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Summary: The causes of many important diseases in animals are complex and multifactorial, which present unique 
challenges. Biomarkers indicate the presence or extent of a biological process, which is directly linked to the clinical 
manifestations and outcome of a particular disease. Identifying biomarkers or biomarker profi les will be an important step 
towards disease characterization and management of disease in animals. The emergence of post-genomic technologies has 
led to the development of strategies aimed at identifying specifi c and sensitive biomarkers from the thousands of molecules 
present in a tissue or biological fl uid. This review will summarize the current developments in biomarker discovery and will 
focus on the role of transcriptomics, proteomics and metabolomics in biomarker discovery for animal health and disease.
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Introduction
Biomarkers are indicators of biological processes and pathological states that can reveal a variety of 
health and disease traits (Biomarkers Defi nitions Working Group, 2001). Biomarkers are particularly 
relevant in medical and veterinary research where they have an important role in the characterization 
of human and animal diseases. 

The use of animal models has been of immense value in defi ning and understanding human disease. 
Whilst the majority of these studies employ mice and rats, for some diseases, rodent models are 
inappropriate and large animal species may be more suitable (Hein and Greibel, 2003; Kues and Niemann, 
2004; Starkey et al. 2005). In addition to providing an insight into human pathology, the outbreak of 
animal disease may also have a major impact on human health via exposure to hazards arising from 
animals, animal products and their environment (Stewart et al. 2005). These hazards may include 
zoonoses, vector-borne infections and other communicable diseases (Taylor et al. 2001; Kahn, 2006). 

Within a veterinary setting the optimization of animal health is clearly a motivating factor. It has 
been estimated that almost two-thirds of U.S. households have at least one pet (http://www.appma.
org/press_industrytrends.asp), whilst in the U.K. this fi gure is just over fi fty percent (http://www.pfma.
org.uk/overall/pet-ownership-trends.htm). The provision of appropriate veterinary healthcare for 
companion animals is therefore an important consideration. Similarly, the health and welfare of farm 
animals is also of major importance to agriculture. Diseases such as foot and mouth and avian infl uenza 
have signifi cant implications for the management of livestock and poultry and can result in huge produc-
tion losses and market disturbances.

The discovery of novel biomarkers for animal diseases has the potential to further enhance clinical 
care. Conventional analyses target a selection of biochemical or molecular biomarkers that are related 
to, or associated with, a specifi c disease state. These biomarkers play a key role in defi ning animal 
disease; however, some have poor diagnostic specifi city and are not pathognomonic for the disease. 
Identifying novel biomarkers or biomarker profi les will be an important step towards the management 
of disease in animals. This review will summarize the current developments in biomarker discovery. 
In particular the review will focus on the role of post-genomic technologies in biomarker discovery for 
animal health and disease.
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Biomarker characteristics 
A biomarker should possess key characteristics and 
qualities, which will depend upon its intended use 
(Aronson, 2005; LaBaer, 2005). A biomarker must 
be accurate, sensitive and specifi c. The biomarker 
should be altered in the relevant disease and be 
able to discriminate between diseased and control 
populations. It should also be possible to quantify 
the biomarker reliably and reproducibly. For diag-
nostic purposes biomarkers should ideally be 
obtained from readily accessible body fl uids in 
animals such as blood plasma, urine, sweat and 
saliva or other accessible materials such as hair 
and feces. The identifi cation and quantifi cation of 
biomarkers also provides an opportunity to accu-
rately assess the clinical responses to therapy and 
guide decisions on treatment programs. A summary 
of biomarker characteristics is listed in Table 1.

Validation of biomarkers
The introduction of bias is a signifi cant concern in 
the design, conduct, interpretation and reporting 
of any biomarker study. Bias can be unintentionally 
introduced at any stage of the trial, but most 
commonly it will be during population selection, 
specimen collection/storage, sample processing or 
sample and data analysis (Ransohoff, 2005). There-
fore, once a biomarker has been identifi ed it must 
be rigorously evaluated to demonstrate that it will 
provide an acceptable measure of a biological 
process or pathological state in an animal (Table 2).

