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ABSTRACT A classic problem in population genetics is the characterization of discrete population structure in the presence of
continuous patterns of genetic differentiation. Especially when sampling is discontinuous, the use of clustering or assignment methods
may incorrectly ascribe differentiation due to continuous processes (e.g., geographic isolation by distance) to discrete processes, such
as geographic, ecological, or reproductive barriers between populations. This reflects a shortcoming of current methods for inferring
and visualizing population structure when applied to genetic data deriving from geographically distributed populations. Here, we
present a statistical framework for the simultaneous inference of continuous and discrete patterns of population structure. The method
estimates ancestry proportions for each sample from a set of two-dimensional population layers, and, within each layer, estimates a
rate at which relatedness decays with distance. This thereby explicitly addresses the “clines versus clusters” problem in modeling
population genetic variation, and remedies some of the overfitting to which nonspatial models are prone. The method produces useful
descriptions of structure in genetic relatedness in situations where separated, geographically distributed populations interact, as after a
range expansion or secondary contact. We demonstrate the utility of this approach using simulations and by applying it to empirical
datasets of poplars and black bears in North America.
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A fundamental quandary in the description of biological
diversity is the fact thatdiversity showsbothdiscrete and

continuous patterns. For example, reasonable people can
disagree about whether two populations are separate species
because the process of speciation is usually gradual, and so
there is no set point in the continuous divergence of popula-
tions when they unambiguously become distinct species. The
issue of identifying meaningful biological subunits extends

below the species level, as patterns of phenotypic and genetic
diversity within and among populations are shaped by con-
tinuousmigrationanddrift, aswell as bymorediscrete events,
such as rapid expansions, bottlenecks, rare long-distance
migration, and separation by geographic barriers. Both dis-
crete and continuous components are required to accurately
describe most species’ patterns of genetic relatedness.

From a practical standpoint, we often need to identify
somewhat separable populations from which individuals are
sampled (Wright 1949), even while acknowledging continu-
ous processes. Delineating populations is useful for systemat-
ics and for informing conservation priorities (Moritz 1994;
Waples 1998; Moritz et al. 2002). Furthermore, we often need
to identify subsets of individuals resulting from reasonably
coherent evolutionary histories for downstream analyses to
learn about population history and adaptation. Conversely,
the substantial information available from continuous, geo-
graphic differentiation (e.g., adaptation along a climatic gradi-
ent) can be confounded by discrete historical processes (e.g.,
admixture), requiring methods that can disentangle the two.
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There have been many methods proposed to characterize
populationgenetic structure, includinggeneratingpopulation
phylogenies (Cavalli-Sforza and Piazza 1975; Pickrell and
Pritchard 2012), dimensionality-reduction approaches such
as principal components analysis (Menozzi et al. 1978; Price
et al. 2006; Novembre and Stephens 2008; Meirmans 2009),
and model-based clustering approaches (e.g., Pritchard et al.
2000; Corander et al. 2003; Falush et al. 2003; Guillot et al.
2005;Huelsenbeck andAndolfatto 2007; Alexander et al. 2009;
Hubisz et al. 2009; Lawson et al. 2012; Raj et al. 2014; Caye
et al. 2018). Each of these methods performs best in partic-
ular situations, but many can give misleading results when
applied to data that show a continuous pattern of differen-
tiation, as that produced by geographic isolation by distance
(Wright 1943; Novembre and Stephens 2008; Frantz et al.
2009). Here, we will focus on model-based clustering, the
most widely used class of approaches for population delin-
eation. (We note that the problem of identifying population
clusters is distinct from, though of course related to, the
problem of detecting barriers to gene flow between popula-
tions, (e.g., Barton 2008; Bradburd et al. 2013; Petkova et al.
2016; Ringbauer et al. 2018). Existing model-based cluster-
ing methods model each individual’s genotypes as random
draws from a set of underlying, unobserved population clus-
ters, each with a characteristic set of allele frequencies,
which are estimated. These underlying frequencies are iden-
tical for all individuals assigned to a cluster, regardless of
their spatial location. Spatial information has been incorpo-
rated into some of these methods, by, for example, placing
spatial priors on cluster membership (Guillot et al. 2005;
Caye et al. 2018), but this does not address the underlying
issue that these methods assume that allele frequencies are
constant in a cluster across the species’ range.

Isolation by distance refers to a pattern of increasing genetic
differentiation with geographic separation, which occurs when
geographically restricted dispersal allows genetic drift to build
up differentiation between distant locations (Wright 1943).
Theoreticalwork,mostly derived from “stepping-stone”models
(Kimura and Weiss 1964; Sawyer 1976; Shiga 1988), gives us
some analytical predictions for isolation by distance (Malécot
1969; Slatkin 1985; Epperson 2003), and some theory has
been derived for continuous space (Nagylaki 1978; Nagylaki
and Barcilon 1988; Barton et al. 2002), but substantial work
remains to be done (Barton et al. 2013). Given the generality of
the circumstances that generate a pattern of isolation by dis-
tance, it is unsurprising that isolation by distance is very wide-
spread in nature (Meirmans 2012; Sexton et al. 2014).

The ubiquity of isolation by distance presents a challenge
for models of discrete population structure, as it is frequently
difficult to determine whether observed patterns of genetic
variation are continuously distributed across a landscape, or
instead are partitioned in discrete clusters. This problem can
be compounded if sampling is done unevenly or discretely
across a population or species’ range, and has given rise to a
debate in the population genetic literature about how best to
describe sets of individuals using continuous clines and dis-

crete clusters (e.g., Serre and Pääbo 2004; Rosenberg et al.
2005).

Most existing model-based clustering methods are based
onadiscrete setof clusters, andso tend topartitioncontinuous
variation into spurious clusters with spatially autocorrelated
cluster membership (Frantz et al. 2009; Meirmans 2012). In
analyses of empirical datasets, which often show strong iso-
lation by distance, model-based clustering approaches will
therefore tend to overestimate the number of discrete clus-
ters present.

To address this, we set out to develop a model-based
clustering method that, when possible, uses isolation by
distance to explain observed genetic variation. With an ex-
plicit spatial component, discrete population structure need
only be invoked when genetic differentiation in the data
deviates significantly from that expected given geographic
separation. In this paper, we model genetic variation in gen-
otyped individuals as partitioned within or admixed across a
specified number of discrete layers, within each of which
relatedness decays as a parametric function of the distance
between samples. We also implement a cross-validation ap-
proach for comparing and selecting models across different
numbers of layers, and we demonstrate the utility of our
approach using both simulated and empirical data. The im-
plementation of this method, conStruct (for “continuous
structure”), is documented and available for general use as
an R package at https://github.com/gbradburd/conStruct.

Materials and Methods

Data

The statistical framework of our approach is conceptu-
ally similar to that in Wasser et al. (2004), Bradburd et al.
(2013), and Bradburd et al. (2016), although we use a some-
what different summary statistic than in this previous work.
Themodelworkswith allele frequencies at L unlinked, biallelic
single nucleotide polymorphisms (SNPs) genotyped across N
samples. Each “sample”may be a single individual, a collection
of individuals from a location, or frequencies estimated from
pooled sequencing. From these we compute the allelic covari-
ance between samples i and j, denoted bVi; j; as the expected
covariance of distinct individual alleles chosen from each of
the two samples at a random locus. More precisely, suppose
that we pick a random biallelic locus uniformly from the ge-
nome, pick a random “reference” allelic state from the two
alleles seen at that locus, and, in each sample, draw one ran-
dom allele, recording Xi ¼ 1 if the allele drawn in sample i
matches the random reference, and Xi ¼ 0 otherwise. Then,

bVi; j ¼ cov½Xi;Xj�: (1)

Because we randomly choose the reference allele, each
Xi behaves marginally as a fair coin—in particular,
ℙfXi ¼ 1g ¼ 1=2; so bVi;i ¼ 1=4 for every i—all information
enters through correlations.
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Although we describe this as a covariance between in-
dividually drawn alleles, bVi;j is in fact also the covariance
between the allele frequencies of a randomly chosen allele
in samples i and j, as long as i 6¼ j: The choice of allele does
not affect subsequent calculations, and so may be arbitrary,
and bV can be calculated as (derived in Allelic covariance and
inference):

bVi;j ¼ 1
L

XL
ℓ¼1

�
fi;ℓ 2 1

�
2
��
fj;ℓ 2 1

�
2
�

for i 6¼ j: (2)

Here fi;ℓ is the allele frequency in the ith sample at locus ℓ: This
definition of covariance differs from the usual “genetic co-
variance” (McVean 2009) in that (a) we do not subtract locus
means (to make the statistic insensitive to sample configura-
tion), and (b) we randomly choose a reference allele at each
locus (to retain insensitivity to choice of reference allele). As
noted in Petkova et al. (2016), for i 6¼ j; this can also be
calculated as Vi;j ¼ ð12 2pi;jÞ=4; where pi;j is the genetic
distance calculated from those L sites, i.e., the proportion of
sites at which random samples from i and j differ.

