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Abstract

Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS) that are produced in
mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of
biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that
is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission
was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon
emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.
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Introduction

All living organisms emit very weak light, which differs from the

bioluminescence produced by luciferin-luciferase systems in

fireflies, photobacteria, and hydromedusae. This light is observed

as a series of individual photon emissions and the resulting

luminescence, as well as the phenomenon itself, is referred to as

biophoton emission [1–10]. The energy for this luminescence is

produced when an excited biological molecule drops to a lower

energy state [4,5], and the majority of the excited biological

molecules are reactive oxygen species (ROS) [11–15]. On being

reduced, singlet oxygen, which is an ROS, also shifts to a lower

energy state and emits photon [16]. Superoxide anion radical,

hydrogen peroxide, and hydroxyl radicals also all oxidize

biological materials and emit photons in the process [17]. The

production of ROS is important because even low concentrations

of ROS are toxic to living cells, as they impair membrane

functioning by peroxidation of membrane lipids, reduce enzyme

activity through the oxidization of peptides and carbohydrates,

and promote the oxidation ornamentation of nucleic acids in

DNA.

Although ROS are generated at a fixed rate by oxidation-

reduction reactions during normal cellular respiration, living

organisms employ a variety of mechanisms to scavenge the ROS,

including antioxidant enzymes, such as superoxide dismutase

(SOD) and catalase, and low-molecular weight antioxidants, such

as vitamins C and E. In healthy organisms, because the

concentration of ROS is maintained at very low levels by these

antioxidants, the luminescence intensity of the biophotons is

extremely low (#103 photons s21 cm22, or approximately

10216 W cm22) [18,19]. However, when living organisms become

stressed due to variations in temperature or other environmental

perturbations, the concentration of ROS increases and strong

luminescence is observed [20–32].

This association between stress, ROS generation [33], and

biophoton emission is well documented [20–32], and numerous

researchers, including us, consider that the stress levels of living

organisms can be inferred in real time by measuring biophoton

emissions [34–44]. We previously measured biophoton emission in

plants in response to a variety of environmental stresses, including

salt [45], drought [46,47], and infestation by mites [48,49]. In

those reports we observed strong luminescence under conditions of

marked growth inhibition or fatal injury. Moreover, the duration

of the change in intensity, the spectrum of radiation, and the

spatial distribution of the luminescence changed in accordance

with the kind of stress.

In this study, we examined the effect of heat shock on stress in

azuki beans. When an organism is exposed to high temperatures,

proteins denature and membrane structure is disrupted [51].

Furthermore, under high temperature conditions, antioxidant

enzymes and other enzymes are inactivated, promoting lipid

peroxidation by ROS that are not detoxified by the enzymes [51].

Organisms have developed a variety of mechanisms to prevent

injury due to high temperatures, the most common of which is the

production of heat shock proteins (HSP). High levels of HSPs are

synthesized when living organisms are exposed to increases in

temperature of 5–10uC, or to high sub-lethal temperatures for a

short time [51]. HSPs are primarily involved in the refolding of

denatured proteins and the prevention of unnecessary protein

aggregation. When temperatures return to normal, synthesis of

HSPs ceases, but HSPs remain in the cells for several hours to

several days [51]. Structural analyses of HSP genes have revealed

that the structure and function of these proteins and the heat shock

response are highly conserved within all living organisms. Despite

the considerable number of studies on the biological response to

heat shock, numerous details associated with these protective

mechanisms remain unresolved. Some studies about temperature

responses were performed at the beginning of biophoton research

[3,4]. However, the biological systems are very complex and more
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careful experiments are still necessary even now to understand the

relationship between biophoton and heat shock response. And we

can use the recently improved detectors that have more sensitivity

in infra-red light generated by reactive oxygen species produced in

metabolic process.

We therefore investigated the potential application of biophoton

measurements as real time indicators of the response of living

organisms to heat shock. Specifically, we first examined how

biophoton emission varied in response to differences in the rate of

increases in temperatures.

Biophoton signals can be measured noninvasively, in real time,

and without physical contact, they are well suited for acquiring

metabolic information of living organisms. We expect that

measurements of biophoton emissions will increasingly be used

to clarify the dynamics of heat shock responses in living organisms.

In this study, we considered that the simpler sample was suitable

because the fundamental response of organisms to heat shock is so

highly conserved among all living organisms. Therefore, we

selected azuki bean (Vigna angularis) roots that have a relatively

straightforward physiology as they derive all of their nutrition from

carbohydrates stored in the cotyledons. Moreover, since roots

grew in dark, fluorescence was avoidable in measurements. This

contrasts with conditions in leaves where the heat shock response is

complicated by transpiration. Furthermore, becoming more

complex was expected for animal.

