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The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in-
duces innate immunity by activating the production of inflammatory cytokines and type I
interferons. Recently, studies revealed that self-DNA from by-products of chromosome in-
stability and tumors could activate the cGAS-STING pathway, and subsequently promote
or inhibit tumor development. However, the prognostic value and correlations with immune
infiltrates of the cGAS-STING pathway in hepatocellular carcinoma (HCC) have not been
clarified. In the present study, we used the Molecular Signatures Database, Oncomine, UAL-
CAN, Human Protein Atlas, Kaplan–Meier plotter, LinkedOmics, and Tumor Immune Estima-
tion Resource databases. Overexpression of XRCC5, IRF3, TRIM21, STAT6, DDX41, TBK1,
XRCC6, TREX1, PRKDC, and TMEM173 was markedly correlated with clinical stages and
pathological grades in HCC. Moreover, higher mRNA expression of XRCC5, XRCC6, and
PRKDC was significantly related with shorter overall survival. However, higher mRNA ex-
pression of IFI16, STAT6, NLRC3, and TMEM173 was associated with favorable overall sur-
vival. Our results suggested that the kinase targets of the cGAS-STING pathway included the
SRC family of tyrosine kinases (LCK and LYN), phosphoinositide 3-kinase-related protein ki-
nase (PIKK) family kinases (ATM and ATR), and mitogen-activated protein kinase 1 (MAPK1).
Furthermore, we identified significant correlations among the expression of cGAS-STING
pathway and infiltration of B cells, CD4+T cells, CD8+ T cells, macrophages, neutrophils,
and dendritic cells in HCC. The expression of the cGAS-STING pathway also exhibited
strong relationships with diverse immune marker sets in HCC. These findings suggest that
cGAS-STING pathway members may be used as prognostic biomarkers and immunother-
apeutic targets HCC patients.

Introduction
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide [1].
The 5-year survival rate of patients with advanced liver cancer is poor due to high tumor recurrence,
metastasis, and the lack of early diagnostic biomarkers with high sensitivity and specificity [2]. Owing
to poor liver function correlated with cirrhosis and extrahepatic metastasis, most patients with HCC are
resistant to common cytotoxic therapies [3]. Although doxorubicin was initially viewed as a first-choice
drug for advanced HCC, a controlled trial showed that it was related with a low survival rate [4]. The
overall life expectancy of patients with advanced HCC does not exceed 1 year even under treatment with
sorafenib or regorafenib [5].Therefore, there is an urgent need to identify novel potential prognostic and
therapeutic targets that are related with tumor formation and progression in patients with HCC.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

http://orcid.org/0000-0002-3820-8435
mailto:xiejd6@mail.sysu.edu.cn
mailto:bibt@sysucc.org.cn


Bioscience Reports (2020) 40 BSR20202603
https://doi.org/10.1042/BSR20202603

Cyclic GMP-AMP synthase (cGAS) is activated to catalyze the synthesis of cyclic GMP-AMP (cGAMP) on bind-
ing to DNA. Moreover, cGAMP acts as a second messenger, which binds to and induces the stimulator of interferon
genes (STING) [6,7]. The palmitoylation of STING mediates the recruitment and activation of TANK-binding ki-
nase 1 (TBK1) and interferon regulatory factor 3 (IRF3) to produce cytokines, such as type I interferons (IFNs) [8,9].
STING also acts downstream of several other cytosolic DNA sensors, including DEAD-box helicase 41 (DDX41)
and interferon gamma inducible protein 16 (IFI16) in the signaling pathway to produce type I IFNs. Knockdown of
DDX41 expression inhibited the ability of myeloid dendritic cells (DCs) to mount cytokine and type I IFN responses
to DNA, as well as DNA viruses. Lowering the expression of IFI16 by RNA-mediated interference blocked gene in-
duction and activation of IRF3 [10,11]. The cGAS-STING pathway is an important DNA-sensing machinery in innate
immunity and viral defense, and critically involved in tumor development [12,13]. Conditional deletion of TBK1 in
lung epithelial cells could inhibit tumorigenesis of lung cancer in a mouse model. Besides promoting tumor growth,
TBK1 was also involved in tumor-mediated immunosuppression [14]. Signal transducer and activator of transcrip-
tion 6 (STAT6) is overexpressed in various human cancers, and is a regulator involved in multiple biological processes
of cancers. Studies demonstrated that STAT6 silencing could induce apoptosis and growth inhibition in HCC-derived
cells [15].

