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Abstract: Nowadays, there is a strong demand for inspection systems integrating both high sensitivity
under various testing conditions and advanced processing allowing automatic identification of the
examined object state and detection of threats. This paper presents the possibility of utilization of
a magnetic multi-sensor matrix transducer for characterization of defected areas in steel elements
and a deep learning based algorithm for integration of data and final identification of the object
state. The transducer allows sensing of a magnetic vector in a single location in different directions.
Thus, it enables detecting and characterizing any material changes that affect magnetic properties
regardless of their orientation in reference to the scanning direction. To assess the general application
capability of the system, steel elements with rectangular-shaped artificial defects were used.
First, a database was constructed considering numerical and measurements results. A finite element
method was used to run a simulation process and provide transducer signal patterns for different
defect arrangements. Next, the algorithm integrating responses of the transducer collected in a single
position was applied, and a convolutional neural network was used for implementation of the
material state evaluation model. Then, validation of the obtained model was carried out. In this
paper, the procedure for updating the evaluated local state, referring to the neighboring area results,
is presented. Finally, the results and future perspective are discussed.

Keywords: magnetic nondestructive testing; matrix transducer; multi-sensor data integration;
large data processing; data aggregation; deep learning; convolutional neural network

1. Introduction

One of the main features of currently built inspection systems are a short inspection time and
a possibility of detailed local investigation. Therefore, it is necessary to develop both global and local
methods [1–3]. The global methods do not require multipoint observation, which affects the time of
the inspection. The evaluation of the whole structure is rapid, however, simultaneously, results of the
inspection may also lead to generalization of a state or incomplete data. In consequence, this may
lead to a greater risk of false evaluation of the current stage of the material. This affects the need for
methods that operate on smaller areas, enabling observation and detection of even small local changes
(e.g., few mm) in structure [4,5]. Taking into consideration the fact that most of the current structures
are made of conductive and magnetic materials (and changes in the structure during its lifetime cause
changes in electrical and magnetic properties [1,4]), the utilization of electromagnetic testing methods
becomes a natural solution. It is well known that by observation of vector magnetic properties it is
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possible to assess various aspects of conditions of an examined structure [4,6–15]. Therefore, this paper
focuses on presenting the results of work on a local electromagnetic system for nondestructive (NDT)
inspection of steel elements.

Due to the need to increase reliability, acquisition speed, or completeness of information, today’s
nondestructive inspection systems should operate simultaneously within testing and evaluation
regimes [1,4,6–8]. In addition to the rising requirements, they must present a wide range of
sensitivity. This forces the design and construction of complex multidirectional and multi-sensor
transducers [9–15]. The growth in the number of information sources, on the one hand, allows for
an increase in the reliability and efficiency of measurement systems, on the other hand, it requires
the use of sophisticated data processing and aggregation algorithms. The big data sets that must be
analyzed by the systems result in a strong need of implementation of new processing algorithms.
The procedures should be responsible, at the same time, for data collection, transformation, pattern
search, and decision making [12,16–21]. An example of such an approach is the use of machine learning
algorithms to automatically search even very complex relations between a large amount of input
data [17,18,20–23]. However, the classical machine learning techniques require the design of learning
features that represent the classes’ prior running of the procedure [17,20–22,24]. Extraction of features
suitable for the classification of many real problems is one of the major tasks and, in consequence,
has significant influence on the final accuracy of the utilized algorithm. The rapid development
of technological solutions, operating in remote and autonomic modes, requires enormous effort to
be undertaken to develop new automated learning algorithms to find hidden relationships in the
analyzed problems. In recent years, there has been a steady increase in the number of successful
applications of deep learning techniques, which not only carry out the classification, but also automate
the procedure of designing features [16,25–34]. In general, deep architecture consists of a structure
with many hidden layers leading to hierarchical feature extraction and, thus, eliminating the problem
of inadequate representation of learning features. Construction of broad and extensive nets of
connections between layers results in multiple possibilities of representation of the same data, focusing
on different attributes [20,24,25]. In addition, one of the most important advantages of the deep
architectures is the capability of creating hierarchical representations ranging from low to high levels
of description. The high abstraction level of data leads to robustness of local input changes (such as
location of object) and consequently to better classification performance [20,26,30–33]. There have been
several deep architectures successfully utilized in recent years [25,26] such as restricted Boltzmann
machine (RBM), deep belief network (DBM), autoencoder (AE), and deep convolutional neural network
(DCNN) [18,20,22,23,28,30–34]. They were used in many problems involving speech recognition [29],
natural language processing, image analysis [23,26], and computer vision [18,20,22,30–34]. The number
of applications of deep neural networks in the field of nondestructive examination is also rapidly
growing. The DCNN finds its successful utilization in many imaging inspection systems based
on visual and X-ray techniques. The DCNNs were effectively introduced to detect damage in civil
architecture such as concrete and steel constructions [18,20,30,31], diagnose rail infrastructure faults and
examine defects [18,32–34], control steel quality during the production process [20,22], and improve
computer tomographic reconstructions [23]. The dynamic progress is especially visible in sectors such
as civil engineering or rail transportation, where there are large scale inspection problems. In those
applications, the wide range of continuous quality control requires fast and automatic selection of faulty
areas for further detailed assessment of local condition. In [30], the authors developed a vision-based
method using DCNN to build a classifier for detection of concrete cracks, which is less sensitive
to diverse imaging conditions. Another vision methodology was proposed in [31]. The authors
utilized faster region-based convolutional neural network (Faster R-CNN) for quasi real-time detection
of multiple damage types, such as concrete cracks, steel and bolt corrosions, or steel delamination.
The proposed structures reached accuracy of around 98% in the first case and cumulatively close to
90% in the second one. Recently, a series of papers on effective automatic visual inspection of a wide
spectrum of rail infrastructure was also published. Another Faster R-CNN structure operating with
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feature extraction, Markov Random Fields image segmentation and statistics-based texture description,
was successively applied for rapid inspection time of isoelectric lines [32]. In [18], three DCNN
structures of different sizes were designed for automatic detection of five types of rail track surface
defects, while in [34], a methodology for failure risk assessment fed with deep network classification
and visual length estimation results of squat defects was introduced. The on-line vision inspection
system for power line element diagnostics was presented in [32,33]. In the first case, the cascade system
incorporating two detectors (single-shot multibox SSD, and you-look-only-once YOLO detector) with
DCNN structure for realizing coarse-to-fine approach for fastener defect detection was shown and
discussed. The dominative utilization area of deep neural network methodology in visual and X-ray
inspection systems is clearly visible. However, considering the properties of DCNN, the architecture
can be effectively implemented in various NDT methods for a wide spectrum of problems requiring
processing of two-dimensional data.

