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Abstract

The current paper reports long-term treatment impact estimates for a randomized evalua-

tion of an early childhood intervention designed to promote children’s developmental out-

comes and improve the quality of Head Start centers serving high-violence and high-crime

areas in inner-city Chicago. Initial evaluations of end-of-preschool data reported that the pro-

gram led to reductions in child behavioral problems and gains in measures of executive

function and academic achievement. For this report, we analyzed adolescent follow-up data

taken 10 to 11 years after program completion. We found evidence that the program had

positive long-term effects on students’ executive function and grades, though effects were

somewhat imprecise and dependent on the inclusion of baseline covariates. Results also

indicated that treated children had heightened sensitivity to emotional stimuli, and we found

no evidence of long-run effects on measures of behavioral problems. These findings raise

the possibility that developing programs that improve on the Head Start model could carry

long-run benefits for affected children.

Introduction

Early childhood interventions have received substantial policy attention with the hope that

providing high quality early educational environments to children from underserved commu-

nities can offset the effects of poverty on long-run development [1,2]. Yet, evidence from

experimental studies regarding this hypothesis is surprisingly scarce and mixed. Unfortu-

nately, too few studies of early interventions have followed children beyond the elementary

school years, leaving questions as to whether early intervention effects should be expected to

persist into adolescence or adulthood.

The current study evaluated the long-term effects of the Chicago School Readiness Project

(CSRP), a cluster-randomized design preschool intervention that aimed to improve the

chances of early school success for children living in high-poverty and high-crime neighbor-

hoods in inner city Chicago. The intervention, which provided teachers with professional

development and coaching that targeted student behavioral management and teacher stress
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reduction, was administered in Head Start classrooms, and it was designed to improve the

quality of Head Start while also promoting children’s self-regulation and executive functioning

[3]. Initial evaluations showed that the intervention positively affected the quality of the pre-

school classroom environment [3], as well as measures of children’s self-regulation [4], execu-

tive function and academic achievement [5], and it was predicted that these early impacts on

child-level skills and behavior would persist in the long-term. In the current paper, we report

program impacts on a broad array of adolescent outcomes collected 10 to 11 years after pro-

gram completion, including measures of executive function, academic achievement, behav-

ioral problems, and emotional regulation.

Early intervention and long-term effects

An alarming 13.3 million children live below the poverty line in the United States [6], and

research suggests that a substantial fraction of these children will face higher rates of emo-

tional, behavioral and mental health problems throughout their lives, including depression

and anxiety and greater levels of health and behavioral risk-taking [7–10]. Likewise, children

growing up in economically under-resourced, ethnic minority neighborhoods face major dis-

parities in access to higher quality education, with high school graduation rates for African

American and Latino students severely lagging behind the national average [11,12]. More

troubling, research clearly indicates that spending the early childhood years [typically defined

as ages 0 through 5] in poverty substantially increases the risk of detrimental effects on long-

term development. Longitudinal studies suggest that exposure to poverty during early child-

hood, even when accounting for exposure during middle childhood and adolescence, strongly

predicts a host of negative adult outcomes, including lower earnings and poor labor market

success [13], fewer years of completed schooling [14], and higher rates of obesity [15].

Policymakers and researchers have increasingly turned to early intervention as a means of

offsetting the adverse effects of poverty exposure on development (for reviews see [1,2,16,17]).

The rationale for such investments is straightforward: If interventions can positively affect

children’s cognitive and socioemotional development during the formative years of early

childhood, then such effects may place children on more positive lifelong trajectories. How-

ever, the evidence in support of this hypothesis is mixed. On the one hand, a small set experi-

mental studies, bolstered by a larger set of quasi-experimental studies, have found positive

effects for early childhood interventions on measures of long-term attainment, such as high

school graduation rate [18,19]. Conversely, some recent experimental work has found that

early childhood interventions often produce substantial positive effects at the time of program

completion, only to see these effects fade to 0 in the few years after the intervention ends [20].

This pattern of “fadeout” is best illustrated by the findings reported in a recent meta-analy-

sis by Bailey and colleagues of 67 high-quality early childhood interventions evaluated through

randomized control trials published between 1960 and 2007, as the meta-analytic average

treatment effect across studies was observed to have a precipitous decline during the 3 years

following intervention [20]. This disconcerting pattern of effects suggests that theories that

predict that early intervention will lead to sustained changes in children’s long-term trajecto-

ries may be flawed or incomplete, and interventions targeted at the earliest stages of develop-

ment may not be as cost-effective as initially hoped if effects inevitably fade out.

However, there remain compelling reasons to continue to investigate whether successful

early interventions may produce effects measured into adolescence or adulthood. First, other

reviews and meta-analyses that included quasi-experimental evaluations of early childhood

programs have found evidence of positive long-run effects [18,19,21]. For example, Camili and

colleagues’ analysis of 123 early childhood interventions, all of which included some type of
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comparison group, found evidence that early intervention had effects on long-run measures of

cognitive ability [18], and a recent meta-analysis by McCoy and colleagues, which also included

quasi-experimental work, found that early intervention affected long-term educational outcomes

such as high school graduation [19]. Further, three well-documented intervention studies, the

Perry Preschool Program [22–25], the Abecedarian Early Intervention Project [26], and the Chi-

cago Child Parent Centers program [27,28], all produced positive effects measured through ado-

lescence and, in some cases, adulthood. Finally, these findings are further supported by

correlational studies that have consistently demonstrated the strong relation between early gains

in cognitive and socio-emotional skills and long-term developmental outcomes [21,29,30].