Continuous and discrete differentiation

Clustering approaches to describing genetic variation are
useful because population history can often be meaning-
fully described on a coarse scale by interactions between
discrete “populations” whose relationships are delimited
by patterns of glaciation, large-scale migration, mountain
ranges, and the like. Here we add a spatial component
within each such discrete historical component, which
we refer to as a set of “layers” that overlay the modern
map. We imagine each layer as a geographically distrib-
uted population that extends over the entire sampled
range of the populations. As depicted in Figure 1, each
sample is composed of a mixture of contributions from
each of these layers, with the relative contributions of each
layer described by a set of “admixture proportions” (the
wðkÞ

i ). These layers thus take the place of “clusters” in clus-
tering methods, but we do not adopt this term, as “spatial
cluster” suggests a clustering in space, while our layers
may contribute to genetic variation across the entire geo-
graphic range.

Within eachof these layers, allele frequencies havepositive
covariance at geographically close locations, but this covari-
ance is allowed todecayasgeographicdistance increases. This
pattern of spatial decay reflects how migration between
nearby spatial regions homogenizes allele frequency changes
that arise locally due to drift, but less effectively homogenizes
geographically distant regions, resulting in a continuous pat-
tern of isolation by distance within each layer. There is a fixed
amount of covariance between layers, irrespective of spatial
location. Within each layer, allele frequencies are expected to
change gradually with distance, but observed frequencies can
change abruptly at many loci if the proportions of ancestry
individuals derive from each layer (the admixture propor-
tions) do so as well.

To allow flexibility in the form of the decay of allelic
covariance with geographic distance within each layer, we
define the covariance within layer k between samples i and j
to be:

GðkÞ
i;j ¼ a

ðkÞ
0

 
exp

 
2

�
a
ðkÞ
D Di;j

�a
ðkÞ
2

!!
þ fðkÞ (3)

where the superscript ðkÞ denotes parameters specific to the
kth layer. The quantity Di;j is the observed geographic dis-
tance between samples i and j, and the aðkÞ parameters con-
trol the shape of the decay of covariance with distance in the
layer. Our choice of a powered-exponential decay, as param-
eterized by the as, is a flexible and standard choice in spatial
statistics (Diggle et al. 1998), and is not chosen to match a
particular population genetics model. The fðkÞ is a parameter
that describes the background covariance within the layer. If
two samples draw 100% of their ancestry from layer k, then
their covariance under the model is GðkÞ

i;j ; if they are further-
more geographically very close (Di;j ¼ 0) they will have co-
variance aðkÞ

0 þ fðkÞ: If the geographic distance between them
is very large, their covariance will be equal to the background
levelfðkÞ within the layer. The “shared drift” parameterfðkÞ is
analogous to the branch length connecting the kth popula-
tion to the population ancestral to all modeled layers (see, for
example, Patterson et al. 2012; Peter 2016), although they
cannot be directly compared because we are modeling the
allelic, rather than genetic, covariance. In “Model rationale:
drift, admixture, and space” we lay out a simple model of
allele frequencies underlying this covariance model.

We then allow samples to draw their ancestry from more
than one layer. The admixture proportion of the ith sample in
the kth layer, denotedwðkÞ

i ; gives the genome-wide proportion of

Figure 1 Schematic of our method, using K ¼ 3 as an example. Spatial
autocorrelation of allele frequencies within each layer is depicted by color
gradients, and fðkÞ denotes the covariance shared by samples with an-
cestry entirely in the kth layer. Sampled populations on the landscape are
inferred to be admixed between these layers; the ith sample draws pro-
portion wðkÞ

i of its ancestry from layer k. For convenience, each layer is
depicted as a small square, but in fact, each layer exists everywhere in the
sampled area, so the small dashed circles on each layer show where the
location of the highlighted admixed sample intersects each layer.
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alleles from sample i that derive from layer k (and soPK
k¼1w

ðkÞ
i ¼ 1). A visual representation of the method is

shown in Figure 1.
We can then describe the covariance between samples i

and j across all K layers, Vi;j; by summing their within-layer
spatial covariances (GðkÞ

i;j in layer k), weighted by the relevant
admixture proportions.

Vi;j ¼ g þ
XK
k¼1

wðkÞ
i wðkÞ

j GðkÞ
i;j þ di;jhi: (4)

In this equation, wðkÞ
i wðkÞ

j is the proportion of alleles that both
sample i and sample j have inherited from layer k.

In addition to the admixture-weighted sumof thewithin-
layer spatial covariances, this function contains two terms,
g and di;jhi: The first, g, describes the global allelic covari-
ance between all samples, and arises because all samples
share an ancestral mean allele frequency at each locus,
which generates a base-line covariance. In the final term,
di;j is an indicator variable that takes a value of 1 when i
equals j and 0 otherwise, and hi adds variance specific to
sample i. This term on the diagonal of the parametric co-
variance matrix captures processes shaping variance within
the sampled deme, such as inbreeding and the sampling
process.

Likelihood and inference

If the allele frequency deviations at each locus were in-
dependent between loci and multivariate normally dis-
tributed across populations, their allelic covariance bV
would be Wishart distributed with degrees of freedom
equal to L, the number of loci genotyped. We use this as
a convenient approximation to the true distribution de-
scribed above, and so define the likelihood of the allelic
covariance to be

P
�bV���V	 ¼ W

�
L bV���V; L

	
; (5)

where W is the Wishart likelihood function. Statistical non-
independence between loci (linkage disequilibrium, LD) will
decrease the effective number of degrees of freedom. One
possible solution, which we have not yet found necessary to
implement, would be to estimate an effective number of loci
by introducing a parameter to modify the given degrees of
freedom and thereby informally model linkage between loci
(e.g., Petkova et al. 2016).

We estimate the values of the parameters of the model
usingaBayesianapproach.Acknowledging thedependenceof
the parametric covariance matrixV on its constituent param-
etersw;a;f;h; g and on the (observed) geographic distances
D with the notation Vðw;a;f;h; g;DÞ; we denote the poste-
rior probability density of the parameters as:

P
�
w;a;f;h; g

���bV	} P
�bV���V�w;a;f;h; g;D		

3 PðwÞPðaÞPðfÞPðhÞPðgÞ;
(6)

where PðwÞ; PðaÞ; PðfÞ; PðhÞ; and PðgÞ; are prior distribu-
tions. All parameters are given (half-)Gaussian priors except
for a2;which is uniform on ð0; 2Þ; and w, for which we use an
independent Dirichlet of dimension K for each sample (see
Table A1 for specifics). Parameters are independent between
layers. We use Hamiltonian Monte Carlo as implemented in
STAN (Hoffman and Gelman 2014; Carpenter 2015; Stan
Development Team 2015, 2016) to estimate the posterior
distribution on the parameters. Our R package, conStruct
(for “continuous structure”), functions as a wrapper around
this inference machinery.