Recently, studies revealed that the prognosis of patients with tumors was correlated with the expression of
cGAS-STING pathway members [16,17]. Cancer immunotherapy is an effective treatment against a number of can-
cers. Thomsen suggested that modulation of the cGAS-STING pathway could affect the tumor progression of HCC,
and potentially be used as a treatment in patients with HCC [18]. Through overexpression and RNA interference,
Wang et al. demonstrated that cGAS responded to exogenous dsDNA from the DNA damage response, and sub-
sequently triggered the activation of STING/TBK1-mediated innate immunity in chicken liver cancer [19]. XRCC5
variants play a crucial role in determining susceptibility to HCC [20]. A previous study found that aberrant splicing of
IRF3 could result in defects in IFN-mediated antiviral defenses in HCC [21]. Research demonstrated that DNA dam-
age repair by XRCC6 could reverse TLR4-deficiency-worsened liver cancer development by recovering immunity to
support autophagy and senescence [22]. An in vivo study showed that restored expression of IFI16 could effectively
promote tumor regression, which could be partly abrogated by inhibition of the induced inflammasome in HCC [23].
These findings suggest that cGAS-STING pathway members are potential prognostic biomarkers and therapeutic tar-
gets and may be associated with immune infiltration in patients with HCC. However, the identification of suitable
cGAS-STING pathway members for this purpose remains an important problem that requires urgent attention.

In our study, we searched for cGAS-STING pathway genes present in both the Molecular Signatures Database
(MSigDB) and Oncomine database, and in relevant literature [7,13]. We selected 13 key genes of the cGAS-STING
pathway members, namely XRCC5, IRF3, TRIM21, IFI16, STAT6, NLRC3, DDX41, TBK1, XRCC6, TREX1, PRKDC,
cGAS, and STING (also termed TMEM173). The genes regulated by the cGAS and STING signaling axis include
TBK1, IRF3, and STAT6. Moreover, the genes which regulate the pathway include TREX1, DDX41, IFI16, and
NLRC3.These signature genes of the cGAS-STING pathway are linked to type I IFN response. First, we compared the
expression of cGAS-STING pathway members in HCC tissues and normal tissues via Oncomine, UALCAN, and the
Human Protein Atlas. We subsequently analyzed the correlations between these key genes and prognosis in patients
with liver cancer using the Kaplan–Meier (K-M) plotter. In addition, we also investigated potential kinase targets
of the cGAS-STING pathway members in patients with HCC using LinkedOmics. To further investigate potential
immune therapeutic targets, we analyzed the correlations among the expression of cGAS-STING pathway members
and immune cell infiltration and diverse immune marker sets in HCC microenvironments obtained from the Tumor
Immune Estimation Resource (TIMER) database.

Materials and methods
MSigDB analysis
The comprehensive database MSigDB (www.gsea-msigdb.org/gsea/msigdb/) includes >10,000 gene sets and is widely
used to perform gene set enrichment analysis [24]. In the present study, we searched this database to obtain
cGAS-STING pathway genes.

Oncomine database analysis
Oncomine (www.oncomine.org) is a cancer microarray database, including 715 datasets and 86,733 samples for DNA
or RNA sequence analysis [25]. Oncomine can be used to analyze differences in gene expression between tumor tissues
and normal tissues. In the present study, we noted the transcriptional expression of cGAS-STING pathway genes
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between 20 different cancer samples and their normal adjacent tissues from the Oncomine database. The threshold
was determined based on the following values: P=0.01, fold change = 1.5, gene rank = 10%, and data type for mRNA.

UALCAN database analysis
UALCAN (http://ualcan.path.uab.edu) is an interactive web server for the analysis of 31 types of cancer with tran-
scriptome data from The Cancer Genome Atlas (TCGA). This tool is based on clinical data and level 3 RNA-sequence.
UALCAN can be used to assess the association of transcriptional expression with relative clinicopathologic features
[26]. In our study, UALCAN was utilized to analyze the mRNA expression of cGAS-STING pathway genes in HCC
tissues, and estimate their association with clinicopathologic features. A P<0.05 denoted statistically significant dif-
ference.

Human protein atlas
The Human Protein Atlas (https://www.proteinatlas.org) is an online site containing immunohistochemistry-based
expression data for approximately 20 common types of tumors. It is used to map the human proteins in organs, tis-
sues, and cells through integration of different omics technologies, such as mass spectrometry-based proteomics and
transcriptomics [27]. In the present study, the protein expression of different cGAS-STING pathway genes between
human normal and HCC tissues was compared using immunohistochemistry images.

K-M plotter database analysis
The K-M plotter (www.kmplot.com) is used to estimate the effect of 54,000 genes for prognostic analysis in 21 com-
mon types of cancer. The database contains gene chip and RNA-sequence data-sources obtained from databases, such
as the Gene Expression Omnibus [28,29]. We evaluated the prognostic value of the mRNA expression of cGAS-STING
pathway genes in liver cancer via the K-M plotter database. We divided patients according to the median and accepted
other default settings prior to the analysis. The hazard ratio (HR) with 95% confidence intervals and log-rank P-values
was computed. A P<0.05 denoted statistically significant differences.

LinkedOmics
LinkedOmics (http://www.linkedomics.org/) is a publicly available portal containing all 32 types of cancer included
in TCGA. It serves as a unique tool for biologists and clinicians to access, compare, and analyze cancer multi-omics
data [30]. In this study, we determined the kinase target enrichment of cGAS-STING pathway genes using the “Link-
Interpreter” module. We conducted analyses with a number of size of 3 and simulations of 500 in LIHC dataset. We
considered 0.05 as the P-value cutoff and used the Spearman correlation test to analyze the results statistically.