Thus, the question of whether long-run effects should be expected following a successful

early intervention remains open. Multiple reviews of the literature [18,20,21] have argued that

the presence of long-term impacts is likely governed by key program features, such as the types

of skills targeted by the intervention and the difference in quality between the environment

offered by the program and the environment encountered in the counterfactual. However,

these reviews have also noted the need for more experimental intervention evaluations with

longitudinal follow-up, as we need additional evidence from interventions with different pro-

grammatic features to better understand when long-term effects are likely to be found.

The current study aims to provide new longitudinal experimental evidence to further con-

tribute to the literature base on early childhood interventions, as we analyzed data collected 10

to 11 years after the completion of a successful early childhood intervention that substantially

boosted low-income children’s cognitive and socioemotional functioning measured at the end

of preschool [4,5].

The Chicago School Readiness Project

The Chicago School Readiness Project (CSRP) was conceived as an early childhood interven-

tion designed to bolster children’s self-regulation and executive function skills through chang-

ing the classroom quality of Head Start centers operating in high-poverty and high-crime

neighborhoods within inner-city Chicago. The CSRP intervention model was supported by

research that suggested that children’s early educational experiences could be substantially

improved by targeting teacher’s behavioral management strategies, and improvements to

teacher behavioral management should help improve children’s own self-regulation abilities

[31–34]. By changing the way teachers supported the development of children’s early self-regu-

lation, the intervention was expected to help children become more positively engaged, atten-

tive learners during their earliest school experiences, and gains in self-regulation were

hypothesized to set children on a higher achieving trajectory throughout school.

The CSRP targeted Head Start centers because of Head Start’s unique role as the primary

early education service provider for low-income families in the U.S., and other studies have

shown that well-designed programs could be integrated into the Head Start model (e.g., [35–

39]). The overarching goal of improving classroom practices and child self-regulation was

enacted through a multi-component model, as the CSRP targeted services to the children, fam-

ilies and teachers of participating Head Start centers.

The CSRP targeted children’s self-regulation skills by providing teachers with extensive

professional development designed to help them improve their classroom behavioral manage-

ment. Self-regulation describes a child’s ability to focus and maintain attention, regulate

behavior in order to positively interact with peers and adults, and regulate emotion in the face

of stress and anxiety [38]. Executive function (EF) is considered to be the cognitive component

of self-regulation, and EF involves activation of the sub-areas of the prefrontal cortex. When

faced with stress and adversity, children with higher-level executive functioning are better able
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to plan ahead, maintain focus, and rely on cognitive flexibility to solve difficult problems [39–

41]. Not surprisingly, these skills are essential for early school success [34,42–44], as self-regu-

lation supports the acquisition of new information by allowing children to focus and sustain

their attention as well as to suppress impulsive responses in favor of better academic engage-

ment [45]. Longitudinal work has also shown that self-regulation skills help students transition

into college [46], and children who self-regulate have lower rates of criminal behavior and bet-

ter health outcomes as adults [29,47].

Because children with exposure to poverty and poverty-related stressors are at greater risk

for more self-regulatory difficulty [48,49], CSRP specifically targeted self-regulation as a way

to provide children with a skill that could substantially alter their long-term school experi-

ences. Previous research suggests that self-regulation skills are key in shaping children’s early

school relationships with peers and teachers [50,51], and children’s early behavioral problems

have been implicated as a likely cause of low childcare quality in Head Start centers [52]. Pre-

school teachers working in low-resource areas are often ill-equipped to deal with the trauma-

related behavioral challenges facing children living in impoverished neighborhoods [53], and

this lack of training can lead to punitive and coercive behavioral management strategies that

may actually exacerbate children’s early behavioral problems [54]. Observational work has also

shown that teachers in high-poverty classrooms spend a disproportionate amount of time on

behavioral management, taking away crucial time for academic instruction, which may be par-

ticularly important for supporting the academic achievement of low-income populations [55].

Thus, by providing teachers with better behavioral management strategies, CSRP was designed

to bolster students’ self-regulation skills, while also improving the quality of the classroom

environment by supporting the relationships between teachers and children.

Finally, the program also directed services directly at Head Start teachers, with the under-

standing that teaching in Head Start centers serving communities in high-poverty and high-

crime areas could lead to substantial stress and burnout [53,56]. The lack of training and sup-

port given to teachers working in severely under-resourced communities has been shown to

lead to high rates of teacher turnover, and the low-pay afforded to teachers also makes them

less likely to access mental health services for their own psychological wellbeing [57,58]. As

such, CSRP provided teachers with access to mental health consultants (MHC), who con-

ducted several stress-reduction workshops throughout the year. The MHC’s each held a mas-

ter’s degree in social work, and they visited the classroom weekly for a period spanning 4

months to help teachers implement the behavioral management strategies introduced during

the student-focused professional development sessions. MHC’s also provided direct interven-

tion services to 3 to 4 children per class. These children had been flagged as having especially

severe behavioral or emotional problems, and they were given the opportunity to meet with

MHC’s for either individual or group therapy sessions.