At the biological level, the species, breed, sex 
and age of the animal should be defi ned as such 
variations may lead to marked differences in the 
composition of body fl uids. In addition, the repro-
ductive status of the animal, diurnal variations and 
its diet should be taken into account. Similarly the 

handling of an animal or changes to its environment 
can cause a stress response that may interfere with 
biomarker validation. It is important that a stan-
dardized protocol for sample collection, processing 
and storage is established in order to obtain repro-
ducible data between laboratories, whilst the 
sensitivity and specifi city of the assays used to 
measure a biomarker must also be validated.

Validation studies for biomarkers typically 
require large populations of animals, both healthy 
and diseased. This may present a major problem 
as case numbers can be low and the recruitment of 
healthy animals can be diffi cult to justify ethically. 
Control samples typically have to be collected from 
animals that present in the clinic with a disorder 
unrelated to that being studied. Excess blood or 
urine, which have been collected from an animal 
as part of routine diagnostic investigations may be 
of use in determining the baseline concentration 
of a biomarker. A U.K. DNA archive for companion 
animals (http://pcwww.liv.ac.uk/DNA_Archive_
for_Companion_Animals/index.htm) already 
exists for the study of genetic disorders. This 
facility provides a valuable and ethical resource to 
assist veterinary research scientists in the study of 
a wide range of diseases in dogs, cats and horses.

Biomarkers in the clinic
Ideally, a biomarker assay for an animal disease 
should be suitable for use in primary veterinary 
practice or in the fi eld allowing clinicians to directly 
monitor animals for specifi c diseases. Urine tests 
lend themselves well to simple dipstick assays that 
combine all required reagents on a thin plastic strip. 
Whilst these assays deliver only crude quantifi cation, 

Table 1. Summary of ideal biomarker characteristics.

Characteristics of a Biomarker

Accurate, sensitive and specifi c for disease state
Biomarker unaffected by unrelated disorders
Reliable quantifi cation of the biomarker from 
accessible body fl uid or tissues
Abundance of biomarker not subject to wide variation 
in general population
Measurements reproducible and consistent in 
different circumstances at different times
Biomarker results easy to interpret

Table 2. Considerations in biomarker validation. 

Sources of Variability

Biological  Analytical
Species and breed Type of specimen
of animal
Sex Type of sample
Age Sample collection
Neuter status Temperature of storage
Hormonal status Duration of storage
and pregnancy
Diurnal variation Type of assay
Diet Sensitivity of assay
Animal handling Specifi city of assay
and environment
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they are rapid and may act as a starting point for 
future, more specialized tests. Well-established 
biochemical techniques, for example an enzyme-
linked immunosorbent assay (ELISA) or a radioim-
munoassay (RIA) are also used for characterizing 
markers of animal disease. Further, molecular 
biology techniques such as polymerase chain reac-
tion (PCR) are becoming more routine and may 
enable the rapid and specifi c detection of animal 
diseases (Schmitt and Henderson, 2005).

Post-Genomic Technologies 
in Animal Health and Disease
Global approaches that screen large numbers of 
molecular targets simultaneously are playing 
increasingly important roles as discovery tools in 
the basic biological and clinical sciences. In partic-
ular, the rapid advancement of the post-genomic 
technologies of transcriptomics, proteomics and 
metabolomics has led to the development of strate-
gies aimed at identifying biomarkers from the 
thousands of molecules present in a tissue or 
biological fluid (Ilyin et al. 2004; Seo and 
Ginsberg, 2005) (Figure 1).

Post-genomic approaches are best addressed by 
integrative studies that include measurements of 
mRNA, proteins and low molecular weight metab-
olites over time and varied conditions. Bioinfor-
matics are then used to relate these data to the 
genome and to the physiology or pathophysiology 
of the animal. Transcriptome analysis defi nes the 
population of mRNA species in a cell at a specifi c 
time and set of conditions. Proteomics addresses 
the technically and conceptually more challenging 
problem of defi ning changes in protein expression, 
dynamics and post-translational modifi cations, 
whilst metabolomics measures broad populations 
of low molecular weight metabolites. 