The objective of this paper is to adopt and evaluate a method to carry out the interpretation
of complicated responses of a matrix multi-sensor transducer that will identify different material
states without definition of the human-based learning features or rules. Taking into consideration the
above details, in this paper, the possibility of DCNN utilization was analyzed. The axial-symmetric
transducer presents similar sensitivity for any flaws (or in general any nonuniformity) affecting the
changes of the examined materials’ magnetic properties, regardless their orientation in reference to
the x-y axis. Previously, the details of the construction of the utilized transducer and the preliminary
results of defect detection and evaluation were presented [12,13]. The magnetic field distribution
sensed by the sensor matrix depends on a location of the defected area in the material with regard to
the transducer’s circumference and differs with position [12]. Therefore, a unique reconstruction of
field distribution is achieved for each single position of the transducer over the material with defected
area. Taking this into consideration, in this paper, utilization of the DCNN to characterize defects
using the transducer’s data sensed in a single location over the steel plate was analyzed. To design the
evaluation procedure and, finally, assess the system’s performance, the experiments were carried out for
rectangular-shaped artificial defects. Further, in order to obtain natural patterns of field distributions
dependent only on given defect arrangement, a database was constructed using finite element methods
(FEM) computation results. Following the rapid development of technology and computational power,
utilization of numerical analysis to increase the efficiency of measuring systems and the reliability
of the inspection methods is significantly growing [10,13,35]. The numerical modeling in industrial
applications is a powerful tool. It can provide a wide range of possible cases, required in calibration
procedure or for purposes of referencing, without the need to conduct time-consuming and expensive
measuring experiments. The performance of the carried-out numerical-simulation was assessed by
comparison of the simulated and measured data. Then, the multi-label classification model was
designed, trained, and validated. Next, in order to achieve higher accuracy of the classification process,
the algorithm allowing for the combination of evaluation results from neighboring positions was
introduced. Finally, in this paper, the results are discussed and conclusions presented.