Thus, the CSRP program offered a fairly comprehensive approach to improving the quality

of the Head Start environment as it targeted both student behavioral and emotional regulation

as well as teacher psychological stress and burnout. Initial evaluations suggested that the pro-

gram was implemented with a high degree of fidelity, and analyses of classroom observational

measures indicated that CSRP teachers provided Head Start children with significantly better-

managed and more emotionally supportive classrooms when compared with teachers in the

control condition [3]. Further, the program affected a broad set of child-level competencies

measured at the end of preschool, with evaluations reporting that the program reduced chil-

dren’s behavioral problems (ds = 0.53–0.89) [4] and boosted children’s EF, reading, language,

and math skills (ds = 0.20–0.63) [5].

This initial evaluation work suggested that through changing the quality of the classroom,

and through improving children’s interactions with their teachers, the CSRP boosted measures
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of self-regulation and also positively affected children’s academic school readiness skills. It was

hypothesized that these initial benefits would produce long-lasting impacts on children’s cog-

nitive and socio-emotional trajectories, but follow-up work was mixed and inconclusive. Evi-

dence of fadeout on child measures of behavioral regulation and academic achievement was

found in the early years of elementary school [59], though there was some indication that chil-

dren who attended higher-quality elementary schools may have had longer-lasting interven-

tion benefits. Similarly, a recent follow-up study employed a mixed growth curve modeling

approach, and found that the treatment may have caused reductions in the likelihood of fol-

lowing an increasing trajectory of internalizing behavioral problems during elementary school

[60], but these effects were relatively small and for only a subset of children. Unfortunately,

these prior follow-up studies lacked the broad set of measures used at the end of preschool,

making this study the first complete attempt to understand the long-term impacts of the CSRP

intervention on the full set of developmental domains originally hypothesized to be affected.

Current study

In the current study, we analyzed newly-collected measures of adolescent functioning, col-

lected 10 to 11 years after children first participated in the CSRP intervention. These data

allowed us to test whether the CSRP program had long-term effects on indicators of children’s

executive function, academic achievement, behavioral problems and emotional regulation. We

selected this set of measures because it closely reflected the set of measures first used to assess

program efficacy at the end of preschool [4,5], and because these measures have been shown to

be important indicators of adolescent wellbeing [61,62] and critical predictors of adult attain-

ment [29].

Based on theoretical and empirical work that has shown that the early acquisition of self-

regulation and academic achievement skills support children’s long-term cognitive and socio-

emotional development [34,29], we expected that the CSRP would have positive impacts on

measures of adolescent executive function and achievement, and we also expected that adoles-

cents assigned to the treatment group would have less behavioral problems and a greater

capacity for regulating emotion. However, our expectations were tempered by work showing

fadeout in the years following early intervention [20], and given the paucity of early interven-

tions with long-term follow-up, we had no strong prediction for the effect sizes that we might

detect.

Method

Ethics statement

All research procedures and protocols including participant recruitment materials were

reviewed and approved by the University Committee on Activities Involving Human Subjects

at New York University. Parents of participating subjects provided consent and all participat-

ing children and adolescents provided verbal assent.

Study design

The CSRP program was evaluated through a cluster-randomized design, and Head Start sites

were recruited based on four criteria: 1) receipt of federal Head Start funding; 2) having two or

more classrooms that offered full-day classes; 3) location in a set of high-poverty Chicago

neighborhoods that contained high crime rates, low rates of mobility, and a substantial portion

of families living below the poverty line; 4) completion of a screening self-nomination proce-

dure [3]. The recruitment process led to 18 Head Start centers participating in the study, with
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centers grouped into pairs based on a set of 14 site-level characteristics. Within these pairs,

which we subsequently refer to as “blocking groups,” sites were randomly assigned to either

treatment or control, and treatment sites implemented the CSRP intervention program

described above. Control sites continued “business-as-usual,” but classrooms in control sites

were provided with part-time teaching aides to account for the changes in student-to-teacher

ratio brought on by MHC’s in treatment sites. The program was implemented for two different

cohorts of students and teachers, with Cohort 1 participating in 2004–2005 (57% of the sam-

ple) and Cohort 2 participating in 2005–2006.

Two classrooms from each of the 18 Head Start sites were selected for study participation,

and evaluators successfully recruited 83% of students from these classes to participate in data

collection (student n = 602). During the school year, one classroom in the control condition

lost Head Start funding due to budget cuts, which resulted in 35 total classrooms participating

in the study. At the beginning of the preschool year (i.e., baseline), information regarding the

child’s family and home environment was obtained via parent survey, and children’s cognitive,

behavioral and emotional functioning were measured via direct assessment. Observers blind

to treatment status also rated the quality of the classroom environment at baseline, and teach-

ers responded to surveys that measured their professional and educational experiences, as well

as their perceptions of their classroom and school environment. Teachers were also surveyed

regarding the behavioral problems of each child participating in the study. In the spring, teach-

ers again evaluated children’s behavioral problems, and study examiners again assessed chil-

dren’s mathematics, literacy, attention and executive functioning via direct assessment (i.e.,

post-treatment outcomes).

The participants of the study have been followed into adolescence, and the current study

reports on data collected during the 2015–2016 school year, which occurred 11 years after the

treatment year for Cohort 1 and 10 years after the treatment year for Cohort 2. By the 2015–

2016 follow-up year, 466 adolescents remained in the study (236 in the treatment group and

230 in the control group), and this 23% rate of attrition did not statistically significantly differ

between the groups (p = 0.51). At the time of the assessment, approximately 70% of partici-

pants were in high school, and 30% of the sample remained in middle school. This grade-level

difference was largely due to the 2 cohort design of the study, though grade repetition and the

substantial variation in student age at baseline (M = 4.1 years, SD = .65, range: 2.15–6.08) also

contributed.