Compared to their application to biomarker 
discovery in human medicine, reports of the use 
of post-genomic technologies to study animal 
health and disease have been limited (Witkamp, 
2005). However, there is an increasing awareness 
and application of post-genomic strategies in 
veterinary research (Table 3). Whilst post-genomic 
technologies hold great promise, formidable chal-
lenges remain, especially in systems where analytes 
are uncharacterized or unknown. In this section we 
will summarize how transcriptomic, proteomic and 
metabolomic technologies have been applied to 
the identifi cation of new biomarkers in animal 

disease states and discuss the limitations in 
bringing such markers into routine clinical use. 

Transcriptomics
Many traits and disease states are genetically 
determined, either by a single gene mutation or 
due to a polygenic effect. A study of a species 
genome and its mutations in cases of disease or 
breeding attributes can yield benefi ts. Further, the 
analysis of genes which display differential expres-
sion may enable the discrimination of specifi c 
disease states and provide further insight into the 
pathogenesis of disease states. The genomics era 
has heralded a wealth of information for animals 
of both commercial and research importance. 
Genome maps have been assembled for horse, cow, 
pig, dog, chicken and other species (Kirkness 
et al. 2003; Fadiel et al. 2005; Womack, 2005).

One common method of mapping and cata-
loguing genomic information is in the form of 
expressed sequence tags (ESTs), which can be used 
as markers and for positional mapping within a 
genome. A number of animal EST public databases 
are managed by the National Center for Biotech-
nology Information (NCBI) (http://www.ncbi.nlm.
nih.gov/dbEST/index.html). ESTs have been useful 
in developing single nucleotide polymorphism 
(SNP) markers to allow a more refi ned genetic map 
to be produced (Snelling et al. 2005). A U.K. based 
consortium have also made available a transcriptome 
resource for chicken which has been assembled from 
both cDNA and EST data (Hubbard et al. 2005).

Transcriptomics monitors the expression levels 
of thousands of genes simultaneously at a specifi c 
time and set of conditions allowing the defi nition 
of the mRNA population. The ability to determine 
gene expression on a global scale has been facili-
tated by rapid advances in molecular technologies. 
The main platforms used to perform transcriptomic 
experiments are DNA microarrays (Schena et al. 
1995) and serial analysis of gene expression 
(SAGE) (Velculescu, 1995). 

Microarrays from both commercial and 
academic sources now exist for the cow, dog and 
chicken as well as for other animals (Cogburn 
et al. 2003; Suchyta et al. 2003; Holzwarth et al. 
2005). There are public repository databases for 
farm animal genome projects such as ArkDB (Hu 
et al. 2001) and AgBase (McCarthy et al. 2006) 
and cross-species microarray chips are now 
becoming available for genes where there is high 
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Figure 1. Post-genomic approaches to biomarker discovery. Post-genomic technologies have provided new avenues for biomarker 
discovery. Biological fl uids and tissues hold a wealth of information at the transcript, protein and metabolite level which may be able to 
characterize disease states in animals. The identifi cation of diagnostically relevant biomarkers requires rigorous validation before use in 
the clinic.
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sequence conservation (Ji et al. 2004; Burnside 
et al. 2005; Grigoryev et al. 2005). 

The variance between microarray data can be 
greatly infl uenced by a number of factors. These 
can include sample preparation, background fl uo-
rescence, together with spot-spot and array-array 
differences in signal intensity. Complex normaliza-
tion and correction routines must be applied to the 
resulting data. In order for reliable comparison of 
transcript data obtained from microarray experi-
ments, researchers have proposed guidelines for 
the reporting of such data. Minimum information 
about a microarray experiment (MIAME) (Brazma 
et al. 2001) aims to standardize annotation and 
exchange of microarray data. The analysis of 
microarray expression data also requires advanced 
statistical techniques for the interpretation of the 
data (Gracey and Cossins, 2003).