Relationship of this model to nonspatial
structure models

A nice feature of our approach is that the model described in
Eq. 4 contains a nonspatial assignment model as a special
case (see Models, Parameters, and Priors for a more in-depth
discussion). By setting a

ðkÞ
0 to zero for all k, we obtain a non-

spatial model in which each cluster has its own allele fre-
quency at each SNP, and individuals draw a proportion of
their ancestry from each cluster. This model is very similar
to that of STRUCTURE (Pritchard et al. 2000) and related
models (e.g., Alexander et al. 2009); the main difference is
that our likelihood assumes that allele frequencies are nor-
mally distributed around their expectations, while the stan-
dard assignment methods assume that the error is binomially
distributed (Engelhardt and Stephens 2010). (We make this
approximation for the substantial advantages in computa-
tional speed.) The second difference is that, in the original
STRUCTURE model, allele frequencies at each locus are in-
dependently drawn for each cluster (Pritchard et al. 2000),
while in conStruct’s nonspatial model, it is more natural to
envision each cluster’s allele frequency as being drifted away
from a single, global allele frequency. This makes our model
more closely related to the “F-model” prior for allele frequen-
cies of Falush et al. (2003). These differences in the underly-
ing model could in principle result in different behavior, but
below we show that the nonspatial model indeed produces
similar results to ADMIXTURE, and use this fact to compare
the fit of the different models—spatial vs. nonspatial, across
different values of K—by comparing their performance in a
common framework.

Choice of layer number and cross-validation

There are a number of reasons why there is no true (or right)
number of layers for real datasets, discussed further in the
Discussion. However, it is still important to assess whether
additional layers (larger K) meaningfully model patterns in
the data or merely explain spurious variation introduced by
noise—in other words, whether additional model complexity
provides significant explanatory power. Toward that end,
we have implemented a method for statistically comparing
conStruct results across different values of K and between the
spatial and nonspatial models.

Several approacheshavebeenusedasmodel choice criteria
for the number of discrete clusters in population genetic data,
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including: comparisons of the likelihood of the data across
different values of K, with various criteria on how to choose a
single value (e.g., Evanno et al. 2005), or with information
theoretic penalizations such as Akaike information criterion
(AIC) or Bayesian information criterion (BIC; e.g., Alexander
et al. 2009); comparisons of the marginal likelihood, gener-
ated either via various approximations (e.g., Pritchard et al.
2000) or via thermodynamic integration (Verity and
Nichols 2016); or inference using a Dirichlet process prior
(Huelsenbeck and Andolfatto 2007). See Verity and Nichols
(2016) for a discussion of these approaches and comparison
between several methods.

We use cross-validation [similar in spirit to Alexander and
Lange (2011)] to attack this problem. To do this, we use a
“training” partition of the data (in practice, a random 90%
subset of the loci) to estimate the posterior distribution of the
parameters, and then calculate the log-likelihood of the
remaining “testing” loci, averaged over the posterior. Predic-
tion accuracy of a particular value ofK is thenmeasured using
this log-likelihood, averaged over a number of independent
data partitions. The best model is judged to be the simplest
one with significantly better predictive accuracy than others
(see Cross validation procedure for more on our cross-validation
procedure). In general, larger values of K allow the model
more flexibility, and thus increases the likelihood of the
training partition, but this improvement in the likelihood
will plateau (or even peak), as above a certain K the model
only fits noise specific to the training data rather than gen-
eralizable patterns. At any value of K, support for the spatial
model over the nonspatial model means that isolation by
distance is likely a feature of the data.

Cross-validation provides a valuable summary of how
much explanatory power is added by spatial structure within
each layer, and each additional layer. However, we remind
users that “statistical significance does not imply real-world
significance,” and so small but statistically significant differ-
ences between models should not be relied on too strongly.

Another way to describe the practical significance of ad-
ditional layers is to calculate each layer’s relative contribution
to total covariance, and to choose a value of Kwhere all layers
have a contribution above some cutoff (e.g., 0.1%). The
Dirichlet prior on admixture proportions is quite harsh
against intermediate admixture values (see Table A1), en-
couraging the model to “not use” unnecessary layers if they
are present in the model, so that they will have a low contri-
bution to overall covariance.

To calculate layer contributions, we use the following
alternative description of our covariance model: the genomes
of any pair of individuals agree with some background prob-
ability at a locus, but this probability of agreement is in-
creased on any segment of genome that both have inherited
from the same layer (the amount it increases depends on how
far apart they are geographically and on the decay of isolation
by distance). We use this characterization to quantify the
relative contributions of each layer by computing the average
contribution to increased probability of agreement as

described in Calculating layer contributions. This layer
contribution is similar to the “ancestry contribution” pro-
posed by Raj et al. (2014). However, each of our layers can
induce a different amount of covariance between samples
embedded in them, so we take that into account when
calculating each layer’s contribution to the whole.

Data availability

Themethod conStruct is implemented as an R package, and is
available for installation at https://github.com/gbradburd/
conStruct. Scripts for generating and analyzing all simulated
and empirical datasets, as well as the datasets themselves,
are also available at the same site, and additionally have been
archived at Data Dryad (doi: 10.5061/dryad.5qj7h09). Sup-
plemental material available at Figshare: https://doi.org/
10.25386/genetics.6840629.

Results

Simulations

To test the method, we first generated data using the co-
alescent simulatorms (Hudson 2002). In each simulation, we
split a single ancestral population into K subpopulations ts
units of coalescent time in the past, and at time te in the past,
each of these discrete populations instantaneously colonized
a separate 63 6 square lattice of demes. Migration on each
lattice was to nearest neighbors (eight neighbors, including
diagonals). Finally, at time ta in the past, we collapsed those
K discrete layers into a single grid of demes, choosing various
amounts of admixture from these different layers (see Figure
A1), with randomly distributed but spatially autocorrelated
admixture proportions. See Simulation details for more de-
tails, including parameter values used. We simulated data-
sets using K ¼ 1; 2, and 3 layers; in each simulation we
sampled 10,000 unlinked loci from each of 20 haploid indi-
viduals from every deme. We then ran both spatial and non-
spatial conStruct analyses on each simulated dataset with K
between 1 and 7, and compared predictive performance of
the models using cross-validation with 10 replicates. For
comparison, we also analyzed each simulated dataset using
ADMIXTURE (Alexander et al. 2009)withK between 1 and 7,
and compared models using ADMIXTURE’s cross-validation
procedure with 50 folds.

With these simulations, spatial conStruct does not create
spurious discrete groupings when there are none: Figure 2,
Supplemental Material, Figure S1, Figure S2, and Figure S3
show that subsequent layers beyond the number used for
simulation are unused. When data simulated with K ¼ 1
are analyzedwith K. 1; the additional layers contribute very
little to any population. Even when the spatial model is run
with K ¼ 7; the inferred admixture proportions are nearly
identical to those estimated under the true value of K for each
simulation. Moreover, the method infers the true admixture
proportions with high accuracy, tight precision, and good
coverage (Figure S4 and Figure S5).

Modeling Spatial Population Structure 37

https://github.com/gbradburd/conStruct
https://github.com/gbradburd/conStruct
https://doi.org/10.25386/genetics.6840629
https://doi.org/10.25386/genetics.6840629


In contrast, the nonspatial model describes geographic
variation using gradients of admixture between increasingly
many discrete clusters to better approximate the continuous,
spatial patterns of relatedness (Figure 2, Figure S6, Figure S7,
and Figure S8). The ADMIXTURE results are qualitatively
similar, as shown in Figure S9, Figure S10, and Figure S11.
Each nonspatial cluster is genetically more similar within
itself than it is to other clusters, but we know that these
boundaries are arbitrary, because the data were simulated
without them.

The spatial model’s better fit is reflected by increased
predictive accuracy: as shown in Figure 3, across all models
and choices of K, the spatial model is correctly preferred
over the nonspatial model. As desired, predictive accuracy
of the spatial model increases until the true value of K, and
then plateaus or declines (Figure 3, Figure S12, Figure S13,
and Figure S14). Predictive accuracy of the nonspatial
model increases as subsequent clusters are added up to
K ¼ 7 (the largest number tested), although gains are

greatest as layers below the true number are added. The
same holds true for the ADMIXTURE cross-validation re-
sults, in which models that have the largest number of
clusters are preferred over all other models, as shown in
Figure 3 (vermilion diamonds), and, in more detail, in Fig-
ure S15.