Intervention

Recall that the CSRP program consisted of 4 key components: 1) professional development to

improve teacher behavior management strategies in support of children’s self-regulation; 2)

MHC classroom visits to assist teachers in implementing the behavioral management pro-

gram; 3) MHC’s provision of stress reduction workshops; 4) MHC services targeted at children

identified as having especially severe emotional and behavioral issues. The intervention lasted

30 weeks, with MHC support occurring throughout the intervention. Full intervention details

have been described in previous reports [3–5]. Here, we provide a brief overview of key pro-

gram features.

Professional development. Teachers in the treatment group were provided with 5 profes-

sional development sessions staggered throughout the fall and winter months of school year,

each lasting approximately 6 hours. These sessions were based on the Incredible Years Teacher

Training Program [63], and teachers were given new strategies to help reduce children’s chal-

lenging behavioral problems and to support positive, self-regulated behavior. For example,

teachers were provided with video exemplars of being on the lookout for the opportunity to
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reward and praise prosocial behaviors among children whom they viewed as behaviorally diffi-

cult or misbehaving. This strategy of “catching your student being good” was demonstrated to

staff as a way to break a coercive cycle of dysregulation and negative teacher attention using

concrete examples, simple steps and discussion. Sessions were led by licensed clinical social

workers, and MHC’s also attended each session to help foster better relationships between

MHC’s and study teachers.

Mental health consultants. The MHC’s were master’s level social workers who were

required to have experience working with high-risk families in early childhood educational

settings. MHC’s were recruited such that they had cultural match with teachers and children

in the Head Start centers, and most spoke Spanish and English. In the fall and early winter

months of the school year (i.e., the first third of the 30-week intervention), the MHC’s first

served as coaches and aides to teachers in their efforts to implement the behavioral manage-

ment program in the classroom, and MHC’s visited treatment classrooms to provide interven-

tion coaching. During mid-winter of the school year (i.e., the second third of the 30-week

intervention), MHCs held a stress reduction workshop for teachers at each site, and they also

met one-on-one with teachers to discuss job-related stressors and provide strategies for miti-

gating burnout. Finally, during the last 10 weeks of the intervention, MHC’s worked directly

with approximately 3 to 4 children per class who had been identified by teachers and MHC’s

as needing individual attention for issues relating to behavioral and emotional dysregulation.

Follow-up measures

In Table 1, we present each follow-up measure collected next to the analogous outcome mea-

sure collected at the end of preschool. This table hilights the conceptual link between the origi-

nal outcomes assessed and the outcomes considered in the current paper. Unfortunately, we

were not able to collect as many measures for each construct as was originally collected at the

end of preschool, but as with the end-of-preschool assessments, our follow-up indicators were

also measured through both direct assessment and survey. We describe each follow-up mea-

sure collected during adolescence in detail below, and we provide information regarding the

original end-of-preschool measures in the supplementary materials (S1 Appendix).

All follow-up measures were completed as part of a 60- to 90-minute computerized assess-

ment battery programmed using Inquisit 4.0.8, a psychological measurement software capable

of being tailored to execute various types of assessments [65]. The Inquisit software was

Table 1. List of measures used in end-of-preschool evaluations and the current paper.

Construct End-of-Preschool Measure Adolescent Measure

Executive Function PSRA—Balance Beam Hearts and Flowers

PSRA—Pencil Tap

Emotional Regulation PSRA—Assessor Report Emotional Go No Go

Academic Achievement Peabody Picture Vocabulary Test Self-Reported GPA

Letter Naming Task

Early Math Skills assessment

Behavioral Problems Behavior Problems Index Risks & Strengths(a)

Caregiver-Teacher Report Form

Penn Interactive Peer Play Scale

Note. The PSRA stands for the Preschool Self-Regulation Assessment [64], and all end-of-preschool measures are

described at length in the original evaluation reports [4,5], and we provide a brief description in the supplementary

material (S1 Appendix).

https://doi.org/10.1371/journal.pone.0200144.t001
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programmed to include measures of executive function, emotional regulation, and behavioral

problems into the battery. The battery was then presented on HP Stream 11.6-inch notebooks.

Programming the battery into laptops allowed participants to be assessed across a range of

accessible settings. The battery was administered to participants in the Chicago metropolitan

area by trained assessors at school or at home, depending on participants’ and schools’ avail-

ability. Out-of-area participants were guided to install and complete the battery on their own

computers by trained assessors over the phone or web conference.

Executive function. The Hearts and Flowers task (H&F; originally called the “Dots Task”)

was used as the primary measure of adolescent executive function [66], as the assessment taps

working memory, cognitive flexibility, and inhibitory control [67]. The task asks students to

respond to stimuli presented on a screen, and as the task progresses, students are forced to jug-

gle an increasingly difficult set of demands that place stress on their attention and inhibitory

control [67]. The task has been used as an overall measure of executive function during adoles-

cence [68], and it has been shown to be a valid measure of executive function as task perfor-

mance correlates strongly with other measures of working memory and inhibitory control

[69].