Applications of transcriptomics 
to animal health and disease
Transcriptomics is a powerful approach that has many 
potential diagnostic applications in animal medicine 
(Hiendleder et al. 2005). These include scanning for 
gene mutations including SNPs and gene expression 
profi ling of disease and normal conditions. Addition-
ally, animal pathogens can be detected and genotyped 
using transcriptomic approaches (Feilotter, 2004). At 
present, it is not always practical to use these tech-
nologies directly in a clinical environment; however, 
transcriptomics may provide a starting point for the 
development of routine diagnostic tests.

Bovine infectious disease
Paratuberculosis or Johne’s disease is a chronic 
infectious disease of ruminants caused by the 

Table 3. Example applications of post-genomics technologies to animal health and disease.

Animal Application Body Fluid or Tissue Reference
Transcriptomics
Chicken Marek’s disease White blood cells Liu et al. 2001 
Cow Parasite tolerance White blood cells Berthier et al. 2003
Cow Mastitis White blood cells Park et al. 2004
Cow Johne’s disease White blood cells Skovgaard et al. 2006
Dog Osteoarthritis Cartilage Burton-Wurster et al.  
   2005
Dog Pancreatic acinar atrophy Pancreas Clark et al. 2005
Dog Dilated cardiomyopathy Heart  Oyama and Chittur,  
   2005
Dog Cancer  Brain tumor Thomson et al. 2005
Dog Renal disease Kidney Greer et al. 2006
Horse Osteoarthritis Cartilage Smith et al. 2006
Pig Pathogen detection Porcine pathogens Liu et al. 2006
Sheep Disease resistance  Duodenum  Keane et al. 2006

Proteomics

Cow Follicular cysts Follicular fl uid Maniwa et al. 2005 
Cow Peripartum health diagnosis Serum Cairoli et al. 2006
Fish  Cancer Plasma Ward et al. 2006
Horse Infection biology Serum Roncada et al. 2005
Horse Connective tissue injury Tendon Sodersten et al. 2006 
Pig Respiratory infection Bronchoalveolar Hennig-Pauka et al.  
  lavage fl uid 2006 
Sheep Copper toxicosis Liver Simpson et al. 2004

Metabolomics

Cow Monitoring steroid use Urine Dumas et al. 2005 
Dog Liver disease Plasma Whitfi eld et al. 2005
Fish Cancer Liver Stentiford et al. 2005



190

Moore et al

Biomarker Insights 2007: 2

slow-growing intracellular bacterium Mycobacte-
rium avium subspecies Mycobacterium paratuber-
culosis. A cDNA microarray approach has been used 
to detect changes in peripheral blood mononuclear 
cells in clinical and sub-clinical Johne’s disease-
positive cows (Coussens et al. 2002). In an extended 
study (Skovgaard et al. 2006), non-stimulated leuko-
cytes were isolated from a group of infected cows 
and gene expression compared to cells from control 
cows. Fifty-two genes were reported to be differen-
tially expressed in leukocytes from infected cattle 
and quantitative-real time PCR (q-RT PCR) showed 
that a subset of leukocyte genes are consistently 
expressed at different levels depending upon infec-
tion status. Genes encoding the proteins, 
P-selectin, IL-1RA and CD30L were consistently 
expressed at a higher level within the sub-clinical 
group and activin RIIA was expressed at lower 
levels in cells from the sub-clinical group. 

Genotyping for disease resistance 
in chicken
Marek’s disease is a herpes-induced T cell cancer 
of chickens with high economic impact on the 
world poultry industry. Resistance to Marek’s 
disease is complex and controlled by many genes, 
making it a diffi cult trait to study. Assessment of 
gene expression in peripheral blood lymphocytes 
from uninfected and Marek’s disease virus-infected 
inbred lines was performed using microarray tech-
nology (Liu et al. 2001). Twofold increases or 
decreases were searched for in autoradiographs of 
chicken DNA microarrays, with twenty-fi ve genes 
showing increased expression and fi fty-fi ve genes 
showing decreased expression. Both growth 
hormone and lymphotactin were identified as 
possible candidate marker genes. Recent work has 
focused on the detection of Marek’s disease in 
chicken feather tips. The virus is carried through 
the bloodstream to the visceral organs, peripheral 
nerves and feather follicle epithelium via 
T lymphocytes. PCR methods have been developed 
for quantification of viral DNA from feathers 
(Abdul-Careem, 2006; Baigent, 2006). 