TIMER database analysis
TIMER (https://cistrome.shinyapps.io/timer/) is a reliable database for estimating immune cell infiltration using data
from TCGA, including 10,897 samples from 32 types of cancer [31]. In the present study, we initially analyzed the
expression of cGAS-STING pathway genes in HCC. Subsequently, we examined the correlation between the ex-
pression of cGAS-STING pathway members and immune cell infiltrates, including B cells, CD8+ T cells, CD4+ T
cells, macrophages, DCs, and neutrophils with gene modules. Highly expressed genes in the tumor microenviron-
ment tend to have negative correlations with tumor purity [32]. The generated scatterplots suggest statistical signifi-
cance and provide the purity-corrected partial Spearman’s rho value. Further, correlations between the expression of
cGAS-STING pathway members and gene markers of immune cells were further evaluated with correlation modules.
The cGAS-STING pathway genes were represented on the X-axis, and related marker genes were used for the y-axis.
Options for partial correlation under the condition of tumor purity were conducted.

Statistical analysis
The results generated from Oncomine were displayed with fold changes, P-values, and t-test results. Survival curves
were generated via K-M plots. The results of KM plots were presented by P-values and HR obtained from a log-rank
test. A P<0.05 denoted statistically significant differences.

Results
mRNA expression levels of cGAS-STING pathway members in HCC
We analyzed the differences in the transcriptional levels of cGAS-STING pathway members in patients with HCC
using the Oncomine database. The results revealed that the mRNA expression of TRIM21, IFI16, NLRC3, DDX41,
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Figure 1. Transcriptional expression of 12 cGAS-STING pathway members in 20 different types of cancer (Oncomine

database)

Differences in transcriptional expression were compared using Student’s t-test. The cutoff criteria were as follows: P=0.01, fold

change = 1.5, gene rank = 10%, and data type of mRNA.

Table 1 Significant changes in the transcription levels of cGAS-STING pathway members between HCC and normal liver
tissues (Oncomine)

Types of HCC versus
liver Fold change P value t-test References

TRIM21 Hepatocellular carcinoma 1.607 4.78E-04 3.847 Wurmbach Liver [34]

IFI16 Hepatocellular carcinoma 3.474 4.23E-14 10.895 Mas Liver [35]

Hepatocellular carcinoma 4.715 1.91E-16 15.089 Mas Liver [35]

Hepatocellular carcinoma 3.649 1.02E-06 7.012 Wurmbach Liver [34]

Hepatocellular carcinoma 2.250 4.06E-04 3.861 Wurmbach Liver [34]

NLRC3 Hepatocellular carcinoma 2.197 1.35E-05 5.560 Wurmbach Liver [34]

DDX41 Hepatocellular carcinoma 2.012 7.60E-8 6.619 Roessler Liver [36]

Hepatocellular carcinoma 1.719 5.25E-7 6.074 Wurmbach Liver [34]

Hepatocellular carcinoma 1.701 2.95E-41 15.050 Roessler Liver 2 [36]

XRCC6 Hepatocellular carcinoma 1.828 1.47E-70 21.477 Roessler Liver 2 [36]

TREX1 Hepatocellular carcinoma 1.552 0.002 3.172 Wurmbach Liver [34]

PRKDC Hepatocellular carcinoma 2.792 4.91E-72 23.447 Roessler Liver 2 [36]

Hepatocellular carcinoma 3.011 9.67E-9 7.102 Wurmbach Liver [34]

Hepatocellular carcinoma 1.651 8.50E-15 8.386 Chen Liver [37]

Hepatocellular carcinoma 2.439 6.57E-8 7.031 Roessler Liver [36]

XRCC6, TREX1, PRKDC, and TMEM173 was significantly higher in HCC tissues in multiple datasets (Figure 1 and
Table 1). In the Wurmbach Liver dataset [33], higher expression of TRIM21 was revealed in HCC tissues compared
with normal adjacent tissues (fold change = 1.607 and P = 4.78E-04). Up-regulation of IFI16 was also found in HCC
tissues compared with normal adjacent tissues. The data from the Mas Liver dataset [34] showed increase of 3.474-fold
(P = 4.23E-14) and 4.715-fold (P = 1.91E-16), respectively. Wurmbach [33] observed a 3.649-fold (P = 1.02E-06) and
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2.250-fold (P = 4.06E-04) increase, respectively, in IFI16 mRNA expression in HCC samples. Wurmbach [33] also
found a 2.197-fold (P = 1.35E-05) increase in NLRC3 mRNA expression in HCC tissues. Similarly, in the Roessler
Liver dataset [35], 2.012-fold (P = 7.60E-8) and 1.701-fold (P = 2.95E-41) increases in DDX41 mRNA expression
were found in HCC samples compared with normal tissues. Wurmbach [33] observed a 1.719-fold (P = 5.25E-7)
increase in DDX41 mRNA expression in HCC samples. In the Roessler Liver 2 dataset [35], high expression of XRCC6
was observed in liver cancer tissues compared with normal adjacent tissues (fold change = 1.828 and P = 1.47E-70,
respectively). In addition, TREX1 showed higher expression levels in HCC tissues versus normal tissues in Wurmbach
Liver (fold change = 1.552 and P=0.002) [33]. Similarly, results from three datasets suggested that PRKDC expression
was higher in HCC tissue versus normal adjacent tissue [33,35,36]. The mRNA expression of cGAS was not found on
Oncomine.