The unimportance of spurious layers can be seen in plots of
layer contributions (Figure 4, Figure S16, and Figure S17). In
the spatial analyses, once we pass the true K, subsequent
layers add little in terms of (co)variance explained; in con-
trast, additional clusters in the nonspatial analyses continue
to contribute substantially.

Empirical applications

To further demonstrate the utility of this method, we also
applied conStruct to empirical population genomic data from
two systems: a contact zone between two poplar species in
northwestern North America, and a large North American
sample of black bears.

Figure 2 Results for data simulated using K ¼ 1; showing maps of admixture proportions estimated using the nonspatial conStruct model for K ¼ 2
through 4 [(a)–(c); top row] and the spatial conStruct model for K ¼ 2 through 4 [(d)–(f); bottom row]. As there is only a single layer in the simulation, no
populations should be admixed, which is accurately depicted by the spatial model (second row), while the nonspatial model creates spurious clusters
(first row).
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Poplars

Study system and questions: Trees in the genus Populus
(poplars, aspens, and cottonwoods) are distributed through-
out the Northern Hemisphere; species in the genus regularly
co-occur and, where they do, they frequently hybridize
(Eckenwalder 1984; Cronk 2005).

Populus trichocarpa, the black cottonwood, and Populus
balsamifera, the balsam poplar, have a broad zone of overlap
in the Pacific Northwest, where they are hypothesized to
hybridize (Geraldes et al. 2014; Suarez-Gonzalez et al.
2016). Both species are sampled over a large geographic re-
gion, and show spatial patterns of genetic and phenotypic
variation (Slavov et al. 2012; McKown et al. 2014), making
the system well-suited for application of our method. We
organize the results of our analyses around the following
questions:

1. To what degree has hybridization blurred the boundaries
between trichocarpa and balsamifera? (As an extreme
case, does genetic differentiation support these as sepa-
rate species, as opposed to a single cline of ancestry?)

2. Does the only significant boundary of population structure
fall along the species boundary (if any), or is there sub-
structuring within species?

3. Does the strength of isolation by distance differ between
inferred layers? This may indicate, e.g., different speeds of
postglacial expansion or primary modes of dispersal.

Data and analyses: We use data from Geraldes et al. (2014),
consisting of 434 individuals sampled from 35 drainages gen-
otyped at just over 33,000 loci (map of the sampling shown in
Figure S18). The number of individuals per drainage ranged
between 1 and 50, with most sampling concentrated on

trichocarpa drainages. The data were generated using an
Infinium 34K array designed for trichocarpa (Geraldes et al.
2013), and showed a strong pattern of bias in allelic dropout
(the majority of missing data were from drainages with only
Populus balsamifera individuals). To ameliorate some of the
problems that arise when there is a strong bias in which data
are missing, we dropped loci for which any data were miss-
ing, resulting in just over 20,200 loci retained for analysis.
We then analyzed these data, grouped by drainage, using
both the spatial and nonspatial conStruct models with
K ¼ 1 through 7, and compared these models using cross-
validation with 10 replicates. The results of all these analyses
are shown in Figure 5 and Figure 6, as well as Figure S19,
Figure S20, Figure S21, Figure S22, and Figure S23 in the
“Supplemental Materials”. For comparison, we also ran AD-
MIXTURE (Alexander et al. 2009) with K ¼ 1 through 7,
using 50-fold cross-validation to compare model perfor-
mance (Figure S24 and Figure S25).

Results from construct: All models with K. 1 assigned the
majority of each of the two species to distinct layers, with
some populations drawing ancestry from multiple layers.
Based on cross-validation results, we view the K ¼ 3 spatial
model as a sufficient description of the data, with additional
structure of uncertain significance. This provides strong sup-
port for discrete population structure between the two spe-
cies, with some admixture, rather than a single, continuous
cline of ancestry. At all values of K. 1; discrete population
structurewasmostly partitioned along species lines; at values
of K above 2, further discrete substructure was inferred
within the P. trichocarpa samples, with no substructure
within balsamifera. There was also strong support for isola-
tion by distance in the dataset, but most of this signal seems
to derive from the P. trichocarpa samples: as seen in Figure 5

Figure 3 Cross-validation results for data simulated under K ¼ 1; K ¼ 2; and K ¼ 3; comparing the spatial and nonspatial conStruct models (in blue
and green, respectively) run with K ¼ 1 through 7, with 10 cross-validation replicates. The inset plots zoom in on cross-validation results outlined in the
dotted boxes. The spatial model shows better model fit at every value of K. The vermillion diamond indicates the value of K selected on the basis of
lowest cross-validation error among ADMIXTURE models. In all simulations, the preferred ADMIXTURE model was that with the largest number of
clusters.
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d–f and Figure S21, there is almost no isolation by distance
within the balsamifera layer (aD � 0). Both points are in
agreement with previous work (Keller et al. 2010), which
found low diversity within the region’s balsamifera, probably
as the result of a recent postglacial expansion.

A consistent split between layers within trichocarpa fell
along the “no-cottonwood belt,” a region along the central
coast of British Columbia in which black cottonwood is
absent (the break between yellow and red, for K$ 3).
The no-cottonwood belt is hypothesized to divide the
species’ distribution into northern and southern groups,
which, in a provenance test, were experimentally shown
to display differences in ecologically relevant phenotypes
(e.g., pathogen resistance, Xie et al. 2009, 2012). At higher
values of K, drainages at the southern tip of trichocarpa
sampling begin to split out into their own layers, perhaps
due to introgression from the southern neighbors Populus
angustifolia or fremontii (Zhou and Holliday 2012; Geraldes
et al. 2014).

Comparison to ADMIXTURE: Both nonspatial conStruct and
ADMIXTURE displayed the successive partitioning of space
and the clines of admixture seen in the simulation results. The
details of eachwere somewhatdifferent (FigureS20 vs.Figure
S24), and also differed across the replicate analyses. These
differences between runs andmethodsmay be due to noise in
the different inference algorithms employed, multi-modality
in the likelihood surfaces, or to model details (e.g., the priors
used in nonspatial conStruct, or the fact that ADMIXTURE is
modeling each allele’s frequency in each cluster, rather than
the covariance across all alleles). However, overall, the be-
havior of both methods was quite similar: each recovered the
trichocarpa/balsamifera split with the first two clusters mod-
eled, then, with higher values of K, used subsequent clusters
to subdivide the trichocarpa samples into geographically
restricted foci of cluster membership. Both nonspatial con-
Struct and ADMIXTURE strongly favored the most cluster-
rich model (Figure 6 and Figure S25). In contrast, the spatial
conStruct model clearly did not favor the model with the

highest value of K, and appears to describe patterns of iso-
lation by distance across the trichocarpa range quite well.

Black bears

Study system and questions: The American black bear,Ursus
americanus, is endemic to North America and has a broad
distribution across the continent. During the last glacial max-
imum, black bears were confined to isolated glacial refugia,
from which they subsequently expanded to occupy their cur-
rent range (Byun et al. 1997;Wooding andWard 1997; Stone
and Cook 2000; Puckett et al. 2015), likely leading to both
continuous and discrete patterns of genetic structure. We
organize our results around the following questions:

1. How many distinct populations are reflected in modern
patterns of genetic variation?

2. How strong is isolation by distance within each inferred
group?

Distinct populations likely represent different glacial re-
fugia, and differing strengths of isolation by distance might
indicate different levels of habitat connectivity, dispersal
behavior, or different postglacial histories.