2. Matrix Multi-Sensor Transducer

The view of the matrix transducer as well as a diagram of the measuring system are presented
in Figures 1 and 2. The matrix transducer has two subunits for excitation and pick-up function [12].
The excitation section (EXC) is built using a coil wound on a rod ferrite. Whole construction is centrally
placed and generates an axially uniform field, which operates in the perpendicular direction to a surface
of a tested material. Any disturbance of the field is sensed by eight digital magnetic sensors (s1–s8).
The sensors are placed over the circumference of the transducer with a spacing of 45◦. Each sensor
allows for observation of the three-dimensional magnetic field vector V = (Vx, Vy, Vz). The sensors
are positioned so that the x sensitivity axis of each one is tangential to the circumference (Figure 1).
Monitoring of all three components provides information that can be crucial for the identification of
defects. Observation of the shape and the gradient of magnetic field disturbance over the examined
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object results in growth of the evaluation accuracy of not only depth, but also orientation or dimension
of the defects [9–11,14,36]. The information content of the measured magnetic field can be analyzed
under different terms providing various data about the defect parameters (Table 1).

Table 1. Magnetic vector field expression modes.

Description Definition

Magnetic field norm (magnitude) N(V) =
√

V2
x + V2

y + V2
z (1)

Magnetic field tangential component Vt =
√

V2
x + V2

y (2)
Magnetic field normal component Vn = Vz (3)

Angle between the normal and tangential components ϕ(V) = arctan(Vn/Vt) (4)
Angle between the tangential components ϕt(V) = arctan(Vx/Vy) (5)

Considering the frequency of the excitation waveform and the standard penetration depth,
the material can be evaluated at different depths. In this paper, in order to obtain the highest
discrimination between defects of different depths, the DC (direct current source) waveform was
used. In a material having homogeneous electric and magnetic properties, each sensor is affected by
the same field. Only in the case of some inhomogeneity arising near one or a group of sensors, would
there be a difference noticed in the symmetry of the detected field.
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3. Defect Evaluation Procedure

The diagram of the utilized defect evaluation procedure is presented in Figure 3. First, in order to
prepare a database containing various possible configurations of the defect arising in the examined
steel element, FEM numerical simulations were run using the COMSOL software. The defects having
successively selected depths and orientation within the whole range of physical dimensions of the
tested object were considered. The set of magnetic field vectors V sensed by the multi-sensor transducer
was then collected. In order to verify the conditions applied during the computational process,
the numerical simulation results were compared with the measurements for several selected defect
arrangements. Next, in order to combine the data gathered by the matrix of sensors, the data integration
algorithm based on fan-beam tomographic reconstruction procedure was utilized. Finally, three DCNN
structures were constructed and used to carry out the defect characterization.
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3.1. FEM Computations and Database Construction

First, the universal FEM model geometry was built allowing automated reconfiguration of defect
arrangement in the examined plate. The defect length and width were constant during the whole
simulation process and equal to 5 mm and 0.2 mm, respectively. The view of the utilized model’s
geometry is presented in Figure 4. During the initial stage of FEM modeling, the selection of simulation
parameters was made in order to adjust the computation conditions to the one existing during the
real measurements. For that reason, the physical parameters of real materials, such as steel sample
or ferrite core, were used. In this paper, the computations were made under a DC excitation field,
and the achieved field strength resulted in operation in the linear range of the ferrite core hysteresis.
Additionally, the simulation parameters were also selected based on the compromise between the
numerical error caused by the finite element dimension and computation time required for a single case
analysis. The chosen density of utilized FEM mesh guaranteed having at least 10 elements within the
smallest dimension in the vicinity of the examined plate and transducer while computation time of a
single case was less than 10 min. Finally, the mesh consisted of around 5.4×105 of tetrahedral elements.
The objective of FEM numerical simulations was to provide the magnetic vector field distribution
in the vicinity of the transducer for different orientation and position of defects in the material in
reference to the transducer. The simulations were carried out for several different angles of the defect
orientation with regards to the scanning axes (Figure 3) in the range between 0◦ (longer diameter of
defect l was along the scanning direction) and 90◦ (l was across the scanning direction). Additionally,
defects of different depths ranging from 0 mm (defect not present in the plate) to 2 mm (defect across
the plate thickness) were also considered. In the successive step of the simulations cycle, the defect
modeling domain element D (Figure 4) was shifted by a set distance in the x (constant and equal to
1mm) or y (adjusted to half of the distance in the y direction between the sensors, i.e., s1 and s2 or s2
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and s3) axis of the coordination plane (within the area of 29 × 10 mm; Figure 3). Finally, there were
nearly 3.5× 103 3D simulations processed. Despite the finite number of analyzed defect configurations,
the computed cases supply a family of the characteristics of the transducer’s responses obtained for
successive arrangements of the defect depths and orientation within the whole range of physical
dimensions of the tested object.

Sensors 2018, 18, 292 6 of 15 

 

family of the characteristics of the transducer’s responses obtained for successive arrangements of 
the defect depths and orientation within the whole range of physical dimensions of the tested object.    