Proteomics 
Proteomics is defi ned as the study of the protein 
component of a cell, tissue or organism at a given 
time under given conditions (Wilkins et al. 1995). 
A proteomic approach to biomarker discovery 
requires a combination of effi cient and stringent 

separation technologies and high-resolution mass 
spectrometry (Aebersold and Mann, 2003; 
Anderson and Anderson, 2005; Duncan and 
Hunsucker, 2005; Rifai et al. 2006). However, 
these strategies bring many analytical challenges, 
which have yet to be fully optimized (Zolg, 
2006).

The most widely used proteomics strategy for 
protein profi ling is 2-dimensional gel electropho-
resis (2-DGE) (O’Farrell, 1975; Gorg et al. 1998). 
2-DGE can be limited in terms of its reproducibility 
and other methods such as difference gel electro-
phoresis (DIGE) may be employed to reduce the 
effects of gel-to-gel variation (Unlu et al. 1997). 
Proteins separated by 2-DGE are commonly iden-
tifi ed using peptide mass fi ngerprinting (PMF) 
however, a potential diffi culty with this approach 
is the lack of complete and annotated genome 
sequences of particular species. Whilst it is possible 
to identify proteins with high sequence conserva-
tion by PMF and cross-species matching (Liska 
and Shevchenko, 2003), a single amino acid change 
in a protein can result in dramatically different 
peptide mass fi ngerprint. The accurate identifi ca-
tion of proteins from animals often requires de novo 
sequencing of peptides by liquid chromatography-
tandem mass spectrometry (LC-MS/MS). 

‘Shotgun proteomics’ has also recently emerged 
as a powerful strategy for the analysis of complex 
protein mixtures. This approach has been pioneered 
by mass spectrometric methods such as multi
dimensional protein identification technology 
(MudPIT) (Washburn et al. 2001). Surface-
enhanced laser desorption ionization time-of-fl ight 
mass spectrometry (SELDI-ToF-MS) has also been 
employed for proteomics studies (Hutchens and 
Yip, 1993). This technique has the potential to 
identify protein biomarkers of disease states but 
there are still issues regarding reproducibility and 
further validation is required for biomarker 
discovery (Baggerly et al. 2004). 

Although plasma or serum can be considered as 
a primary source of biomarkers in animal species 
(Wait et al. 2002; Miller et al. 2004; Hood et al. 
2005) these body fl uids present problems of over-
representation of a few proteins (e.g. albumin, IgG 
and transferrin). Immuno-depletion is often used to 
remove high abundance proteins, however concerns 
about the use of depletion steps exist due to the 
limited cross-reactivity of commercial antibodies 
with proteins from animal species and because low-
abundance proteins may be simultaneously removed 
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(Granger et al. 2005). An alternative strategy for 
reducing the level of abundant proteins from serum 
samples is the recently developed ‘Protein Equalizer 
Technology’ (Righetti et al. 2006), which may prove 
more applicable across species boundaries. An 
additional challenge in protein biomarker discovery 
is the enormous complexity of the biological 
samples. Positional proteomics methods aim to 
simplify the proteome by isolating either the C- or 
N-terminal peptides (Gevaert et al. 2003; McDonald 
et al. 2005). Other approaches to proteome simpli-
fi cation have focused on specifi c amino acids such 
as cysteine residues in proteins or peptides (Borisov 
et al. 2002).