This measure was the first task in the computerized assessment battery, and children were

instructed to respond to the presentation of stimuli on the screen by pressing a key (“Q” or

“P”). Stimuli took the form of either hearts or flowers, and they appeared in succession on

opposite sides of the screen. When presented with a heart, students were told to press on the

same side as the stimulus (“Q” when displayed on the left, “P” when on the right), and when

presented with a flower, they were instructed to press on the opposite side (“P” when displayed

on the left, “Q” when on the right). Adolescents were given practice trials, and the task began

with a series of 12 “hearts only” (congruent) trials, followed by 12 “flowers only” (incongruent)

trials. In the final block, adolescents were presented with 33 “mixed trials” including both

hearts and flowers stimuli, which substantially increased the difficulty of the task.

In the current study, Hearts and Flowers stimuli were randomly presented on the right or

left side for an equal number of trials in each block, and the task took approximately 2 minutes

to complete. When interpreting student performance on the task, we focused on mixed block

performance, as this has been shown to pose the greatest challenge through the cognitive

demand of switching mindsets [69,70]. We used the proportion of correct responses (i.e., the

number of trials with a correct response divided by the total number of trials) during mixed

block as a measure of working memory, cognitive flexibility and inhibitory control. We also

used mean reaction time on mixed trials minus mean reaction time on “hearts only” trials (i.e.,

the easiest trials) as a measure of the effect of increased cognitive demand on basic processing

speed. These two measures are commonly derived from the H&F task, and the H&F task has

been used in other early childhood intervention evaluations [66].

Academic achievement. We used self-reported GPA as our primary measure of adoles-

cent academic achievement. Students responded to the question “How would you describe

your grades in school,” and they were given the following set of options: “mostly A’s,” “mostly

B’s,” “mostly C’s,” “mostly D’s,” “mostly F’s,” “none of these grades,” and “not sure.” We

coded “none of these grades” and “not sure” responses to missing, and set the remaining

options to a 4-point GPA scale (e.g., “mostly A’s” was coded as “4” etc.).

Although we hoped to model outcomes on measures of GPA taken from district offices,

administrative data were missing for most students. For the 172 students that had both self-

reported GPA and district-reported GPA, these two measures of student grades had a 0.67 cor-

relation. For the 172 students with both forms of data, we found no differences in reporting

accuracy between the treatment and control group. We found that a minority of students

(n = 19) reported “mostly F’s” or “mostly D’s” despite having administrative records showing
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grades closer to a “C” average. We then recoded these 19 outlier cases to a “C” average, which

provided a small improvement to the correlation between self-reported GPA and district-

reported GPA (r(172) = 0.68). Thus, our final measure of self-reported GPA was on a 2 to 4

scale, which essentially created a measure with “low,” “middle,” or “high” categories. In the

supplementary material (S2 Appendix), we describe our analytic efforts to validate the self-

reported measure with the administrative data available, and we describe models that tested

whether our main GPA findings were sensitive to our decision to recode the 19 “mostly F’s”

and “mostly D’s” cases to “mostly C’s” (results did not substantively differ based on this recod-

ing choice).

Behavioral problems. Internalizing and externalizing behaviors were measured through

student self-report on the Risks and Strengths Scale, an adapted version of the Children’s

Health Risk Behavior Scale [71], which was administered as the third task in the computerized

assessment battery. On the internalizing subscale, students responded “yes” or “no” to items

asking whether they felt safe, felt bad or scared due to how a peer or adult was treating them,

felt unhappy, sad, or depressed, felt worthless or inferior, or felt that they had been crying too

much. Similarly, students responded either “yes” or “no” to items on the externalizing sub-

scale, which asked whether or not students had been involved in a physical fight, had gone out

with or kissed a boy or girl, had a strong temper, were impulsive, or tried to break or destroy

something. Internalizing and externalizing outcome variables were calculated by averaging

scores for the items within each subscale. Thus, scores on the measures represent the propor-

tion of times a student indicated that they engaged in either externalizing or internalizing

behaviors. Both subscales were reliable measures for our sample, with a Cronbach’s alpha of

.74 for internalizing and .67 for externalizing.

Emotional regulation. Our measure of adolescent emotional regulation was the Emo-

tional Go/No Go task (EGNG) [72]. Given the emotional changes and instability associated

with adolescence [73], it was important to administer a measure that could tap into inhibitory

control skills specifically in the face of emotional stimuli. The EGNG task has been validated

alongside neuroimaging techniques to display associations between task performance and

neurological activity known to play a role in emotional processing [74,75]. The measure is

designed to illuminate whether children recognize emotionally expressive faces, and whether

the presence of an emotionally expressive face distracts them from focusing on a cognitively

challenging task.

In the current study, EGNG was administered as the second task in the computerized

assessment battery, and much like the Hearts and Flowers task, it contained trials in which

adolescents were presented with stimuli and asked to press a button in response to a stimulus.