 
Figure 4. Utilized FEM model of the transducer: IE—infinite element domain, TD—transducer’s 
domain, StP—steel plate, MSM—multi-sensor matrix, FeC—ferrite core, EC—excitation coil, 
D—defect; (a) model view, (b) computation mesh view. 

Exemplary results of the simulations are shown in Figure 5 presenting the magnetic flux density 
distribution in the sensors’ matrix plane over the steel plate for two cases: without and with the 
defect of 0.5 mm depth in the examined sample. One can notice that the magnetic field 
circumferential distributions observed by the sensors allow relatively precise localization of the area 
where the defect occurs. After the computation process, the agreement of numerical characteristics 
with real measurements was evaluated. For that need, the 2D measurements were carried out for the 
same orientations of 100% defect as used during the FEM computations. Then, the extreme values 
and their positions as well as general characteristics were compared. Exemplary results achieved 
under selected defect arrangement are presented in Figure 6. The major difference between 
simulations and measurements can be observed in the case of corresponding component value 
levels. This can be explained by some differences in the physical parameters of the examined steel 
plate or ferrite core in comparison to the ones utilized during computations according to the data 
provided by producers. Additionally, there could be a slight difference in location of the collection 
(measuring) points in both cases. Nevertheless, it can be noticed that there is good agreement of the 
obtained signal distributions under corresponding conditions. The actual location, orientation (in 
respect to the transducer), and the depth of defect influence the obtained patterns. Similar behavior 
of the component’s value changes is visible in both cases. Therefore, just a standard normalization 
procedure was applied to the gathered signals in the database. Considering all possibilities of defects 
arising under the transducer’s sensitivity area, a number of patterns are introduced. For each single 
data collection point, the transducer provides a wide range of data collected by sensors, which are 
located over the circular orbit. Therefore, in order to combine the multi-sensor data and to obtain the 
general reconstruction corresponding to magnetic field response within the space covered by the 
transducer, the integration algorithm was applied [12]. The proposed procedure is based on the 
fan-beam tomographic reconstruction technique [37] and distinguishes the field distributions 
whenever nonuniformity occurs within the sensitivity range, regardless of the direction and location 
of its source (the details can be found in [12]). In order to calculate the projections, the magnetic 
vector norm value was utilized N(V). As a result, for each position of the transducer in reference to 
the defect (computation cell), a reconstruction image corresponding to the sensed field distribution 
was achieved.  

Figure 4. Utilized FEM model of the transducer: IE—infinite element domain, TD—transducer’s
domain, StP—steel plate, MSM—multi-sensor matrix, FeC—ferrite core, EC—excitation coil, D—defect;
(a) model view, (b) computation mesh view.

Exemplary results of the simulations are shown in Figure 5 presenting the magnetic flux density
distribution in the sensors’ matrix plane over the steel plate for two cases: without and with the defect
of 0.5 mm depth in the examined sample. One can notice that the magnetic field circumferential
distributions observed by the sensors allow relatively precise localization of the area where the
defect occurs. After the computation process, the agreement of numerical characteristics with real
measurements was evaluated. For that need, the 2D measurements were carried out for the same
orientations of 100% defect as used during the FEM computations. Then, the extreme values and
their positions as well as general characteristics were compared. Exemplary results achieved under
selected defect arrangement are presented in Figure 6. The major difference between simulations
and measurements can be observed in the case of corresponding component value levels. This can
be explained by some differences in the physical parameters of the examined steel plate or ferrite
core in comparison to the ones utilized during computations according to the data provided by
producers. Additionally, there could be a slight difference in location of the collection (measuring)
points in both cases. Nevertheless, it can be noticed that there is good agreement of the obtained
signal distributions under corresponding conditions. The actual location, orientation (in respect
to the transducer), and the depth of defect influence the obtained patterns. Similar behavior of
the component’s value changes is visible in both cases. Therefore, just a standard normalization
procedure was applied to the gathered signals in the database. Considering all possibilities of defects
arising under the transducer’s sensitivity area, a number of patterns are introduced. For each single
data collection point, the transducer provides a wide range of data collected by sensors, which are
located over the circular orbit. Therefore, in order to combine the multi-sensor data and to obtain
the general reconstruction corresponding to magnetic field response within the space covered by
the transducer, the integration algorithm was applied [12]. The proposed procedure is based on
the fan-beam tomographic reconstruction technique [37] and distinguishes the field distributions
whenever nonuniformity occurs within the sensitivity range, regardless of the direction and location
of its source (the details can be found in [12]). In order to calculate the projections, the magnetic vector
norm value was utilized N(V). As a result, for each position of the transducer in reference to the defect
(computation cell), a reconstruction image corresponding to the sensed field distribution was achieved.
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Figure 6. Comparison of selected results of magnetic field vector components acquired by all sensors
for 1D scan along the 100% defect aligned at 0◦ to scanning direction obtained during FEM numerical
simulations (a) and measurements (b).