The ability to accurately quantify the concentra-
tions of proteins in a complex mixture is also vital 
for biomarker applications. Previous proteomic 
approaches have relied on relative quantitative 
strategies using methods such as ICAT (Gygi et al. 
1999) and iTRAQ (Ross et al. 2004). However, 
protocols for the absolute quantifi cation of indi-
vidual proteins (AQUA) (Gerber et al. 2003; 
Kirkpatrick et al. 2005) and multiple proteins 
(QconCAT) (Beynon et al. 2005) have recently 
been developed.

Peptides may be protein derived thus acting as 
an indicator of protein state, but equally may act 
in the cell as hormones, growth factors, cytokines 
or neurotransmitters. Therefore, changes in the 
concentrations of peptides may be indicative of a 
diseased state. Peptidomics employs proteomics-
based technologies to profi le endogenous peptides 
in tissues and body fl uids (Ivanov and Yatskin, 
2005; Soloviev and Finch, 2006).

Use of proteomics in veterinary 
research
Proteomics is increasingly coming to the forefront 
of biomarker discovery in veterinary research for 
a variety of animal diseases.

Proteomics for peripartum health prognosis 
in cows
Cairoli et al. (2006) conducted a study to elucidate 
differences in protein expression during pregnancy 
and in the peripartum period in cows with and 
without postpartum uterine infections. Artifi cially 
inseminated Friesian heifers had serum samples 
taken at monthly intervals over the course of their 
pregnancies. Serum proteins were separated by gel 
electrophoresis, and identifi ed by mass spectrom-

etry. Quantitative evaluation of the serum proteome 
patterns revealed that concentrations of both hapto-
globin and orosomucoid/α1-acid glycoprotein 
fl uctuated at the time of calving. In cows affected 
by postpartum endometritis, the concentration of 
orosomucoid was signifi cantly lower than that of 
healthy cows. Further investigation and validation 
of the fi ndings of this study are necessary for 
biomarkers to be unequivocally identifi ed, but the 
difference in serum orosomucoid levels holds 
promise as a prognostic biomarker of postpartum 
cattle health.

Proteomic investigations of porcine respira-
tory health
In pigs several respiratory tract pathogens can be 
responsible for respiratory disease and can persist 
for extended periods of time in convalescent 
animals. Actinobacillus pleuropneumoniae was 
used as a model to study respiratory infection in 
swine (Hennig-Pauka et al. 2006). Proteins from 
bronchoalveolar lavage fluid (BALF) were 
analyzed by 2-DGE in order to identify changes in 
proteome expression. Pigs of both sexes were 
experimentally infected with A. pleuropneumoniae 
and BALF was taken over the course of the infec-
tion. Eighty protein spots were found to be differ-
entially expressed in BALF samples taken from 
individual pigs before and across the 21 day infec-
tion period. Twelve proteins were found to be 
consistently increased at day 21 of infection in all 
analyses, eight of which were statistically signifi -
cant. Three of the proteins were identifi ed. These 
were prophenin-2, PR-39 and calgranulin C. PR-39 
was highlighted as a possible biomarker, leading 
to further analysis of this protein at day 21 of infec-
tion. It was found to be consistently elevated and 
its levels signifi cantly correlated to the lung lesion 
score. BALF is not the most accessible sample 
matrix but this study may prove to be a useful 
starting point for targeted biomarker discovery. 

Metabolomics
Metabolomics monitors alterations in cell function 
that are perhaps most evident at the level of small 
molecule metabolism and can provide a coherent 
view of the response of biological systems to a 
variety of genetic and environmental infl uences 
(German et al. 2005; Oresic et al. 2006). Metabo-
lomics can therefore offer an integrative view of 
the healthy and the sick animal and provide an 
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additional perspective on the molecular pathogen-
esis of disease in animals. Importantly, readily 
accessible metabolites raise the possibility of iden-
tifying biomarkers of specific disease states 
(Serkova and Niemann, 2006). Nonetheless, in 
metabolomic experiments the effect of analytical 
and biological infl uences on metabolite composi-
tion of tissues and body fl uids needs to be carefully 
assessed and validated (Bollard et al. 2005; Stanley 
et al. 2005; Teahan et al. 2006; Wang et al. 2006; 
Gu et al. 2007).