We also investigated the mRNA expression levels of cGAS-STING pathway members in HCC tissue with UALCAN.
As shown in Figure 2, the transcriptional levels of XRCC5, IRF3, TRIM21, STAT6, DDX41, TBK1, XRCC6, TREX1,
PRKDC (all P<0.001) and TMEM173 (P<0.05) in HCC tissues were significantly upregulated (Figure 2A–C,E,G–L).
However, the transcriptional levels of IFI16 (P = 7.04E-02) and NLRC3 (P = 9.95E-02) did not show significant
differences (Figure 2D,F). The mRNA expression of cGAS was not found on UALCAN.

After confirming the up-regulation of mRNA expression levels of cGAS-STING pathway members in HCC tis-
sues, we subsequently assessed their protein expression levels based on the Human Protein Atlas website. As shown
in Figure 3, STAT6, TBK1, and TREX1 proteins were not expressed in normal liver tissues, whereas they exhibited
medium or high expressions in HCC samples (Figure 3D,F,H). In addition, low or medium protein expression of
XRCC5, IRF3, TRIM21, DDX41, XRCC6, and cGAS was observed in normal liver tissues, while high protein ex-
pression was detected in HCC tissues (Figure 3A–C,E,G,I). However, the immunohistochemical images of IFI16,
NLRC3, PRKDC, and TMEM173 expression were not found in this website. In general, these results revealed that the
transcription and protein levels of most cGAS-STING pathway members were upregulated in patients with HCC.

We next analyzed the correlation between the mRNA expression of cGAS-STING pathway members and the patho-
logical stage of patients with liver cancer according to UALCAN. The results are presented in Figures 4 and 5. The
mRNA expression of cGAS-STING pathway members, except for IFI16 and NLRC3, was significantly related with in-
dividual cancer stages and tumor grades in HCC. Furthermore, patients in advanced stages and tumor grades of HCC
had higher mRNA expression levels of cGAS-STING pathway members compared with those in early stages of the dis-
ease. In Figure 4, the highest mRNA expression of DDX41 was found in stage 4 (Figure 4G), while the highest mRNA
expression of XRCC5, IRF3, TRIM21, STAT6, TBK1, XRCC6, TREX1, and PRKDC was found in stage 3 (Figure
4A–C,E,H–K), which may be attributed to the small sample numbers (only six patients with stage 4 HCC). Figure 4L
shows that the highest mRNA expression of TMEM173 was found in stage 1. Similarly, the highest mRNA expression
of XRCC5, IRF3, DDX41, TBK1, XRCC6, and PRKDC was found in grade 4 tumors (Figure 5A,B,G–I,K), while the
highest mRNA expression of TRIM21, STAT6, and TMEM173 was found in grade 3 (Figure 5C,E,L). However, the
highest mRNA expression of IFI16 and TREX1 was found in grade 1 or 2; as the tumor grade increased, their mRNA
expression tended to be lower (Figure 5D,J). These results suggested that XRCC5, IRF3, TRIM21, STAT6, DDX41,
TBK1, XRCC6, TREX1, PRKDC, and TMEM173 were strongly correlated with tumorigenesis and tumor progression
in patients with HCC.

Prognostic value of mRNA expression of cGAS-STING pathway members
among patients with HCC
We further analyzed the prognostic potential of mRNA expression of cGAS-STING pathway members in patients
with HCC using the K-M plotter. Overall survival (OS) curves are illustrated in Figure 6. Higher mRNA expression
of XRCC5 (HR: 1.74, 95% confidence interval [CI]: 1.22-2.48, P=0.0018), XRCC6 (HR: 1.63, 95% CI: 1.15–2.31,
P=0.0056), and PRKDC (HR: 1.89, 95% CI: 1.24–2.88, P=0.0025) were related with shorter OS (Figure 6A,I,K).
In contrast, higher mRNA expression of IFI16 (HR: 0.68, 95% CI: 0.48–0.97, P=0.032), STAT6 (HR: 0.57, 95%
CI: 0.4–0.81, P=0.0016), NLRC3 (HR: 0.45, 95% CI: 0.32–0.65, P = 7.5e-06), and TMEM173 (HR: 0.59, 95% CI:
0.41–0.85, P=0.0036) was correlated with favorable OS (Figure 6D–F,L). However, the mRNA expression of IRF3
(P=0.34), TRIM21 (P=0.07), DDX41 (P=0.14), TBK1(P=0.051), and TREX1 (P=0.14) did not show a correlation
with prognosis in patients with HCC (Figure 6B,C,G,H,J). These results suggested that the mRNA expression of
XRCC5, XRCC6, PRKDC, IFI16, STAT6, NLRC3, and TMEM173 was associated with the prognosis of patients with
HCC. The prognostic data of cGAS were not found in the K-M plotter.
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Figure 2. mRNA expression of different cGAS-STING pathway members in HCC samples and adjacent normal liver samples

(UALCAN)

The mRNA expression of XRCC5, IRF3, TRIM21, STAT6, DDX41, TBK1, XRCC6, TREX1, PRKDC, and TMEM173 was found to

be up-regulated in HCC tissues versus normal tissues (A–C,E,G–L). The transcriptional levels of IFI16 and NLRC3 did not show

significant differences (D and F); ***P<0.001.