The exemplary reconstruction images are presented in normalized scale (referred to the extreme
values in database) in Figure 7. It is possible to see that the growth of the defect’s depth (Figure 7a)
from 0.5 mm (d0.5) to 2 mm (d2.0) results in successive changes of the image gray level intensity
range. In the reference, when there is no defect occurring within the sensitivity range of the transducer,
the reconstructed image presents almost uniform color corresponding to the lower band of value ranges.
Moreover, it is also possible to notice the changes of patterns in the images with the changing rotation
r of the defect. Despite the clearly visible diversity in the obtained reconstructions, the definition of
the relationship is not trivial and requires deep analysis to find hidden patterns. In such cases, as was
discussed earlier, a deep learning procedure was found to be a very promising technique. Therefore,
DCNN was utilized as a solution of the problem.



Sensors 2018, 18, 292 8 of 15
Sensors 2018, 18, 292 8 of 15 

 

 

Figure 7. Selected results of reconstruction procedure obtained for: (a) different depth of the defects 
aligned at 0° (r0); (b) different orientation angle and depth of 2 mm (d2.0); the size of each 
reconstruction is 43 × 43. 

3.2. Multi-Label Classification 

The DCNN is based on classical convolutional neural networks and is defined in a series of 
layers forming one or more hidden layers [18,20,22,23,28]. The deep multiple layer structure defines 
functions describing even complex problems simultaneously, resulting in higher efficiency and 
generalization capability. On the other hand, it requires a much broader database during the 
training process. The DCNN consists mostly of sets of three main components, which can be defined 
repeatedly on successive levels: convolutional, activation function, and subsampling layer [18,20,26]. 
The convolutional layer forms a set of weights between input and output creating filters realizing 
the convolution operation with the image by sliding over small sub-regions and resulting in a 
feature maps definition. Then, often a nonlinear transformation of data is carried out by applying an 
activation function such as a hyperbolic tangent function or rectified linear units (ReLU). In the 
subsampling layer, the information provided by a convolutional layer is combined by local pooling 
operations using maximum or average operators. Additionally, a fully connected layer (combining 
all of the features learned by hidden layers for larger patterns identification) and final classification 
layer are utilized.  

In this paper, three different architectures allowing conduction of the multi-label classification 
were used for evaluation of defect occurrence (DCNNDND), rotation (DCNNROT), and depth 
(DCNNDEP). Division of the defect evaluation process into separate stages allows utilization of the 
whole database for optimization of the structure and maximization of accuracy of each classification 
problem. The general diagram of the evaluation process is presented in Figure 8. First, for a single 
collection-position (computation cell) reconstructed-image, a defect occurrence is evaluated by 
running a classification network DCNNDND. Then, if the defect is estimated to be present, both depth 
and orientation are evaluated by DCNNDEP and DCNNROT. In order to optimize the network 
structures, an iteration procedure implementing each DCNN with various combinations was 
applied. First, the training process was carried out considering different numbers of hidden layers, 
their configuration, feature maps, and the sizes of filters. During the optimization process, the layers’ 
structures were constructed with different numbers of configurable subsets sl forming a final subset 
SL followed by fully-connected (FC) and softmax (SM) layers: {SL; FC; SM}. Each considered subset 
sl contained convolutional (C) and max-pooling (MP) layers of different sizes. The numbers of used 
sl subsets in the SL definition ranged from 1 to 3, so the structure SL was defined as: SL = {sl1}, SL = 
{sl1, sl2}, or SL = {sl1, sl2, sl3}. For each subset sl, several kernel sizes and feature map (FM) numbers of 
the convolutional and max-pooling layers were used. In the case of the convolutional layer, the 
kernels having a size of 3 × 3, 4 × 4, and 6 × 6 together with feature map numbers of 10, 20, 30, and 60 

Figure 7. Selected results of reconstruction procedure obtained for: (a) different depth of the defects
aligned at 0◦ (r0); (b) different orientation angle and depth of 2 mm (d2.0); the size of each reconstruction
is 43 × 43.