Data and analyses: We use data from Puckett et al. (2015),
consisting of 95 individuals sampled across the United States
and on the West coast of Canada, genotyped at just under
22,000 biallelic loci. The distribution of missing data across
these individuals was uneven, with a few individuals repre-
senting most of the missing data, so we removed individuals
with .4% missing data, resulting in a final dataset of 78 in-
dividuals. We then analyzed these data, treating individuals
as the unit of analysis, using both the spatial and nonspatial
conStruct models with a K of between 1 and 7, and compared
these models using cross-validation with 10 replicates. We
also ran ADMIXTURE (Alexander et al. 2009) on the same
dataset, using K ¼ 1 through 7, and comparing models using
ADMIXTURE’s cross-validation procedure with 50 data fold
subsets. The results of these analyses are shown in Figure 7,
Figure 8, and Figure 9, as well as in Figure S26, Figure S27,
Figure S28, Figure S29, Figure S30, and Figure S31 in the
“Supplemental Materials”.

Results from conStruct: The results partition the sampled
bears into twomain groups (shown in Figure 7a): one (red) to
the east of the Rocky Mountains, which also occurs in Alaska,
the other primarily west of the Rockies (blue). The disjointed
range of the red layer likely reflects the fact that Canada was
not sampled, and so the red layer may extend through the
intervening (unsampled) northern Great Plains and Cana-
dian Shield, with the blue layer presumably then stretching
up into British Columbia.

The spatial models have strong statistical support up until
around K ¼ 5 or 6 (Figure 8), but additional spatial layers
beyond K ¼ 2 contribute little to total covariance (Figure 9).
The locations of admixed individuals are consistent with a
scenario of postglacial expansion from two refugia, one in the

Figure 4 Results for data simulated using K ¼ 1; showing layer/cluster
contributions (i.e., how much each layer/cluster contributes to total co-
variance), from conStruct runs using K ¼ 1 through 7 for the spatial
model (left), and the nonspatial model (right). In each run of the spatial
model, a single layer explained nearly all the covariance (additional bars
are present but not visible).
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American Southwest and one in the American Southeast,
meeting near the Northwest coast of North America and
the Cascade Range. However, lack of any samples from Can-
ada and Mexico, and lack of denser sampling across northern
North America, make more detailed interpretations untrust-
worthy. The spatial covariance functions estimated in layers
beyond the first two take very large values over small spatial
lags, but decay sharply after that. This feature, combined
with the overall amounts and spatial patterns of ancestry
in those layers, suggests that these layers are describing
processes that shape genetic variation at local scales, such
as inbreeding, which affects covariance between individuals
within each location, but has limited impact on covariance
between locations.

Comparison to ADMIXTURE: Results from the nonspatial
model and from the ADMIXTURE analyses clearly exhibit the
tendency of nonspatial clustering algorithms to describe con-
tinuous spatial patterns of divergence using gradients of
admixture between clusters. For example, in Figure 7b, the
third cluster (in gold) exhibits a clear East-West gradient that
overlays the discrete structure between the Southwest cluster
and the Southeast. The results from ADMIXTURE are not iden-
tical to those obtained using the nonspatial conStruct model,
but they do show the same tendency: e.g., at K ¼ 3 — the

preferred model from the cross-validation analysis shown in
Figure S31 — ADMIXTURE splits the westernmost Alaskan
samples out of the cluster with the eastern samples, and at
K ¼ 4; it subdivides the eastern cluster into two geographically
partitioned groups (Figure S30). Interestingly, for the nonspa-
tial model implemented in ADMIXTURE, the preferred model
has a smaller K (K ¼ 3) than that of the spatial models with
best cross-validation performance in conStruct (K ¼ 5 or 6).
This discrepancy likely stems from the different features intro-
duced in layers beyond K ¼ 2 in the two models: conStruct
uses small contributions of new layers to model very local drift,
while ADMIXTUREmoves to geographically finer subdivisions.

Even at K ¼ 3; ADMIXTURE invokes clusters to describe
what seems to be a continuous spatial pattern of genetic
variation, which conStruct describes using only two spatial
layers. The third cluster in the ADMIXTURE analysis at K ¼ 3
(shown in gold in Figure S30b), shows strong spatial auto-
correlation in admixture proportions, as would be expected if
it is describing continuous spatial differentiation. The allelic
covariances plotted against distance (see Figure S32) provide
more information on ADMIXTURE’s lack of fit: covariance
between Eastern bears falls off gradually rather than abruptly
with distance, indicating a residual pattern best explained by
isolation by distance within layers. In addition, the covari-
ance between bears assigned to ADMIXTURE’s gold and red

Figure 5 Maps of admixture proportions estimated for the Populus dataset using the spatial conStruct model for K ¼ 2 through 4 (a–c), as well as the
corresponding layer-specific covariance curves estimated under each model (d–f).
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layers (the furthest Northwestern and Eastern bears, respec-
tively) appears to be a natural extension of the decay of co-
variance with distance, falling to only slightly lower values
than covariances between other widely separated pairs of
Eastern sampling locations.

Across all values of K for which we ran conStruct, we see
strong support for the spatial model over the nonspatial
model (Figure 8). This pattern may resolve a discrepancy
between our results and previous analyses that split Alaskan
and British Columbian bears out into their own cluster with
an inferred Beringian glacial refugium (Byun et al. 1997;
Stone and Cook 2000; Puckett et al. 2015). Ourmodel, which
explicitly incorporates a spatial decay of relatedness, allows
somewhat genetically differentiated individuals that are sam-
pled far from one another to belong to the same layer, instead
of splitting these individuals out into successive clusters (e.g.,
Figure S26d vs. Figure S27d).

Discussion

In this paper, we have presented a statistical framework,
conStruct, for simultaneously modeling continuous and dis-
crete patterns of population structure. By employing the
sensible default assumption that relatedness ought to decay
with geographic distance, even within a population, we
avoid erroneously ascribing population differentiation to
discrete population clusters. To aid comparison between
models, we present a cross-validation approach as well as
a way to describe the contribution of each spatial layer to the
model (but caution against overly strict interpretation of
either).

The method performs well on simulated data: we ac-
curately infer the admixture proportions used to simulate
the data and accurately pick the simulating model as the
best model using our cross-validation procedure. Two
empirical applications of conStruct to samples of North
American poplars and black bears yield reasonable results,
and demonstrate that, by acknowledging isolation by
distance, real datasets can be better described using fewer
layers.

The proposed method combines the utility of model-based
clustering algorithms with a model of isolation by distance.
We anticipate that conStruct will be useful for identifying
populations and determining ancestral origins of sampled
individuals, especially when the populations exhibit geo-
graphic patterns of relatedness.

Comparison to nonspatial model-based clustering

Above, we showed that (a) the nonspatial conStruct model
recapitulates results of other, commonly used nonspatial
clustering methods, and (b) conStruct can concisely capture
spatial structure, which is common within populations.
Given this, when should methods without spatial capability
be used? One advantage these have over conStruct is speed
when the number of samples is large. Although conStruct’s
computation time is independent of the number of loci in-
cluded in the dataset (after the initial calculation of the
allelic covariance), it currently scales poorly with number
of samples. The computationally limiting step is the inver-
sion of the covariance matrix, which scales more than qua-
dratically with the number of samples, whereas computation
time for, e.g., STRUCTURE, scales linearly with number of
samples.

For a relatively small number of samples, conStruct can be
much faster than existing nonspatial Bayesian clustering
methods. On a desktop machine, using a single 4.2 GHz Intel
Core i7 processor, an analysis of the black bear dataset
(78 samples, 21,000 loci) running conStruct’s spatial model
with four layers for 5000Markov chainMonte Carlo (MCMC)
iterations (which was more than sufficient for convergence)
took 2.8 hr. For almost any size dataset, the maximum likeli-
hood algorithm implemented in ADMIXTURE is quite a bit
faster than conStruct: running ADMIXTURE on the bear data-
set over all values of K from 1 to 7, including 50-fold cross-
validation for each value of K, took only 6.6 min. It should
also be noted that theremay be situations when the binomial-
based model underlying ADMXITURE performs better than
our Gaussian-based model, e.g., when clusters differ at only a
few strongly differentiated loci, although we have not inves-
tigated this possibility.