Kinase targets of cGAS-STING pathway members in HCC
Based on the significantly different expression of cGAS-STING pathway members in HCC tissues versus normal
tissues, we estimated possible kinase targets of the differentially expressed cGAS-STING pathway members. In the
present study, we investigated the top two kinase targets of cGAS-STING pathway members via the LinkedOmics
database. As shown in Table 2, PLK1 and ATR were the top two kinase targets of XRCC5. DYRK1A and EGFR
were noted as the targets for the IRF3 kinase-target network. LYN and LCK were mainly correlated with TRIM21.
Constituents of the IFI16 kinase-target network were primarily correlated with SYK and LCK. ATR and PLK1, and
LCK and SYK were the top two kinase targets of STAT6 and NLRC3, respectively. Mitogen-activated protein kinase
1 (MAPK1) and DYRK1A were regarded as the kinase targets of DDX41. ATM and DAPK1 were mainly related with
TBK1. AURKB and PLK1 were shown as kinase targets of XRCC6. ATM and CDK2, as well as ATM and CDK1,
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Figure 3. Representative immunohistochemistry images of different cGAS-STING pathway members in HCC tissues and

normal liver tissues (Human Protein Atlas)

STAT6, TBK1, and TREX1 proteins were not expressed in normal liver tissues, whereas they exhibited medium or high expression

in HCC samples (D,F,H). In addition, low or medium protein expression of XRCC5, IRF3, TRIM21, DDX41, XRCC6, and cGAS was

observed in normal liver tissues; high expression of these proteins was noted in HCC tissues (A–C,E,G,I).
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Figure 4. Relationship between the mRNA expression of different cGAS-STING pathway members and individual cancer

stages in patients with HCC

The mRNA expression of 10 cGAS-STING pathway members was strongly related with the cancer stages of individual patients.

Patients who were in more advanced stages tended to express higher mRNA levels of cGAS-STING pathway members. The highest

mRNA expression of DDX41 was found in stage 4 (G), while the highest mRNA expression of XRCC5, IRF3, TRIM21, STAT6, TBK1,

XRCC6, TREX1, and PRKDC was found in stage 3 (A–C,E,H–K). The highest mRNA expression of TMEM173 was found in stage 1

(L). However, the mRNA expression of IFI16 and NLRC3 did not show a correlation with tumor grades in patients with liver cancer

(D,F); *P<0.05, **P<0.01, ***P<0.001.

were the top two targets of TREX1 and PRKDC, respectively. BUB1 and HCK were regarded as the kinase targets of
TMEM173.The kinase targets of cGAS were not found in the LinkedOmics database.

Immune cell infiltration of cGAS-STING pathway members in HCC
Tumor-infiltrating lymphocytes can be used as independent predictors for sentinel lymph node status and survival
in cancer [37]. Therefore, we investigated the correlations between differentially expressed cGAS-STING pathway
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Figure 5. Association of mRNA expression of different cGAS-STING pathway members with tumor grades in patients with

HCC

The mRNA expression of 10 cGAS-STING pathway members was significantly related with tumor grades; as the tumor grade

increased, the mRNA expression of cGAS-STING pathway members tended to increase in parallel. The highest mRNA expression

of XRCC5, IRF3, DDX41, TBK1, XRCC6, and PRKDC was found in grade 4 tumors (A,B,G–I,K), while the highest mRNA expression

of TRIM21, STAT6, and TMEM173 was found in grade 3 tumors (C,E,L). However, the highest mRNA expression of IFI16 and TREX1

was found in grade 1 or 2; as the tumor grade increased, the mRNA expression of IFI16 and TREX1 tended to decrease (D,J). NLRC3

mRNA expression did not show a correlation with tumor grades in patients with liver cancer (F); *P<0.05, **P<0.01, ***P<0.001.

members and the infiltration of immune cells using the TIMER database. As shown in Figure 7, there was a positive
relationship between the expression of XRCC5, IRF3, TRIM21, IFI16, NLRC3, DDX41, TBK1, XRCC6, and PRKDC,
and the infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and DCs (Figure 7A–D,F–I,K).
STAT6 expression (Figure 7E) was positively associated with the infiltration of CD8+ T cells (correlation: 0.173, P =
1.28e−03), macrophages (correlation: 0.218, P = 4.87e−05), neutrophils (correlation: 0.287, P = 5.47e−08), CD4+

T cells (correlation: 0.277, P = 1.83e−07), and DCs (correlation: 0.213, P = 7.61e−05). Similarly, the expression
of TREX1 (Figure 7J) was correlated with the infiltration of CD8+ T cells (correlation: 0.121, P = 2.48e−02), and