3.2. Multi-Label Classification

The DCNN is based on classical convolutional neural networks and is defined in a series
of layers forming one or more hidden layers [18,20,22,23,28]. The deep multiple layer structure
defines functions describing even complex problems simultaneously, resulting in higher efficiency
and generalization capability. On the other hand, it requires a much broader database during the
training process. The DCNN consists mostly of sets of three main components, which can be defined
repeatedly on successive levels: convolutional, activation function, and subsampling layer [18,20,26].
The convolutional layer forms a set of weights between input and output creating filters realizing the
convolution operation with the image by sliding over small sub-regions and resulting in a feature
maps definition. Then, often a nonlinear transformation of data is carried out by applying an activation
function such as a hyperbolic tangent function or rectified linear units (ReLU). In the subsampling
layer, the information provided by a convolutional layer is combined by local pooling operations using
maximum or average operators. Additionally, a fully connected layer (combining all of the features
learned by hidden layers for larger patterns identification) and final classification layer are utilized.

In this paper, three different architectures allowing conduction of the multi-label classification
were used for evaluation of defect occurrence (DCNNDND), rotation (DCNNROT), and depth
(DCNNDEP). Division of the defect evaluation process into separate stages allows utilization of the
whole database for optimization of the structure and maximization of accuracy of each classification
problem. The general diagram of the evaluation process is presented in Figure 8. First, for a single
collection-position (computation cell) reconstructed-image, a defect occurrence is evaluated by running
a classification network DCNNDND. Then, if the defect is estimated to be present, both depth
and orientation are evaluated by DCNNDEP and DCNNROT. In order to optimize the network
structures, an iteration procedure implementing each DCNN with various combinations was applied.
First, the training process was carried out considering different numbers of hidden layers, their
configuration, feature maps, and the sizes of filters. During the optimization process, the layers’
structures were constructed with different numbers of configurable subsets sl forming a final subset
SL followed by fully-connected (FC) and softmax (SM) layers: {SL; FC; SM}. Each considered subset
sl contained convolutional (C) and max-pooling (MP) layers of different sizes. The numbers of used
sl subsets in the SL definition ranged from 1 to 3, so the structure SL was defined as: SL = {sl1},
SL = {sl1, sl2}, or SL = {sl1, sl2, sl3}. For each subset sl, several kernel sizes and feature map (FM)
numbers of the convolutional and max-pooling layers were used. In the case of the convolutional
layer, the kernels having a size of 3 × 3, 4 × 4, and 6 × 6 together with feature map numbers of 10,
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20, 30, and 60 were utilized. Simultaneously, in case of max-pooling, the number of feature maps was
equal to 10 and 20 and the kernels having the size of 2 × 2, stride of 2, without and with padding of 1
were used. Then, the network configurations allowing for achievement of the greatest accuracy for
testing were chosen. The parameters of the DCNNDND structure are presented in Figures 9 and 10.
It has eleven stages consisting of three C, three MP (subsampling) and one FC layer. The normalized
reconstructed gray scale image of the 43 × 43 size is filtered by C layer with a 6 × 6 kernel and
a number of 10 FM, and then twice with a 4 × 4 kernel having 10 and 20 FM, respectively, in the
following stages. In each stage, MP operation was applied with the size of 2× 2 and a stride of 2. As an
activation function, a ReLU was used. Finally, the FC layer was utilized allowing further division into
two classes (defect-free and defect). In the case of DCNNROT, the input was followed by a C layer with
3 × 3 kernel and a number of 30 FM. Further, layers of: FC of the output size of 5, SM and classification
(CL) follow the MP of a size 2 × 2, stride of 2, and padding of 1. In the case of DCNNDEP, a similar
structure was used with the exception that the number of FM in C layer was 10, and there was no
MP layer while the output size of FC layer was 4. In both cases, the cross channel normalization with
four channels per element and ReLU as an activation function were utilized. For each classification
problem, the database was analyzed separately. First, all cases of each considered class were divided
into training and testing subsets according to the ratio of 85:15. Next, during the optimization process
of DCNN structure, for each analyzed configuration, a five iterations cross-validation process was
carried out on the training subset. Before training, the subset was shuffled once. During each round,
the training was carried out on a randomly selected subset containing 85% of the cases. The remaining
cases were used for validation. The evaluated efficiency of the structure was the average of obtained
results. Considering the reduction of the computational time required for the whole optimization
process, a mini-batch stochastic gradient decent approximation method was used during the training
with an initial learning rate set to 10−3 and decay factor of 5× 10−4 to avoid overfitting. The mini-batch
size was set to 50 and maximum epochs number to 100.
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3.3. Verification of Defect Evaluation Model