The wide range of low molecular weight 
metabolites in complex biological systems 
demands a variety of analytical platforms for detec-
tion, identifi cation and quantifi cation. Suitable 
techniques must be sensitive, robust and have the 
capacity to acquire data on metabolite profi les from 
large populations of samples. Achieving the 
broadest overview of metabolite composition for 
biomarker discovery in body fl uids such as plasma 
and urine is challenging and requires an integrated 
strategy for metabolite analysis and data processing 
(Dunn et al. 2005). 

Ideally, metabolomic analyses should avoid bias 
for specifi c molecules and should be able to detect 
every individual metabolite, a requirement that is 
only really attained through the use of multiple 
analytical methods. The techniques most commonly 
employed in metabolomics analyses are nuclear 
magnetic resonance (NMR) spectroscopy (Reo, 
2002; Viant, 2006), liquid chromatography-mass 
spectrometry (LC-MS) and gas chromatography-
mass spectrometry (GC-MS) (Want et al. 2005; 
Wilson et al. 2005; Dettmer et al. 2007). Fourier 
transform-ion cyclotron resonance (FT-ICR) mass 
spectrometry (Brown et al. 2005) and capillary 
electrophoresis-mass spectrometry (Soga, 2007) 
have also aroused interest for the global profi ling 
of low molecular weight metabolites. 

Automated methods for both experimental 
design and maximum metabolite capture have 
been proposed. (O’Hagan et al. 2005) and initia-
tives to standardize the reporting of metabolomic 
analyses have been established (Jenkins et al. 
2004; Lindon et al. 2005; Fiehn et al. 2006). 
However, bioinformatic tools, including mass 
spectral libraries and deconvolution algorithms, 
are required to readily identify global populations 
of low molecular weight metabolites. (Hollywood 
et al. 2006). Such tools will be critical for 
biomarker discovery in metabolomics. Due to the 
large data sets obtained from metabolomics 

experiments, multivariate data analysis is often 
employed to provide evidence of metabolite 
perturbations. These statistical methods provide 
an effi cient, non-biased procedure for interpreting 
the complex datasets and allow the correlation of 
metabolic responses in biological systems to be 
fully investigated (Holmes et al. 2000). 

Metabolomics for biomarker 
discovery in animals
Whilst still in its infancy, metabolomics strategies 
have been employed to characterize metabolic 
changes resulting from altered gene function in 
plants (Weckwerth et al. 2003; Schauer and Fernie 
2006) and to explore microbial metabolism (Kell, 
2004) and the mechanisms of drug toxicity 
(Nicholson et al. 2002; Lindon et al. 2003). Metab-
olomics is also being used towards diagnostic 
applications (Brindle et al. 2002; Kenny et al. 2005; 
Lamers et al. 2005) and to investigate pathophys-
iological processes in animal models of human 
diseases (Wang et al. 2004; Griffi n, 2006; Major 
et al. 2006). A number of metabolomics studies 
have now begun to focus on animal health and 
disease. 