Material and Methods

Sample Preparation
The sample azuki bean (Vigna angularis) seeds were purchased

from Nakahara Seed Co. Ltd., Japan. To induce germination,

about 60 seeds were laid on wet cotton and placed in the incubator

(IG-47M, Yamato Science Inc., Japan) for 24 hours under relative

humidity (RH) and temperature (T) conditions of 95% and 35uC,

respectively. To promote growth, RH and T were decreased to

82% and 24uC after 24 hours, respectively. To prevent photo-

synthesis, these incubation steps were performed in the dark. Pure

water (conductivity: 0.10mS) distilled and filtered by GSH200

Aquarius purifier (Advantec Co., Japan) was used for culture

solution. We selected ten germinating seeds with root lengths of 5–

20 mm for one measurement, and the cotton wastes attaching to

roots were removed because of their strong fluorescent. In order to

investigate the responses of the intact samples which were in the

same growth stage and were not heated, we used another samples

for each measurement. In the measurements, we placed the

sample roots into an inoperculate Petri dish (diameter: 150 mm)

and added pure water in the dish until the total weight of seeds

and water reached 20g.

Experimental Setup
Figure 1 shows a schematic view of the experimental setup.

Biophotons were measured by using the photon counting system

which consists of an M8784 counting board in a PC, a C3866

photon counting unit, and an R2257P photomultiplier tube cooled

to 230uC in the C4877 thermoelectric cooler housing (Hama-

matsu Photonics K.K., Japan). The R2257P is the low noise

version of catalog model R2257. An R2257P has 46 mm2

photocathode and exhibits 1% or more of quantum efficiency

from the wavelength of 300 nm to 900 nm and the maximum

quantum efficiency is 50% in the wavelength of 600 nm. One

photon counting was performed in 1 second of gate time. The dark

noise at 230uC was about 190 counts per second (cps).

The sample roots in Petri dish were set above R2257P in a dark

chamber. Temperature of the water in Petri dish was controlled by

kp1000 (CHINO, Japan: Measurement A) and TP-4N (As one Co.

Japan: Measurement B) temperature controller and its heater. The

temperature near the sample roots was measured using a Pt

resistance thermometer. All measurements were performed in a

darkroom at ,24uC. In addition, samples and the experimental

apparatus were kept in the dark for an hour before the onset of

measurements to avoid delayed luminescence (ultraweak fluores-

cence and phosphorescence) [31].

Measurements
Sequential measurements of photon counts I (cps) and

temperature T (uC) were performed under the two temperature

control patterns shown in Fig. 2. Time required for one

measurement for I and T was less than 2 seconds, so whole

measurements are performed in almost ‘‘real time’’. We were set

to 40uC target temperature of these experiments. 40uC is a

sufficiently high temperature to cause a heat shock, because

enzyme begins to deactivation. Briefly, the changes in temperature

could be described as follows:

A. The sample (10 adzuki bean roots) temperature was increased

from room temperature (,25uC) to ,40uC within from 30

minutes to 7 hours (the temperature increment rate DT/

Dt = 0.5 , 0.036 uC/min).

B. Stepped and slope-type temperature control patterns. The

sample (3 adzuki bean roots) temperature was increased

rapidly from room temperature (,22uC) to 25, 28, 33, or

35uC, and then maintained at that temperature for 3 hours,

before being increased to ,40uC at the same rate of increase

(DT/Dt , 0.23uC/min).

Since all sample roots grew in 24uC and were considered to

adapt to 24uC as their ideal temperature for growth, we chose the

start temperature of with margin of 2u.

Figure 1. Schematic diagram of experimental setup.
doi:10.1371/journal.pone.0105700.g001

Figure 2. Stepped and slope-type temperature control pat-
terns.
doi:10.1371/journal.pone.0105700.g002
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Furthermore, in order to investigate the luminescence from the

seeds that couldn’t respire, we measured it from the seeds sunk into

water. The seeds can’t breathe for not exposed to air.

Results and Discussion

Figure 3 shows the changes in the intensity of photon emissions

I under the temperature control patterns shown in Fig. 2 (A). As

shown in Fig. 3, the photon intensity increased during heating and

decreased when heating was stopped. The intensity was also

higher when the rate of the increase in temperature DT/Dt was

large. These findings indicate that the rate of the increase in

temperature DT/Dt is directly affects photon intensity, and this

tendency is clearly shown in Fig. 4, which shows the data plotted

in Fig. 3 plotted as a function of temperature. Figure 5 summa-

rizes all of the results in Fig. 3; heating rate (uC/min) – increase of

photon counts (cps). As shown in Fig. 5, in the normal samples the

intensity of biophotons emitted increased with temperature, with

intensities at higher rates of temperature increase DT/Dt being

stronger than those at the same temperature, but with smaller rates

of change. However, in no-breathing samples, photon counts is

clearly less and constant regardless of the heating rate.