For the purpose of the verification of the trained DCNN structures, the classification was run
over the testing set. The confusion matrices of all three networks are presented in Tables 2–4. The
rows correspond to the true classes and the columns to predicted ones of the testing sets. In the
case of DCNNDND, the percentage of properly classified defects is at fairly good levels close to
92% and 82%. Analyzing the results achieved for DCNNDEP and DCNNROT, the worst level of
classification accuracy was obtained for the middle classes with 58.97% for r45 and 54.35% for d1.0.
The overall accuracy for DCNNDND, DCNNROT, and DCNNDEP was around 87%, 72%, and 70%,
respectively. Additionally, for DCNNDND, the binary classification accuracy as well as the F1-score
were calculated giving the results equal to 86.59% and 85.88%, respectively. The obtained accuracy rates
should be analyzed in terms of magnetic circuits of the transducer and the way the electromagnetic
field is generated and fed to the material. Considering the construction of the sensor, it should
be pointed out that the sensitivity under the whole transducer’s area is not constant. The rate is
mostly affected by misidentification of the states in regions close to the center of the transducer as
well as close to its circumference. For some alignment of the defects located directly under the core
(especially when they occurred centrally under the core; see Figure 6) the uniform distribution of flux
is disturbed much more weakly by the defect (especially for shallower defects); in consequence, this
can result in a lower rate of identification accuracy. In the second case, if the defect occurs close to the
circumference of the transducer, the disturbance of the field arises close to the sensitivity area of the
transducer. In consequence, it can affect only one or two sensors, which also results in a lower rate of
identification accuracy. Therefore, even though the defect is located under the transducer’s area, it can
be misclassified or even not detected.

Table 2. Confusion matrix of the DCNNDND [%].

Defect-free Defect

Defect-free 91.57 8.43
Defect 18.40 81.60

Table 3. Confusion matrix of the DCNNROT (rotation) [%].

Defect r0 Defect r22.5 Defect r45 Defect r67.5 Defect r90

Defect r0 74.36 7.69 10.26 2.56 5.13
Defect r22.5 12.82 79.49 7.69 0 0
Defect r45 5.13 12.82 58.97 5.13 17.95

Defect r67.5 0 0 2.56 71.80 25.64
Defect r90 0 2.56 0 20.51 76.93
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Table 4. Confusion matrix of the DCNNDEP (depth) [%].

Defect d0.5 Defect d1.0 Defect d1.5 Defect d2.0

Defect d0.5 82.61 10.87 6.52 0
Defect d1.0 21.74 54.35 19.56 4.35
Defect d1.5 2.17 19.57 67.39 10.87
Defect d2.0 6.52 6.53 13.04 73.91

However, it should be stated that the evaluation is carried out separately each time for data
reconstructed on the basis of signals gathered at a single given location, without the feedback
providing the evaluation results from the surrounding area. For that reason, the achieved accuracy
level of the obtained networks can be recognized as good. Nevertheless, in order to reach higher
classification levels, the evaluation results achieved for neighboring areas can be used as a feedback of
the classification procedure. Taking into consideration that the size of the evaluated defects is much
greater than the step size of the transducer position, such procedures can reduce the influence of local
insensitivity of the transducer.

3.4. Neighborhood Based Class Probability Update Algorithm

The concept of consideration of the neighboring cell state in the evaluation of the present state of
a computation cell is frequently utilized in many applications dealing with spatial domains. To update
the probability of a class assignment of a given cell, the cellular automata concept was adopted [38].
The model finds its application in problems described by arbitrary shaped cells arranged in grid-like
structures. All cell state assignments are updated at the same discrete time steps according to
predefined rules. The rule set is operating within the neighborhood of the cell under observation.

In this paper, a Moore neighborhood was utilized to calculate the new distribution of class
probabilities [38]. The schematic visualization of the class probability assignment update algorithm
for the DCNNDND case is presented in Figure 11. First, the probabilities of both class occurrences
(0—defect not present, 1—defect present within the sensitivity area of the transducer) over the whole
considered area were predicted using the DCNNDND model: where PCl_0(x, y) is the probability of class
0 and PCl_1(x, y) is the probability of class 1. Then, for each cell, the neighborhood mean probability of
a given class assignment was calculated using the Moore neighborhood. The updated probabilities
P’Cl_0(x, y) and P’Cl_1(x, y) in the observed cell were calculated utilizing the formula:

P′Cl_0(i, j) =
1
N ∑

k,l
PCl_0

1
N (∑

k,l
PCl_0+∑

k,l
PCl_1)