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

9



Bioscience Reports (2020) 40 BSR20202603
https://doi.org/10.1042/BSR20202603

Figure 6. Prognostic value of mRNA expression of different cGAS-STING pathway members in patients with HCC

(Kaplan–Meier plotter)

Higher mRNA expression of XRCC5, XRCC6, and PRKDC was significantly associated with shorter OS in patients with liver cancer

(A,I,K). In contrast, higher mRNA expression of IFI16, STAT6, NLRC3, and TMEM173 was significantly related with favorable OS in

patients with liver cancer (D–F,L). However, IRF3, TRIM21, DDX41, TBK1, and TREX1 mRNA expression did not show a correlation

with prognosis in patients with HCC (B,C,G,H,J).
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Figure 7. Correlation between differentially expressed cGAS-STING pathway members and immune cell infiltration (TIMER)

Relationship between the abundance of immune cells and expression of (A) XRCC5, (B) IRF3, (C) TRIM21, (D) IFI16, (E) STAT6, (F)

NLRC3, (G) DDX41, (H) TBK1, (I) XRCC6, (J) TREX1, and (K) PRKDC in HCC.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

11



Bioscience Reports (2020) 40 BSR20202603
https://doi.org/10.1042/BSR20202603

Table 2 The kinase target networks of cGAS-STING pathway members in HCC (LinkedOmics)

cGAS-STING
pathway Enriched kinase target Description

Leading
EdgeNum

P
value

XRCC5 Kinase PLK1 Polo-like kinase 1 51 0

Kinase ATR ATR serine/threonine kinase 32 0

IRF3 Kinase DYRK1A Dual specificity tyrosine phosphorylation regulated kinase 1A 7 0.004

Kinase EGFR Epidermal growth factor receptor 17 0.008

TRIM21 Kinase LYN LYN proto-oncogene, Src family tyrosine kinase 22 0

Kinase LCK LCK proto-oncogene, Src family tyrosine kinase 31 0

IFI16 Kinase SYK Spleen associated tyrosine kinase 21 0

Kinase LCK LCK proto-oncogene, Src family tyrosine kinase 25 0

STAT6 Kinase ATR ATR serine/threonine kinase 31 0

Kinase PLK1 Polo-like kinase 1 32 0

NLRC3 Kinase LCK LCK proto-oncogene, Src family tyrosine kinase 24 0

Kinase SYK Spleen associated tyrosine kinase 20 0

DDX41 Kinase MAPK1 Mitogen-activated protein kinase 1 60 0

Kinase DYRK1A Dual specificity tyrosine phosphorylation regulated kinase 1A 6 0.011

TBK1 Kinase ATM ATM serine/threonine kinase 56 0

Kinase DAPK1 Death-associated protein kinase 1 6 0

XRCC6 Kinase AURKB Aurora kinase B 41 0

Kinase PLK1 Polo-like kinase 1 34 0

TREX1 Kinase ATM ATM serine/threonine kinase 69 0

Kinase CDK2 Cyclin-dependent kinase 2 124 0

PRKDC Kinase ATM ATM serine/threonine kinase 63 0

Kinase CDK1 Cyclin-dependent kinase 1 125 0

TMEM173 Kinase BUB1 BUB1 mitotic checkpoint serine/threonine kinase 4 0.029

Kinase HCK HCK proto-oncogene, Src family tyrosine kinase 10 0.028

neutrophils (correlation: 0.218, P = 4.36e−05). These results strongly suggested that, in patients with liver cancer,
the cGAS-STING pathway may act a specific role for immune cell infiltration, including B cells, CD8+ T cells, CD4+

T cells, macrophages, neutrophils, and DCs.

Correlation analysis between the expression of the cGAS-STING pathway
and immune marker sets
We investigated the relationships between cGAS-STING pathway members and different marker genes of immune
cells of HCC using the TIMER database. The immune marker sets of various immune cells, such as monocytes, M1
and M2 macrophages, tumor-associated macrophages (TAMs), and DCs were analyzed. In addition, we investigated
various functional T cells, such as T helper 1 (Th1), Th2, and regulatory T (Treg) cells. The results are presented in Sup-
plementary Tables S1–3. After correlation adjustment by purity, we found that the expression levels of cGAS-STING
pathway members were significantly related with most immune marker sets of different immune cells and various
functional T cells in liver cancer.

Importantly, the expression of immune marker sets of TAMs, monocytes, M1 and M2 macrophages was associ-
ated with the expression levels of most cGAS-STING pathway members, including XRCC5, TRIM21, IFI16, STAT6,
NLRC3, TBK1, XRCC6, and PRKDC (Supplementary Tables S1–3).

Furthermore, the results also suggested that the expression of most marker sets of DCs, such as HLA-DPB1,
CD1C, NRP1, and ITGAX had strong correlations with XRCC5, TRIM21, IFI16, STAT6, NLRC3, TBK1, XRCC6,
and PRKDC expression in HCC (Supplementary Tables S1–3). These results suggested that there was a strong corre-
lation between cGAS-STING pathway members and DC infiltration. In addition, there was a significant connection
between FOXP3 and TGFβ1 for Treg cells and cGAS-STING pathway members in HCC.