Figure 6 Cross-validation results for Populus
dataset comparing the spatial and nonspatial
conStruct models run with K ¼ 1 through
7 with 10 cross-validation replicates. The first
panel in each row shows all results; the second
panel zooms in on the results from analyses run
with K ¼ 2 through 7.
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Choosing the “best” number of layers

Although we recognize the utility of choosing a single, “best”
value of K, and using only that analysis to communicate re-
sults, we emphasize that the choice of best K is always rela-
tive to the data in hand and the questions to be answered.
From a statistical perspective, unless the data were generated
under the model itself, the support for larger values of K is
likely to increase with increasing amounts of data. In the limit
of infinite data, the best value of K may be the number of
samples included in the dataset (Patterson et al. 2006).

From a biological perspective, it is important to stress that
patterns of relatedness between individuals and populations
are shaped by complex spatial and hierarchical processes. All
individualswithin a species are related to one another in some
way, and summarizing those patterns of relatedness with a
single value of K may be reductive or misleading. We there-
fore encourage users to perform analyses across different
values of K and observe which layers split out at what levels
(this is conceptually similar to taking successively shallower
cross-sections of the population phylogeny), and also to take
the results of the proposed cross-validation procedure with a
large grain of salt. Calculating layer contributionsmay also be
a useful heuristic, as it can reveal layers with statistical sup-
port but small biological import.

Although we believe our model adds spatial realism to the
groups used by clusteringmethods, it is important to note that
the layers detected by our method do not necessarily corre-
spond to distinct, ancestral populations; nor does a nonzero
admixtureproportion indicate that admixture (i.e., geneflow)
must have occurred. Both groupings and admixture propor-
tions should be viewed as hypotheses that should be subject
to further testing (for an indepth discussion of these points,
see Falush et al. 2016).

Implications for management and conservation

Because isolation by distance is common, a likely result of
applying conStruct to existing data is that populations previ-

ously identified as distinct using nonspatial clustering methods
may be grouped into the same layer. This “lumping” might
better reflect the demographic history of these populations,
but may not contradict the genetic distinctness implied by the
nonspatial clustering. This genetic distinctness—rather than
shared history—may be more relevant for management deci-
sions and conservation policy, which are often predicated on
the identification of discrete “management units” identified
using genetic data (Moritz 1994; Waples 1998; Moritz et al.
2002).

It is therefore important to stress that individuals sampled
from the same conStruct layer may be quite genetically di-
verged fromone another, perhaps especially at loci underlying
adaptive traits, and that a conStruct layer may still contain
multiple distinct management units worthy of independent
protections. For instance, although both the Alaskan and
Eastern Black Bears draw most of their ancestry from the
same conStruct layer, they are separated by a great distance,
and may therefore differ substantially from each other (al-
though less than from the Western bears, as measured by
average covariance). Alternatively, the inclusion of multiple
management units into a single conStruct layer may occur if
these populations are currently (orwere recently) exchanging
migrants, and thus might emphasize the importance of main-
taining habitat corridors, or of implementing an integrated
conservation plan across a geographic region.

Allelic or genetic covariance?

The choice of allelic covariance, rather than genetic covari-
ance,wasmotivatedby the fact that it is lessaffectedbysample
configuration—the genetic covariance is calculated after sub-
tracting the mean from the entire sample, which is more
strongly affected by densely sampled locations. Genetic co-
variance is also often computed after first dividing each fre-
quency by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð12 pÞp

; where p is the global allele frequency,
with the aim of equalizing variances across loci. Our definition
does not do this, and so is less affected by low-frequency al-
leles. Both of these changes led to better performance on test

Figure 7 Maps of admixture proportions estimated for the black bear dataset using the spatial conStruct model (a), the nonspatial conStruct model (b),
and ADMIXTURE (c) for K ¼ 3: Pies show mean admixture results across individuals within their diameter, and the admixture results for all individuals
included within each group are shown in the plot above.
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data. However, note that allelic covariance is more affected by
singleton sites than the standard genetic covariance, so it may
be advisable to filter these prior to analysis if they are likely to
contain a large percentage of errors (Linck and Battey 2017).

Caveats and considerations

There are a few important caveats to consider in the inter-
pretation of conStruct results. First, we have modeled allelic
covariancewithina layerasa spatialprocess.Although there is
flexibility built into the model about the shape of that co-
variance, inference may be misleading if the sampling geog-
raphy departs radically from the way the sampled organisms
disperse (or have dispersed) on their landscape. For example,
if we were to run a conStruct analysis using geographic
distances between sampled individuals of greenish warblers
(Irwin et al. 2001) or Ensatina salamanders (Wake and
Schneider 1998)—two canonical examples of ring species—
we might get misleading results. This is because distance
between locations on either side of the species’ distributions
(across the Tibetan plateau and the Central Valley, respec-
tively) is not representative of the path traversed in the co-
alescence of a pair of alleles sampled at those locations.

A second caveat is that, in some instances, membership in
the same layer may not mean that samples are particularly
related. If covariance within a layer decays sharply with
distance, and the layer-specific relatedness parameter fðkÞ

is low, individuals separated by a large spatial distance may
be in the same layer but have very low pairwise relatedness. It
is possible that this is happening in Figure S19. At K ¼ 3; the
southernmost populations of P. trichocarpa are in the gold
layer, whose other neighbors are to the north, with an inter-
vening group of populations in the red layer, and at K ¼ 5;
those southernmost samples split out and become their own
layer. Furthermore, note that in this case a

ðkÞ
0 and fðkÞ are

confounded, so differences in f between layers should not
be overinterpreted. Again, we encourage users to run analy-
ses across multiple values of K and to examine the spatial
covariance functions within layers when interpreting results.

Extensions and future directions

There are several ways in which the model described in this
paper might be extended or improved. For example, we
currently assume that all layers within a model are equally
unrelated (a star population phylogeny, although the branches
can have different lengths thanks to the fðkÞ parameter),
similar to the F-model of Falush et al. (2003). However,
we could extend the existing model by implementing a re-
latedness structure between the layers by, for example, es-
timating a population phylogeny between them (e.g.,
Pickrell and Pritchard 2012).

In addition, here we have assumed that samples have
known geographic coordinates, and that they draw ancestry
from layers only at those sampled locations. A natural exten-
sion would be to attempt to “geo-locate” the ancestry of sam-
ples without geographic coordinates (Wasser et al. 2004).We
could also imagine letting samples draw ancestry from other
geographic coordinates, as we have done in a previous ap-
proach (Bradburd et al. 2016) to model long distance dis-
persal. We could even allow entire layers to bud off of a
particular location on another layer. This would enable more
explicit modeling of range expansion or domestication, in
which a set of individuals are thought to have ancestry that
originated from a particular geographic location embedded
in a larger pattern of isolation by distance.

A final direction would be to model relatedness within a
layer as a spatiotemporal process, in which covariance decays
both with distance in space and in time. As the number
of genotyped historical or ancient samples increases, it is

Figure 8 Cross-validation results for the black bear dataset, comparing spatial and nonspatial conStruct models, as well as ADMIXTURE, all run with
K ¼ 1 through 7, with 10 cross-validation replicates for the conStruct analyses and 50 data-fold subsets for the ADMIXTURE analyses. The first panel in
each row shows results from spatial and nonspatial conStruct models; the second panel zooms in on the results from the spatial analyses run with K ¼ 4
through 7, and the third panel shows the results for ADMIXTURE. Note that the admixture plot shows cross-validation error (rather than predictive
accuracy), and that the y-axis has therefore been flipped for ease of comparison to the conStruct results.
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becomingpossible toaskwhether there is genetic continuityat
a point in space across time, or whether populations are being
replaced (Lazaridis et al. 2014; Haak et al. 2015; Slatkin and
Racimo 2016; Nielsen et al. 2017; Schraiber 2017; Joseph
and Pe’er 2018). However, we expect allele frequencies to
change through time in a population, even without replace-
ment, simply due to drift. Therefore, a natural way to test for
population replacement is to estimate the rates at which re-
latedness within a layer decays with time in the same way we
do in the current model with space, in which case a change in
discrete population structure across space is comparable to
population replacement across time.
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Appendices

Model Rationale: Drift, Admixture, and Space

Here we sketch a simple model of allele frequencies and their covariances, to justify the form given in the main text.