P′Cl_1(i, j) =
1
N ∑

k,l
PCl_1

1
N (∑

k,l
PCl_0+∑

k,l
PCl_1)

(6)

where N is equal to 3 × 3, k = (i − 1, . . . ,i + 1), and l = (j − 1, . . . , j + 1).
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This procedure allows for the rewarding or penalizing of the class assignment confidence
according to the generalized local neighborhood probabilities. Taking into consideration that the
size of the defect is much smaller than the size of the cell, the algorithm can effectively increase the
accuracy of the evaluation process. Finally, the class with the highest value of updated probability is
assigned to the given cell. Exemplary results of prior and final 0-1 class assignment for the case of
defect d(r90, d0.5) are presented in Figure 12. Similar procedures were defined and then carried out in
the cases of depth and rotation evaluation results.
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In order to validate the performance of the algorithm, the classification was run once again over
the testing set. The confusion matrices of all three networks are presented in Tables 5–7. It can be
noticed that after the procedure, the proper classification rate is significantly higher.

Table 5. Confusion matrix of the DCNNDND after evaluation update procedure [%].

Defect-free Defect

Defect-free 95.12 4.88
Defect 5.99 94.01

Table 6. Confusion matrix of the DCNNROT after evaluation update procedure [%].

Defect r0 Defect r22.5 Defect r45 Defect r67.5 Defect r90

Defect r0 100 0 0 0 0
Defect r22.5 0 100 0 0 0
Defect r45 0 0 92.31 5.13 2.56

Defect r67.5 0 0 2.56 97.44 0
Defect r90 0 0 0 0 100

Table 7. Confusion matrix of the DCNNDEP after evaluation update procedure [%].

Defect d0.5 Defect d1.0 Defect d1.5 Defect d2.0

Defect d0.5 95.65 2.18 2.17 0
Defect d1.0 2.17 93.48 4.35 0
Defect d1.5 0 6.52 93.48 0
Defect d2.0 6.52 0 4.35 89.13

4. Conclusions

In this paper, a DCNN-based method allowing for discrimination between different states of the
tested objects (also allowing evaluation of deeper layers of the material, not visibly accessed) using
complex patterns of matrix multi-sensor transducer signals was presented. First, in order to obtain
a database, finite element method numerical simulations were run, resulting in nearly 3.5 × 103 cases.
Despite the finite number of analyzed defects configurations, the computed cases obtained the
family of transducer’s response characteristics for successive arrangements of defects’ depths and
orientation within the whole range of physical dimensions of the tested object. The correctness of
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the simulation conditions was verified based on the preliminary measurements. Then, the data
integration algorithm was utilized in order to achieve reconstructions of magnetic field distributions
for different locations and orientations of defected areas under the transducer. The interpretation of
the reconstructed data is not explicit (as for e.g., in the case of the visual inspection data) and, thus,
requires a machine learning attempt. Therefore, to automate the process of feature extraction and
definition of complicated characteristics for learning, the deep convolutional neural network DCNN
was used. Three different network structures for defect occurrence, depth, and rotation assessments
were optimized. The evaluated accuracies of the achieved networks reached satisfactory classification
levels. However, the local evaluation results were obtained considering only the data form the
analyzed computation cell without the information from the surrounding area. Therefore, an updated
procedure for defect characterization was then proposed based on a cellular automata algorithm.
The validation of the updated results confirmed significant improvement of the evaluation accuracy.
However, the achieved high performance quality should be assessed only in terms of additional
local information data fusion. The quality should be further evaluated for more complicated cases of
defect arrangement.

Additionally, in future work, the accuracy can be increased by extension of the training database,
especially for the classification of depth and rotation problems. The approximation procedure can be
carried out for the obtained 3D FEM characteristics. As a result, it is possible to achieve the values
for any configuration of defect arrangement between the simulated ones. Moreover, the analysis for
combining the database from two modes (simulations and measurements) will be also carried out.
Furthermore, in the case of rotation and depth evaluations, the regression DCNN structure will be
optimized. This all will characterize the defect in higher ranges and assess the rotation or depth with
higher accuracy.

The original construction of the multi-axis transducer obtains similar sensitivity for any
nonuniformity affecting changes of magnetic properties which occur at any angle to the transducer
x-y axis. Therefore, in future work, the transducer could be utilized to implement any application
concerning characterization and mapping of damaged areas, their size (length, width, and depth),
and orientation such as plastic deformations, fatigue changes, and stress concentration. Moreover,
it could be applied to the directional inspection (e.g., anisotropy examination) of changes of mechanical
properties under different technological or production processes such as inspection of case hardening.
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