Significant correlations between cGAS-STING pathway members, (e.g., XRCC5, TRIM21, IFI16, STAT6, NLRC3,
TBK1, XRCC6, and PRKDC) and marker gene sets of Treg and T cell exhaustion (e.g., FOXP3, STAT5B, CCR8,
PDCD1, TGFβ1, LAG3, CTLA4, and HAVCR2) are also presented in Supplementary Tables S1–3. The cGAS-STING
pathway members exhibited significant correlations with immune infiltrating cells in HCC, and may play an impor-
tant role in immune escape in the liver cancer microenvironment.

12 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Discussion
The cGAS-STING pathway has emerged as a potential mechanism to induce inflammation-mediated tumorigene-
sis. Actually, persistent activation of this pathway and its downstream effectors, such as TBK1, has been connected
with chronic inflammation and cancer progression [38,39]. The development of HCC is a multistep process that in-
volves continuous inflammatory damage, such as hepatocyte necrosis [40]. Some studies have observed correlations
between cGAS-STING pathway members, the tumor microenvironment, and cancer immunotherapy. However, the
prognostic value and potential therapeutic targets of the cGAS-STING pathway in HCC are poorly characterized.
In the present study, we investigated the expression, prognostic values, and correlations with immune infiltrates of
different cGAS-STING pathway members in HCC.

We first investigated the expression of cGAS-STING pathway members and its correlations with the pathological
stage in HCC. Based on the Oncomine database, the mRNA expression of TRIM21, IFI16, NLRC3, DDX41, XRCC6,
TREX1, PRKDC, and TMEM173 was significantly higher in HCC tissues in multiple datasets. Moreover, in patients
with HCC, high expression of mRNA and protein was found in cGAS-STING pathway member genes, including
XRCC5, IRF3, TRIM21, STAT6, DDX41, TBK1, XRCC6, TREX1, PRKDC, and TMEM173. Furthermore, the mRNA
expression of these 10 genes was strongly associated with cancer stages and tumor grades in patients with HCC. These
data demonstrate that differentially expressed cGAS-STING pathway members may play a significant role in HCC.
Recently, high expression of XRCC5 has been found in breast and gastric cancer [17,41]. A strong correlation was
found between the variable number tandem repeat polymorphism in the XRCC5 gene and the risk of breast cancer
[17]. Overexpression of XRCC5 was also detected in gastric cancer, in which XRCC5 regulated the overexpression
of chloride channel 3 (CLC3) [41]. Additionally, Liu [42] found that higher expression of XRCC5 was related with
metastasis through the Wnt/β-catenin signaling pathway in patients with HCC, which was consistent with our results.
In conclusion, XRCC5 may participate in the tumorigenesis of HCC.

Recently, Shi found that pharmacological targeting or knockdown of IRF3 using amlexanox. This drug is used for
anti-inflammatory treatment, and can inhibit gastric tumor growth in a Yes-associated protein-dependent manner.
The expression of IRF3 is up-regulated and prognosticates patient survival in gastric cancer [43]. A study showed
that the expression of TBK1 was increased in mesenchymal small cell lung cancer cell lines [44]. Research found that
TRIM21 modulated epithelial–mesenchymal transition (EMT) by regulating the stability of Snail in breast cancer
[45]. To our knowledge, this was the first study to investigate the correlation among IRF3, TBK1, and TRIM21 with
HCC. Our results suggested that all three may participate in the tumorigenesis of HCC.

The potential prognostic value of the mRNA expression levels of cGAS-STING pathway members in patients with
HCC was subsequently investigated. The findings revealed that higher mRNA expression of XRCC5, XRCC6, and
PRKDC was significantly associated with shorter OS. In contrast, higher mRNA expression of IFI16, STAT6, and
NLRC3 was significantly related with better OS. Liu [42] observed that the high mRNA expression of XRCC5 pre-
dicted poor prognosis in patients with HCC, which was in accordance with our results. Studies have shown that
NLRC3 was a negative regulator in innate immune signaling activated by STING. NLRC3 could inhibit STING–TBK1
interaction and the production of downstream type I IFN [46]. IFI16 enhanced STING activation by interacting with
STING via the PYRIN domain. Moreover, the IFI16-induced inflammasome was found to inhibit HCC growth and
metastasis, and was a tumor suppressor during the development [23]. In our study, we found that NLRC3 and IFI16
were independent prognostic factors for favorable OS in patients with liver cancer.

We also investigated the kinase targets of the cGAS-STING pathway members. We discovered that the SRC family of
tyrosine kinases (LCK and LYN), phosphoinositide 3-kinase-related protein kinase (PIKK) family kinases (ATM and
ATR), and MAPK1 were potential kinase targets of the cGAS-STING pathway members. These kinase targets affect
the progression of cell cycle, DNA damage, and EMT [47–51]. Furthermore, they are involved in tumor progression by
mediating tumor cell invasion, apoptosis, and migration [51–53]. As a result, differentially expressed cGAS-STING
pathway members may modulate DNA repair, the EMT, and cell cycle progression by regulating these kinases in
patients with HCC.