Stimuli consisted of faces in the center of the screen displaying either happy, sad, angry, or

neutral emotions. In each block, neutral faces and faces of one other emotional type were dis-

played. Before each block, instructions asked participants to respond by pressing the spacebar

to either the emotional or neutral faces (“Go” trials), and to withhold responses to the other

type of face (“No Go” trials). In addition to a practice block, the task consisted of 6 test blocks

—3 Emotional (Happy, Angry or Sad) “Go” versus Neutral “No Go” blocks, and 3 Neutral

“Go” versus Emotional “No Go” blocks. Block order was randomized. Each block contained

21 (70%) “Go” response trials and 9 (30%) “No Go” no-response trials. The 70% to 30% Go/

No Go trial ratio was implemented to prime participants to respond, making it more difficult

for participants to inhibit responding, thus assessing their ability to regulate in response to

emotional versus neutral stimuli. Each trial consisted of a 500ms pre-trial pause followed by a

1 second response window, during which the stimulus was presented for 500ms before a

500ms blank screen. The task contained a total of 180 test trials, taking about 6 minutes to

complete.
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Our analyses focused on measures of performance taken from the four blocks in which par-

ticipants viewed “Angry vs. Neutral” and “Sad vs. Neutral” faces. The data for this task were

organized along three dimensions: hit rate, false alarm rate, and reaction time. Hit rate was the

proportion of “Emotion Go” trials answered correctly. For example, “Angry Hit Rate” would

be the proportion of trials correctly answered during the “Emotion Go- Angry vs. Neutral”

block. False alarm rate was the proportion of “Emotion No Go” trials answered incorrectly

(e.g., “Angry False Alarm Rate” would measure the proportion of times a participant

responded to angry faces when instructed to respond to neutral faces). Reaction time was a

measure of processing speed to emotional stimuli, and it was calculated as the average reaction

time on correct hits during “Emotion Go” trials. These three dimensions have been leveraged

to understand the role of emotional response inhibition in other low-income samples of chil-

dren [76].

For “Angry” and “Sad” trials, we then calculated two measures of performance for our treat-

ment impact analyses. The first was D-prime, which has been treated as the primary measure

of emotion regulation in previous analyses of EGNG [72], and it was calculated as the stan-

dardized difference between emotion-specific hit rate and false alarm rate (e.g., “Angry

D-Prime” was calculated as the difference between “Angry Hit Rate” (standardized) and

“Angry False Alarm Rate” (standardized)). Finally, as with Hearts and Flowers, we calculated

respective measures of adjusted reaction time, which were calculated as reaction time during

“Emotion Go” trials for either angry or sad faces minus reaction time during happy “Emotion

Go” trials.

Baseline measures

In the supporting information (S3 Appendix), we present a complete list of all baseline mea-

sures included in our treatment impact analyses. These characteristics, all assessed in the fall of

the Head Start year, have been described at length in previous reports [4,5]. Here, we present a

brief overview of each measure.

Child demographic covariates. Child-level demographic characteristics used in the anal-

ysis were collected from parents, Head Start site directors, and children themselves, and these

characteristics included gender, age at preschool entry, and child ethnicity (White, African

American, Hispanic, multiracial, or other).

Family/Parent covariates. Upon signing the CSRP consent form for his or her child, the

parent or guardian completed a demographic interview. Family and parent characteristics

used in the analyses included covariates related to family size, government assistance/support,

immigrant status, parent employment, education, marital or partnership status, if the parent

was African American or Hispanic, and the biological parent’s contact with the child. Income

was represented via an income to needs ratio, calculated as the total family income from the

previous year divided by that same year’s federal poverty threshold.

Child baseline skills and behavior. Children’s self-regulatory skills and pre-academic

skills were collected individually by a group of master’s level assessors who were blind to the

treatment status of the children. Measures of executive function and effortful control were col-

lected using the Preschool Self-Regulation Assessment (PSRA) [64], which involved direct

assessment of children’s performance levels or latencies on lab-based tasks that were adapted

for field administration using paper, pencils, digital timers, and other materials. Executive

function was measured with the Balance Beam task [77] and Pencil Tap [78]. Effortful control

skills were measured using four delay tasks: Toy Wrap, Toy Wait, Snack Delay, and Tongue

Task [77]. Children’s performance across the executive function tasks and the effortful control

tasks were standardized and then averaged into two composites. The 28-item PSRA Assessor

Long-term impacts of CSRP

PLOS ONE | https://doi.org/10.1371/journal.pone.0200144 July 12, 2018 10 / 25

https://doi.org/10.1371/journal.pone.0200144


Report captured global dimensions of children’s impulsivity, attention, and emotions. Two

factors representing Attention/Impulse Control and Positive Emotion emerged from the full

report, with the Attention/Impulse Control subscale reliably representing children’s self-regu-

lation (internal consistency of α = 0.92).

Children’s vocabulary skills were assessed using the 24-item Peabody Picture Vocabulary

Test (PPVT) [79,80] if they spoke English, and the Test de Vocabulario en Imagenes Peabody

(TVIP) [81] if they were Spanish-proficient or bilingual. Children’s pre-academic skills were

measured via an assessment developed for Head Start that included tests of both letter naming

and early math ability [82]. With the letter-naming task, letters of the alphabet were arranged

in approximate order of item difficulty, and children were asked to name each letter presented.

The early math skills portion of the assessment contained 19 items that covered children’s

mastery of counting and basic operations [82].

Children’s behavior problems were rated in the fall by teachers and teaching assistants

using the Behavior Problems Index (BPI) [83], a 28-item scale modified for use by teachers.

Items were summed into internalizing (α = 0.80) and externalizing (α = 0.92) subscales, and

children’s scores were averaged across the child’s teacher and TA. Parents also reported their

children’s behavior using the BPI, and ratings of internalizing and externalizing problems

from both teachers and parents are included in this analysis.

Classroom/Teacher-level covariates. Head Start teacher characteristics were assessed

through teacher report and observer ratings in the fall. Teachers reported on their age, level of

education, and on several psychosocial characteristics that may influence their perception of

their students’ behavioral difficulty. Teachers completed the 6-item K6, a scale of psychological

distress [84], the 6-item Job Demands, and the 5-item Job Control subscales of the Child Care

and Early Education Job Inventory [85]. These variables were averaged across all teachers in

the classroom.

