mathrm{O} 8$	2.43 (4)	P1-O1	1.54 (5)
$\mathrm{Ca} 2-\mathrm{O} 4{ }^{\text {iii }}$	2.45 (4)	$\mathrm{P} 1-\mathrm{O} 2$	1.52 (2)
$\mathrm{Ca} 2-\mathrm{O} 2$	2.48 (3)	$\mathrm{P} 1-\mathrm{O} 2^{\text {x }}$	1.52 (2)
$\mathrm{Ca} 2-\mathrm{O} 8^{\text {iii }}$	2.48 (3)	$\mathrm{P} 1-\mathrm{O} 2^{\text {xi }}$	1.52 (2)
$\mathrm{Ca} 2-\mathrm{O} 7{ }^{\text {iii }}$	2.57 (2)	$\mathrm{P} 2-\mathrm{O} 3$	1.55 (2)
Ca2-09	2.88 (3)	P2-O4	1.49 (3)
$\mathrm{Ca} 3-\mathrm{O}^{7 i}$	2.31 (4)	P2-O5	1.50 (4)
$\mathrm{Ca} 3-\mathrm{O} 3{ }^{\text {ii }}$	2.37 (2)	P2-O6	1.58 (3)
$\mathrm{Ca} 3-\mathrm{O} 2$	2.37 (2)	P3-O7	1.56 (3)
$\mathrm{Ca} 3-\mathrm{O} 9$	2.43 (4)	P3-O8	1.570 (15)
$\mathrm{Ca} 3-\mathrm{O} 3$	2.44 (4)	P3-O9	1.48 (3)
$\mathrm{Ca} 3-\mathrm{O} 10^{\text {viii }}$	2.46 (4)	P3-O10	1.55 (5)
O10-Ag1-O10 ${ }^{\text {i }}$	118.5 (9)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2^{\mathrm{x}}$	106.6 (17)
O10-Ag1-O10 ${ }^{\text {ii }}$	118.6 (7)	$\mathrm{O} 2^{\mathrm{x}}-\mathrm{P} 1-\mathrm{O} 2^{\mathrm{xi}}$	112.3 (18)
O10- $-\mathrm{Ag} 1-\mathrm{O} 10^{\text {ii }}$	118.6 (8)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 2^{\mathrm{x}}$	112.2 (16)
O7-P3-O8	107.7 (19)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 2^{\text {xi }}$	112.2 (17)
O7-P3-O9	114 (2)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 4$	101 (2)
O7-P3-O10	105.0 (17)	O4-P2-O5	109 (2)
O8-P3-09	105.5 (18)	O3-P2-O5	115.3 (19)
O8-P3-O10	112 (2)	O3-P2-O6	109 (2)
O9-P3-O10	112.7 (19)	O4-P2-O6	114 (2)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2^{\text {xi }}$	106.5 (16)	O5-P2-O6	108.6 (19)
O1-P1-O2	106.5 (16)	Ag1-O10-P3	109.4 (15)

[^0]
[^0]: Symmetry codes: (i) $-y, x-y, z$; (ii) $-x+y,-x, z$; (iii) $-y+1, x-y+1, z$; (iv) $-x+y,-x+1, z$; (v) $-y+1 / 3,-x+2 / 3, z+1 / 6$; (vi) $x+1 / 3, x-y+2 / 3, z+1 / 6$; (vii) $-x+y+1 / 3, y+2 / 3, z+1 / 6$; (viii) $-y+2 / 3,-x+1 / 3, z-1 / 6$; (ix) $-x+y+1 / 3, y-1 / 3, z+1 / 6$; (x) $-y+1, x-y, z$; (xi) $-x+y+1,-x+1, z$.