Another important finding in the present study is that the expression of cGAS-STING pathway members is asso-
ciated with various immune cell infiltration levels in liver cancer. The cGAS-STING pathway can mediate protective
immune defense toward infection with a great number of DNA-containing pathogens, as well as generate intrinsic
antitumor immunity [54]. The accumulation of tumor DNA could activate STING-IRF3-induced IFN signaling to
enforce tumor-antigen presentation on DCs and cross-prime CD8+ T cells for antitumor immunity [55]. There is
an increasing body of evidence supporting that immune cell infiltration could affect cancer recurrence and progres-
sion, and also play an important role in clinical outcome and response to immunotherapy [56,57]. CD4+ T cells may
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be involved in the recognition of tumor antigens, and the activation of M1 macrophages may mediate the inhibi-
tion of tumor growth [58]. Our results demonstrate that there is a significant correlation between the expression of
cGAS-STING pathway members and the infiltration of immune cells, such as T cells, macrophages, and DCs. This
implies that cGAS-STING pathway members may act as potential prognostic indicators, as well as reflect the immune
status. STING activation in hepatic macrophages could induce the production of proinflammatory cytokines, leading
to nonalcoholic steatohepatitis that is characterized by hepatic steatosis [59].

Moreover, the correlations between the expression of cGAS-STING pathway members and the marker sets of im-
mune cells suggest the role of cGAS-STING pathway members in regulating tumor immunology in HCC. Firstly,
the M1 macrophage markers (e.g., IRF5 and PTGS2) and the marker genes of M2 macrophages (e.g., VSIG4, and
MS4A4A) were significantly associated with the expression of XRCC5, TRIM21, IFI16, STAT6, NLRC3, TBK1,
XRCC6, and PRKDC. Collectively, the results suggest the regulatory role of these cGAS-STING pathway genes in the
polarization of TAMs. Moreover, our results reveal a strong relationship between the expression of XRCC5, TRIM21,
IFI16, STAT6, NLRC3, TBK1, XRCC6, and PRKDC and DC infiltration. These genes also play a potential role in acti-
vating Treg cells and inducing T-cell exhaustion. DCs promote tumor metastasis by reducing the cytotoxicity of CD8+

T cells and increasing Treg cells [60]. Further studies are warranted to investigate whether these genes are important
factors in inducing the DCs and tumor metastasis.

In addition, the increase in the expression of XRCC5, TRIM21, IFI16, STAT6, NLRC3, TBK1, XRCC6, and PRKDC
was significantly related with the expression of Treg and T-cell exhaustion gene markers, such as FOXP3, STAT5B,
TGFβ1, PDCD1, CTLA4, HAVCR2, and LAG3 in patients with HCC. HAVCR2 is an important surface protein from
exhausted T cells [61]. In human squamous cell carcinomas, STING signaling abrogated tumor immunogenicity by
recruiting Treg cells [62]. This is highly correlated with the expression of XRCC5, TRIM21, IFI16, STAT6, NLRC3,
TBK1, XRCC6, and PRKDC in HCC. Furthermore, significant associations were also found between the expression
of XRCC5, TRIM21, IFI16, STAT6, NLRC3, TBK1, XRCC6, and PRKDC and the regulation of some marker genes
of T helper cells (e.g., Th1, Th2, and Th17). These associations suggest the potential mechanism through which
these cGAS-STING pathway members may regulate T-cell functions in HCC. Collectively, the results suggest that
cGAS-STING pathway members (e.g., XRCC5, TRIM21, IFI16, STAT6, NLRC3, TBK1, XRCC6, and PRKDC) may
play a crucial role in the regulation and recruitment of immune infiltrating cells in HCC.

The present study had some limitations. First, all the data in the present study were obtained from online databases;
hence, further studies involving larger sample sizes, and in vitro and in vivo experiments are warranted to con-
firm our results. Second, analysis based on the transcriptional levels may indicate a few aspects of the immune sta-
tus; however, its ability to detect global changes is limited. Finally, we did not analyze the potential mechanisms of
cGAS-STING pathway members in HCC. Future studies should be performed to investigate the detailed mechanism
among cGAS-STING pathway members and HCC.

Conclusions
XRCC5, IRF3, TRIM21, STAT6, DDX41, TBK1, XRCC6, TREX1, PRKDC, and TMEM173 were found to be signifi-
cantly positive correlated with clinical cancer stages and tumor grades in patients with liver cancer. In addition, high
mRNA expression of XRCC5, XRCC6, and PRKDC was significantly related with poor OS. In contrast, high mRNA
expression of IFI16, STAT6, NLRC3, and TMEM173 was strongly correlated with favorable OS in HCC. Increased
expression levels of cGAS-STING pathway members are correlated with increased infiltration levels of immune cells,
including B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and DCs in HCC. Therefore, cGAS-STING
pathway members, especially XRCC5, IFI16, STAT6, NLRC3, XRCC6, and PRKDC, are likely involved in immune
infiltration and can be used as potential prognostic biomarkers for patients with HCC. We hope our results provide
a new perspective for the design of new immunotherapeutic drugs against HCC.
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