Drift

We first provide a simplemodel of allele frequencies within a layer. Imagine a sample i that draws all of its ancestry from layer k.
The allele frequency in sample i at locus ℓ; denoted Fi;ℓ; can be written as the sum

Fi;ℓ ¼ eℓ þ D
ðkÞ
ℓ þ D

ðk;iÞ
ℓ þ D

ðiÞ
ℓ : (7)

The first term is the ancestral allele frequency eℓ shared by all samples; the second is the deviation from that ancestral frequency
due to drift in the ancestral population of the kth layer, which is shared by all samples within the layer. The third term is the
deviation of the ith sample away from the kth layer mean due to the spatial process of drift and migration within the layer. The
final term is the deviation specific to the ith sample, which captures drift not shared by all samples at the population level (i.e.,
subpopulation-specific drift due to, e.g., inbreeding). We will assume that these four deviations are all uncorrelated with each
other.

If we have two samples i and j drawn from layer k, their covariance across loci will be

VarðeÞ þ Var
�
DðkÞ

	
þ Cov

�
Dðk;iÞ;Dðk;jÞ

	
þ di¼j Var

�
DðiÞ
	
; (8)

where the quantity di¼j is an indicator variable that equals 1 when i is equal to j and 0 otherwise, as in Eq. 4.

Admixture

The model above describes the simple case in which samples draw 100% of their ancestry from only a single layer each. To
accommodate admixture between layers, we model sampled genomes as drawn from allele frequencies that are weighted
averages of the local frequencies in each layer from which they draw ancestry. The weights, wðkÞ

i ; describe the “ad-
mixture proportion” of sample i in layer k. These can be interpreted as the proportion of the genome in the ith sample
that came from the kth layer (or the probability that an allele at a locus is drawn from layer k), so that

PK
k¼1w

ðkÞ
i ¼ 1 for

each i. The allele frequency in the ith sample at the ℓth locus can therefore be written as:

Fi;ℓ ¼ eℓ þ
X
K
wðkÞ
i

�
D
ðkÞ
ℓ þ D

ðk;iÞ
ℓ

	
þ D

ðiÞ
ℓ ; (9)

and so the covariance between i and j across loci is

Vi;j ¼ VarðeÞ þ
XK
k¼1

wðkÞ
i wðkÞ

j

�
Var
�
DðkÞ

	
þ Cov

�
Dðk;iÞ;Dðk;jÞ

		
þ di¼j VarðDiÞ: (10)

Space

Under our nonspatialmodel, we assume that CovðDðk;iÞ
ℓ ;D

ðk;jÞ
ℓ Þ ¼ 0; so that the only additional covariance between i and j (above

that induced by a shared ancestral frequency at each locus) is due to the drift in the ancestral population of their layer (the
variance of which is fðkÞ). Under our spatial model we assume that some of the covariance in allele frequencies between i and j
decays as a function of the geographic distance between the pair, Di;j; so that

Cov
�
D
ðk;iÞ
ℓ ;D

ðk;jÞ
ℓ

	
¼ a

ðkÞ
0 3

 
exp

 
2
�
a
ðkÞ
D Di;j

	aðkÞ
2

!!
: (11)

Wenote that this form is chosen forflexibility andconvenience, andnotbecause itmatches anyexplicit populationgeneticmodel
of isolation by distance.
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Allelic Covariance and Inference

Here we go into further detail about both the allelic covariance we model and the modeling framework we use.

Allelic covariance

To see why Eq. 1 and Eq. 2 for the allelic covariance are equivalent, pick a random locus and let A and B be randomly drawn
alleles at that locus from populations i and j respectively. Suppose these are each coded as “0” or “1” (where “0” denotes a
reference allele), but we randomly “flip” this coding, so that we let X ¼ A and Y ¼ Bwith probability 1/2, but otherwise we let
X ¼ 12A and Y ¼ 12B: These are Xi and Xj in Eq. 1, so that bVi;j ¼ cov½X; Y �: The random allele flipping makes the value of bV
independent of the choice of reference allele. By conditioning on the flip, and using the fact that E½X� ¼ E½Y � ¼ 1=2; Eq. 2
comes from the observation that

cov½X; Y � ¼ E½ðA21=2ÞðB2 1=2Þ�: (12)

Thanks to averaging over choice of alleles, the within-population allelic variance in sample i, bVi;i; is the variance of a series of
Bernoulli(1=2) draws across loci, and therefore bVi;i ¼ 1=4 for every sample i. Averaging over choice of reference allele
therefore removes some information about factors acting within populations that might otherwise leave signatures in the
genetic covariance, such as population size, extent of inbreeding, and history of bottlenecks. However, as our model is focused
on modeling covariances between samples as the outcome of some spatial process, we count this a minor loss.

Likelihood

If allele frequency deviations arewell approximated by aGaussian, their sample allelic covariance is a sufficient statistic, so that
calculating the likelihoodof their sample allelic covariance is the sameas calculating the probability of the frequencydata up to a
constant.We can thereforemodel the covariance of the sample allele frequencies, bV; as a draw fromaWishart distributionwith
degrees of freedom equal to the number of loci L across which the sample allelic covariance is calculated:bV � WðLV; LÞ (13)

where W is the Wishart likelihood function.
Abenefit ofdirectlymodeling the sampleallelic covariance is that, after the initial calculationof the sample covariancematrix,

the computation timeof the likelihood is not a function of thenumber of loci, so inference canbedoneusingwhole genomedata.

Models, Parameters, and Priors

Here we discuss the different models implemented in this paper and give the priors we place on model parameters.

Spatial vs. nonspatial

In this paper,wediscuss two typesofmodels, spatial andnonspatial, eachofwhich canbe implementedwithdifferentnumbersof
layers/clusters. The spatial model is parameterized as in Equation 10, and the nonspatial model is a special case of the spatial
model with all a parameters set to 0. The nonspatial model therefore has 3K fewer parameters than the spatial model, because
there are three a parameters that describe the continuous differentiation effect of distance in each layer.

Single layer

Each of these models can be run with a single layer (K ¼ 1), in which case the layer-specific covariance parameter fðkÞ and the
global covariance parameter g become redundant. The single-layer model is therefore a special case of the multi-layer model,
in which we set f to zero. For the spatial model, the single-layer parametric covariance is:

Vi;j ¼ VarðeÞ þ a
ðkÞ
0 3

 
exp

 
2
�
a
ðkÞ
D Di;j

	aðkÞ
2

!!
þ di¼j VarðDiÞ; (14)

and for the nonspatial model, it is:

Vi;j ¼ VarðeÞ þ di¼j Var
�
DðiÞ
	
: (15)
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Priors

We use a Bayesian approach to parameter inference. A table of all parameters, their descriptions, and their priors is given in
Table A1.

Cross-Validation Procedure

Weemploy aMonte Carlo cross-validation approach formodel comparison (Picard andCook 1984). This procedure generates a
mean predictive accuracy for each model and each value of K, as well as a confidence interval around that mean, which can
then be used for model comparison or selection. Briefly, we follow the following procedure:

1. For each of X replicates:
a. partition the allele frequency data into a 90% “training” partition (Fx1) and a 10% “testing” partition (Fx2).
b. run our inference procedure using the training partition to estimate model parameters umk for 2K models:

i. m: the spatial and the nonspatial model.
ii. k: the number of layers/clusters 1 through K.

c. calculate the mean log likelihood of the testing data partition over the posterior distribution of training-estimated
parameters for each model (LðFx2jumkÞ; henceforth Lxmk).

d. generate standardized mean log likelihoods, Zxmk; across all models run on this data partition:
i. identify the highest mean log likelihood, Lmax

x across all 2K models.
ii. subtractLmax

x fromLxmk for eachmodel, such that the standardized log likelihood,Zxmk; of the best model is 0, and,0
for all inferior models.