Metabolomics and canine hepatology
Metabolomic analyses have been used to charac-
terize metabolic disturbances in canine liver 
disease (Whitfi eld et al. 2005). The goal of this 
study was to employ metabolomics to advance 
the diagnosis of portovascular anomalies in dogs 
and provide a means of more accurately assessing 
the progression of these disease states. In the 
study, the plasma metabolite profi le from three 
groups of dogs with congenital portovascular 
anomalies, acquired hepatopathies or unrelated 
(non-hepatic) disorders was examined using LC-
MS. Multivariate data analysis was then used to 
compare the plasma metabolite profi les of the 
three groups of dogs. The metabolites which were 
most signifi cantly increased in dogs with liver 
disease were identifi ed as the taurine conjugates 
of the bile acids, cholic and chenodeoxycholic 
acid whereas 16:0-, 18:2- and 18:0-lysophospha-
tidylcholine were decreased in affected animals. 
In contrast to conventional laboratory measure-
ments, the analysis not only distinguished control 
and affected cohorts of dogs but also discrimi-
nated animals with congenital portovascular 
anomalies from those with acquired syndromes. 
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Metabolomics approach to monitor the use 
of anabolic steroids in cattle
The use of beta-agonists, sexual steroids, and 
corticosteroids as growth-promoting agents in veal 
calves is forbidden in the European Union (EU) 
and subjected to restrictions in the U.S. because it 
may be potentially noxious for both treated animals 
and the consumer. The presence of these compounds 
in matrices of biological origin often goes unno-
ticed because of the use of very low dosages and/
or number of molecules of unknown chemical 
structure. It is therefore necessary to develop 
methods for the simultaneous screening of large 
numbers of low molecular weight metabolites. 
Dumas et al. (2005) investigated the metabolic 
responses of cattle to anabolic steroid treatment 
using a metabolomics strategy. Hereford steers 
were administered a range of steroids and their 
urine was sampled at various time points. Metab-
olite profi les were analyzed by NMR spectroscopy 
and multivariate analysis of the data was performed 
to reveal metabolites of diagnostic interest. The 
profi le of metabolites involved in nitrogen metab-
olism (trimethylamine-N-oxide, dimethylamine, 
hippurate, creatine, creatinine and citrate) was 
found to be disturbed indicating a coordinated 
response to anabolic steroids.

Bioinformatics for biomarker 
research
Currently data analysis remains a major bottleneck 
in post-genomic research (Domon and Aebersold, 
2006). Biomarker discovery experiments generate 
large data sets and results are often obtained from 
the combined endeavors of several laboratories. It 
is therefore critical that the processing and analysis 
of complex data sets, incorporating defi ned stan-
dards for data formats, data processing parameters, 
and data quality assessment, is stream-lined for 
both ease of use, data exchange and down-stream 
utility. 

Public repositories for genomic and proteomic 
information such as GenBank and MSDB have 
contributed greatly to the advances made in post-
genomic research (Kersey and Apweiler, 2006). 
Whilst databases for metabolomic studies are not 
as well developed (Nobeli and Thornton, 2006), 
appropriate bioinformatic resources are becoming 
available (Kopka et al. 2005). Similarly, databases 
specifi cally for use in the veterinary sciences have 
been limited as the genome sequences of most 

animals have relatively poor structural and func-
tional annotation (McCarthy et al. 2007). The 
advent of genome projects focused on a number 
of biologically and economically important animal 
species are either complete or well advanced and 
will provide a tremendous tool for those in the fi eld 
of veterinary research.

Conclusion
Biomarker discovery has enormous potential for 
improving animal health and welfare. The rapid 
advancement of the post-genomic technologies 
has led to the development of global strategies 
aimed at relating gene expression to phenotypic 
outcome in biological systems. These approaches 
may be used to improve disease diagnosis and 
prognostic evaluation and as a means of moni-
toring the effi cacy of treatments. 

Whilst post-genomic technologies hold great 
promise for veterinary research, substantial tech-
nical challenges remain. Along with the intrinsic 
problems involved in the global analysis of tran-
scripts, proteins and metabolites, additional issues 
of feasibility, cost and practicality of using these 
technologies in a clinical environment should be 
considered. Of the many biomarkers identifi ed by 
these approaches few have made their way into 
routine clinical use. Lack of specifi city and sensi-
tivity contribute to the problems faced when 
bringing a biomarker assay from the laboratory 
to the clinic and many investigations do not prog-
ress to the large-scale studies required for proper 
biomarker validation. 

Post-genomic analyses can be followed by 
refi ned experimental approaches, which focus on 
specifi c groups of mRNA, proteins or metabolites 
that are differentially expressed in the initial 
global profi les. Combining targeted approaches 
with post-genomic technologies should permit a 
convergent strategy to integrate biomarker 
concepts. Such strategies hold great promise for 
biomarker discovery in animal health and 
disease.
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