Classroom quality was collected with observational measures in the fall using four subscales

of the Classroom Assessment Scoring System (CLASS) [86] and the Early Childhood Environ-

ment Rating Scale–Revised (ECERS-R) [87]. The CLASS was used to measure teacher sensitiv-

ity, positive climate, negative climate, and behavior management. Finally, class size and

number of adults in the class were also added as covariates.

Analytic approach

We hypothesized that the CSRP intervention would have impacts on our measures of executive

function, academic achievement, behavioral problems, and emotional regulation. To test our

hypotheses, we began by regressing each dependent variable on treatment status and a series of

blocking group fixed effects:

Outcomeij ¼ a1 þ b1Txij þ
P9

j¼1
pBlockj þ eij 1

where Outcomeij represents a respective measure of adolescent executive functioning, aca-

demic achievement, behavioral problems, or emotional functioning for the ith child in block-

ing group j and Txij represents the treatment status dummy indicator (coded “1” for treatment

and “0” for control). We included a series of blocking group fixed effects to account for the

cluster-randomized design of the study, and including the series of blocking groups also con-

trols for cohort status, as each block was either in cohort 1 or cohort 2. In this equation, β1 rep-

resents the treatment impact, which will be unbiased only if the error term, eij, is uncorrelated

with treatment assignment. In other words, our treatment effect estimate would only be unbi-

ased if random assignment produced groups completely balanced on observable and unob-

servable characteristics.
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Because we found evidence of differences between the treatment and control group at base-

line (see further description below), we rely on regression models that include covariates for

the host of characteristics assessed during the fall of the Head Start year:

Outcomeij ¼ a1 þ b1Txij þ
P9

j¼1
pBlockj þ wChildij þ lFamilyij þ OTeacherij þ eij 2

where Outcomeij and Txij are defined as before, but Childij, Familyij, and Teacher ij represent

sets of controls for child, family, and teacher characteristics all assessed at baseline (see S4

Appendix for complete list). For Eq 2, β1 will capture the unbiased treatment effect if the base-

line control variables account for all observed and unobserved baseline differences between

the treatment and control groups.

The estimates generated by Eq 2 represent our preferred estimates, as these estimates take

into account the cluster-design of the study by controlling for blocking group, and they also

represent the best attempt to adjust for differences present at baseline by including covariates.

With this regression model, we include the full set of baseline covariates in order to generate

the most precise estimates possible and to control for any unmeasured source of confounding

that could be correlated with measured observables [88,89]. Further, we adjusted standard

errors for site-level clustering using the Huber-White adjustment in Stata 15.0, and we used

multiple imputation to account for all missing data on baseline covariates. For multiple impu-

tation, we generated 25 multiply imputed datasets using the multivariate normal regression

procedure in Stata 15.0 [90].

We also present results from supplementary analyses described below, including estimates

that were generated by regression models that adjusted for study attrition, and we provide a

host of sensitivity checks in the supplementary information files to ensure that results were not

generated due to idiosyncratic features of the statistical models we chose to adopt.

Data sharing

An anonymized version of the dataset used for the current paper has been made available at

datadryad.org (INSERT FINAL WEBSITE URL HERE). The data have been posted along with

two additional files: 1) a “readme” explaining the variables contained within the dataset; 2) a

file containing the Stata 15.0 syntax that was used to generate the results tables shown in the

main text and supplementary material.

Results

Baseline equivalence

We began by evaluating baseline equivalence on each measure collected at the beginning of

preschool. In Table 2, we present a selection of the pre-treatment measures available to provide

a sense of the similarities and differences between the treatment and control groups at baseline,

and in supplementary material (S3 Appendix), we provide the complete list of all baseline

covariates included in our treatment impact models. Following the recommendations of

CONSORT 2010 [see description by de Boer and colleagues, 89], we do not present p-values

measuring differences between each individual characteristic. Rather, we focus on describing

the general pattern of differences between the groups, and the F-statistic in Table 2 provides

an overall measure of the degree to which the groups differed.

In general, we found that the groups were quite similar on most variables measuring demo-

graphic, parent, and home environment characteristics. However, measures of child baseline

skills (e.g., executive functioning, math) tended to favor the treatment group, while measures

of the preschool classroom environment (e.g., observed classroom quality) tended to favor the
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control group. Reflecting these differences, the F-test indicated that across all characteristics

assessed at baseline, the treatment and control group significantly differed (p< 0.001). Thus,

although the treatment program was randomly assigned, the site-paired blocking procedure

was still unable to ensure perfect balance on all observable characteristics assessed. This was

likely due to the relatively small number of clusters, and the high degree of variability between

Head Start sites participating in the study. In the supplementary file, we present selected site-

level characteristics in S4 Appendix, which further illustrates the inter-site variation (e.g., the

number of children enrolled for services at the site varied from 20 to 576).

Treatment impacts

Table 3 contains descriptive information for the outcome variables used in the treatment

impact analyses, including the mean, standard deviation, and range of each variable. Scores

on the Hearts and Flowers measure reflect a moderate degree of accuracy on the mixed trials

task, as students correctly completed approximately 66% of trials (ranging from 6% to 100%

accuracy). The mean self-reported GPA across groups was 2.8, reflecting a “C” average, and

scores on the internalizing and externalizing measures both indicated a moderate degree of

Table 2. Selected baseline characteristics.