These results indicate that the stress was higher at higher

temperatures and when the rate of temperature increases DT was

higher, and that this higher stress increased ROS generation. The

fact which no-breathing samples don’t emit more photons in

higher temperature supports this conclusion. Previous studies on

ROS generation have typically employed chemical analytical

methods, and the general findings of these results are already

widely known [50,53]. However, the biophoton measurements in

this study enabled real-time detection and detailed analysis of

stress-induced ROS.

To clearly demonstrate adaptation to heat shock, the beans

were subjected to stepped and slope-type temperature control

patterns. Figure 6 shows the changes in photon intensity in

response to temperatures being increased quickly from 22uC to

25–35uC and maintained for three hours, before being increased

to 40uC at a rate of 0.23uC/min. As shown in Fig. 6, photon

intensity increased at each temperature step and with each

increase in the rate of the temperature increase DT/Dt. The

increase in photon intensity was proportional to the height of the

temperature step (i.e., under higher heat stress). This rapid

increase in ROS production has been referred to as the oxidative

burst [50], and genetic studies have shown that the proteins

encoded by respiratory burst oxidase homolog genes, NADPH

oxidases, are the primary producers of signal transduction-

associated ROS in cells. After the increase in photon intensity at

the first temperature step, the photon intensity decreased gradually

when temperatures remained constant. These findings implied

that the increase in ROS due to heat shock initiated the adaptation

process, inducing the expression of HSP, which in turn resulted in

the ROS decreasing gradually over the next few hours as the

adaptation process progressed.

On the other hand, for the sample that was subjected to a

higher temperature step where the sample emitted many photons,

the increase in photon intensity I at the temperature slope

decreased as shown in Fig. 6 D. Since the rate of temperature

change at the temperature slope was the same (DT/Dt,0.23 uC/

min) for all samples, the difference in the photon intensity

originated in samples’ heat resistance at that time. The heat shock

following the temperature step would be associated with the

production of HSPs and, consequently, with an increase in the

heat resistance of the plant. Since the spectrum analysis of the

photon will be effective for further investigation of the origin of the

photon, we plan to improve the apparatus to measure the

spectrum.

As explained above, the biophoton intensity under heat stress

was always higher than it was at the reference state (before

heating). In this regard, the responses of the roots were very similar

to the response of roots to salt stress [45]. In that study, under

conditions of low salt stress, biophoton emission intensity was

lower than it was in reference plants; however, this finding was

attributed to a decrease in physiological activity itself. The

biophoton intensity has been shown to be dependent on the

concentration of ROS, which is not only dependent on the

magnitude of stress, but also on the amount of cellular respiration.

Cell respiration depends on physiological activity, and in the case

of salt stress it decreases as the salinity level increases [52].

Therefore, as we reported previously, photon intensity has a

minimal value at certain salinity levels [45].

On the other hand, except at lethally high temperatures, cellular

respiration and HSP expression both increase with temperature,

Figure 3. Time change of photon intensity I (dots) and temperature T (solid line) under different rates of temperature increase DT/
Dt: (A) 0.31, (B) 0.0726C/min. The unit of photon intensity I is counts per second (cps).
doi:10.1371/journal.pone.0105700.g003
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Figure 4. Temperature dependence of photon intensity under different rates of temperature increase DT/Dt: (A) 0.31, (B) 0.072 6C/min.
doi:10.1371/journal.pone.0105700.g004

Figure 5. Temperature increase DT/Dt dependence of photon intensity changes DI.
doi:10.1371/journal.pone.0105700.g005
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implying that the intensity of biophoton emissions increases

uniformly with an increase in temperature. Since respiration rate

decreases under conditions of low-temperature stress, it is expected

that the same decrease in respiration would be observed under

conditions of low-temperature stress. In addition, the phenomenon

of oxidization burst was not observed under conditions of low-

temperature stress [50].

Conclusion

Heat shock induces biophoton emission, which means that

luminescence in biological tissues increases greatly when the

temperature is increased rapidly. This phenomenon can be

attributed to the generation of ROS, which can be used to infer

the degree of stress in the organism. Biophoton measurements also

facilitate noninvasive observations of stress in real time, and are

thus a potentially useful method for evaluating heat shock and

other stresses in living tissues.

We have improved our measurement system and can now

control temperatures more precisely by microwave heating, which

has enabled us to detect temperature stress responses in the order

of several degrees by cyclic heating, long-term measurement and

averaging. We are currently investigating the fluctuations of ROS

in response to small temperature fluctuations and will report these

results in the near future.
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