2. For eachmodel (i.e., each combination ofm and k) calculate the mean ( �Zmk) standardized log likelihood of the testing data
partition across X replicates, as well as its SE (SE �Zmk

) and 95% confidence interval ( �Zmk61:96 3 SE �Zmk
).

In other words, the “predictive accuracy” shown as conStruct cross-validation results are in units of improvement in log-
likelihood of that model relative to the best model for that partitioning of the data, averaged over data partitions. The
standardization is necessary because different data partitions can be systematically more or less difficult to fit, resulting in
greater differences in mean training data log likelihood between data partitions than between models fit to the same partition.

If the genomic coordinates of the loci are known, the training/testing partitioning should be designed to accommodate LD.
Loci in strong LD are not inherited independently, so if loci from a single linkage block are included in both training and testing
partitions, the independence of the test in the testing partitionwill be compromised because the parameters estimated from the
training partitionmight be describing process heterogeneity or noise in a region of the genome that also has loci included in the
testing partition. The best practice for cross-validation is tomake sure that no loci in the testing dataset are in strong LDwith, or
near on the genome to, loci in the training dataset.

Calculating Layer Contributions

Let A and B be randomly chosen alleles from samples i and j respectively, at a randomly chosen locus. Then, if we let
U ¼ 2ðA2 1=2Þ and V ¼ 2ðB2 1=2Þ; since U and V take the values 61; so as in Eq. 12,

E½UV� ¼ ℙfU ¼ Vg2ℙfU 6¼ Vg
¼ 2ℙfU ¼ Vg2 1
¼ 2ℙfA ¼ Bg2 1

Table A1 List of parameters used in the conStruct model, along with their descriptions and priors

Parameter Description Prior

g Global covariance due to shared ancestral frequency g � Nðm ¼ Varð�fÞ;s ¼ 0:5Þ
a
ðkÞ
0 Controls the sill of the covariance matrix in layer k a

ðkÞ
0 � Nðm ¼ 0;s ¼ 1Þ

a
ðkÞ
D Controls the rate of the decay of covariance with distance in layer k a

ðkÞ
D � Nðm ¼ 0;s ¼ 1Þ

a
ðkÞ
2 Controls the shape of the decay of covariance with distance in layer k a

ðkÞ
2 � Uð0; 2Þ

hi The nugget in population i (population specific drift parameter) hi � Nðm ¼ 0;s ¼ 1Þ
fðkÞ Layer-specific shared drift in layer k fðkÞ � N ðm ¼ 0;s ¼ 1Þ
wi Admixture proportions sample i draws across K layers wi � Dirða1 . . .aK ¼ 0:1Þ
The mean of the Normal prior on g, Varð�f Þ; is the variance of the sample mean allele frequencies across loci.
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To translate, ℙfU ¼ Vg is the probability that the alleles from our two focal samples agree with each other, while ℙfU 6¼ Vg is
the probability that they disagree. This implies that E½UV� ¼ 12 2pij; where pij is the probability that two randomly chosen
alleles differ, which is the genetic divergence.

Now, here is a generative model that gives us the form of the covariance we have postulated. To decide whether or not A and
B will agree, first each sample randomly chooses a layer: call these layers I and J. The probability that A chooses layer k is
ℙðI ¼ kÞ ¼ wðkÞ

i ; the ith sample’s admixture proportion in the kth layer. The same holds true for B. If they do not choose the same
layer, the probability that they agree is pg: If they do choose the same layer, then they agree with a probability 1=2þ pg þ qðkÞij that
depends on their distance apart. By the above, the probability of agreement is ℙfA ¼ Bg ¼ 2cov½A;B� þ 1=2; and sowe can define

pg ¼ 2ðg þ dijhiÞ

qðkÞij ¼ 2aðkÞ
0 exp

 
2
�
a
ðkÞ
D Dij

	aðkÞ
2

!
þ 2fðkÞ:

One way to summarize the contribution of each layer is to partition the probability of agreement into contributions due to
agreement “in” each layer. So, the contribution from layer k to agreement between i and j is

wðkÞ
i wðkÞ

j

�
1=2þ qðkÞij

	
�
12

PK
k¼1w

ðkÞ
i wðkÞ

j

	�
1=2þ pg

	
þPK

k¼1w
ðkÞ
i wðkÞ

j

�
1=2þ qðkÞij

	
;

which is the probability, given that they agree, that they agree thanks to layer k. Because our signal comes from variation in
covariance, we omit the pg terms (i.e., we condition on agreement not due to “background” levels of agreement in the
interpretations above). Stated in this way, this quantity is the relative contribution of the kth layer to the (model-based)
kinship coefficient between i and j.

This suggests defining the overall contribution of layer k to agreement, jðkÞ, to be the average of that quantity over i and j:

jðkÞ ¼
XN
i¼1

XN
j¼i

wðkÞ
i wðkÞ

j 2aðkÞ
0 exp

 
2
�
a
ðkÞ
D Di;j

	aðkÞ
2

!0@ 1Aþ 2fðkÞ þ 1
2

0@ 1A; (16)

which is that layer’s contribution to agreement between samples summed over the upper triangle (excluding the diagonal) of the
covariance matrix. We define the contribution of the kth layer,JðkÞ

; as the relative contribution of the kth layer to total agreement:

Figure A1 Schematic of how we simulate datasets with continuous and discrete
differentiation, using K ¼ 2 as an example. Going forward in time, the K popula-
tions split from a common ancestor at time ts; then expand to each colonize a
lattice of demes with nearest-neighbor symmetric migration at time te; then finally
at time ta collapse into a single lattice consisting of demes with ancestry entirely in
one or the other of the populations, or admixed between them.
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JðkÞ ¼ jðkÞPK
k¼1

jðkÞ
: (17)

This is the quantity that is plotted in Figure 4 and Figure 9.

Simulation Details

We wished to simulate data under a model that had some biological realism, but at the same time had unambiguous true
admixture proportions (so as to test the behavior of the method). This second requirement precluded scenarios of, e.g., recent
secondary contact between populations expanding out of different refugia, which would have more biological realism, but no
unambiguous ancestry proportions for admixed populations. Here, we describe inmore detail the procedurewe use to simulate
our test dataset, using a cartoon schematic with K ¼ 2 as an example (Figure A1).

Using the program ms (Hudson 2002), we generated discrete population structure by simulating K distinct populations,
each of which split from a common ancestor ts units of coalescent time in the past, without subsequent migration between
them. Then, to generate continuous differentiation within each population, at time te in the past, each of these discrete
populations instantaneously colonizes an independent lattice of demes, for which we use a stepping stone model with
symmetric migration to nearest neighbors (eight neighbors, including diagonals).

Finally, at time ta in the past we generate a single dataset by collapsing those K discrete lattices into a single grid of demes
that are admixed to various degrees from these different layers. We wish to simulate realistic patterns of admixture (and
thereby set amore difficult test for themethod), by generating spatially autocorrelated admixture proportions in each diverged
population. To do so, we first place K equidistant points on the circle centered on our lattice. These points serve as “foci” of
ancestry in each of the K layers. We then calculate the distance from each deme in the sampled lattice to each of these K foci,
and draw admixture proportions for each deme from a Dirichlet distribution for which the concentration parameter for deme i
in layer k is inversely proportional to the distance between deme i and focus k. This creates a pattern in which the admixture
proportions in a given layer decreases with the distance from that layer’s focus, as might be expected if a spatial process were
mediating admixture between diverged populations.

The parameters used to simulate the datawere as follows: a diploid population size of 1000, amigration rate between neighboring
demes of 0.4, a deep split time between layers of 500 (corresponding to ts in Figure A1), an expansion event across layers of
250 (corresponding to te in Figure A1), and an admixture event between layers in the immediate past (13 1024). The times and
rates reported abovehave alreadybeen scaled by4N (as perms syntax), and therefore give the values feddirectly toms.Weused the -s
option to sample a single segregating site per coalescent history, and simulated 13 104 independent histories— corresponding to the
same number of independent loci — in each dataset, with 10 diploid genotypes generated per deme at each locus.

52 G. S. Bradburd, G. M. Coop, and P. L. Ralph