Treatment Control

Demographic, Parent and Family Characteristics
Female 0.49 0.58

Age (years) on Jan 1 during prek 4.93 4.96

African American 0.67 0.64

Hispanic 0.28 0.27

Bi-racial or Other 0.04 0.04

Income to Needs Ratio 0.66 0.71

Number of children in the home 2.59 2.71

Food Stamps 0.54 0.50

Free lunch 0.52 0.57

Bio Parent Sees Child Everyday 0.43 0.48

Married/Remarried 0.18 0.26

Parent has savings 0.66 0.57

Child Baseline Skills
Executive functioning (standardized) 0.01 -0.16

Math 7.33 6.77

PPVT 10.48 9.91

Classroom and Teacher Characteristics
Teacher age 37.38 43.29

Teacher depression (K6 score) 3.16 1.91

Teacher job demand 2.88 2.54

Teacher behavioral management 4.58 5.16

Classroom overall quality 4.46 4.97

F (53, 10.3) = 58.42, p < 0.001

Number of Observations 308 294

Note. Descriptive characteristics for the full set of baseline covariates are presented in the supplementary information

file (S3 Appendix). The F-statistic was generated by regressing treatment status on all baseline measures, and testing

whether all baseline measures jointly statistically significantly differed from 0.

https://doi.org/10.1371/journal.pone.0200144.t002
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behavioral problems, as students indicated engagement with internalizing behaviors on

approximately 30% of the items presented, and indicated engagement with externalizing

behaviors on approximately 52% of the items presented.

Finally, the EGNG descriptive information suggests that students had some difficulty in

responding accurately to Angry and Sad trials. Recall that the D-Prime scores were standard-

ized across all blocks for each student, and a D-Prime score of “0” would indicate that students

had an equal proportion of errors and correct responses when viewing emotional faces. Across

the Angry and Sad trials considered here, D-Prime ranged from -1.31 to 3.57, with average

performance hovering around a mean of approximately 1.4.

As Table 3 reflects, we observed few mean differences between treatment and control across

the unadjusted long-term follow-up measures. However, the impact models described below

show that treatment effects were detectable once adjustments for baseline differences were

taken into account. Table 4 presents our treatment impact estimates on the set of long-run out-

comes, and all outcomes were standardized, so coefficients can be interpreted as effect sizes. In

Column 1, we present results from regression models that only included the blocking group

fixed effects to adjust for the cluster-design of the study. In Column 2, we added all baseline

covariates shown in S3 Appendix to adjust for differences observed between the groups at the

time of random assignment. By comparing the unadjusted estimates shown in Column 1 to

the estimates adjusted for baseline differences shown in Column 2, we can better understand

how baseline differences between the treatment and control group might have affected the esti-

mated treatment impacts.

Beginning with H&F, our measure of executive function, we predicted that assignment to

the treatment group would positively affect performance on the H&F measure, and we found

some support for this hypothesis. With no covariates included, the treatment impact on H&F

accuracy was positive, but not statistically significant (ß = 0.14, SE = 0.08), but this effect grew

larger when covariates were added, as our fully-controlled regression model indicated a mar-

ginally statistically significant effect of 0.18 (SE = 0.09, p = 0.08). We found no indication of

treatment and control differences on H&F reaction time.

For self-reported GPA, we again predicted a positive treatment effect for the CSRP group,

and we again found some support for this hypothesis. With no adjustment for baseline differ-

ences, we found a treatment effect close to 0 on GPA (ß = 0.06, SE = 0.90), but this effect grew

Table 3. Descriptive characteristics for adolescent outcome measures.

N Treatment Control

M SD Min Max M SD Min Max

Executive Function (H&F)
Mixed Trials Accuracy 460 0.67 0.19 0.06 1 0.65 0.19 0.06 1

Mixed Trials Reaction Time (Adjusted) 459 187.46 98.29 -195.29 392.67 181.83 104.92 -205.60 362.98

GPA (self-reported) 418 2.86 0.73 2.00 4.00 2.85 0.75 2.00 4.00

Behavioral Problems
Internalizing 461 0.30 0.28 0 1 0.27 0.28 0 1

Externalizing 461 0.53 0.29 0 1 0.52 0.31 0 1

Emotional Regulation (EGNG)
Angry D-Prime 447 1.47 0.85 -0.88 3.57 1.55 0.83 -0.94 3.57

Angry Reaction Time (Adjusted) 445 32.94 46.71 -164.13 183.16 38.29 47.44 -138.00 173.63

Sad D-Prime 447 1.35 0.83 -1.31 3.57 1.41 0.86 -1.16 3.26

Sad Reaction Time (Adjusted) 445 37.90 43.72 -73.30 222.58 39.98 42.04 -82.27 159.85

Note. All descriptive characteristics shown were generated from non-imputed data, and the “N” column reflects the number of non-missing cases on each measure.

https://doi.org/10.1371/journal.pone.0200144.t003
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to a statistically significant effect of 0.19 (SE = 0.09, p< 0.05) once baseline differences were

taken into account. Because GPA is measured on an ordinal scale, we also investigated ordinal

logistic regression models to ensure that our GPA effect was not sensitive to the assumptions

of linear regression. When controls were taken into account, we again found a statistically sig-

nificant treatment impact (log-odds coefficient = 0.40, SE = 0.20, p< 0.05), and post-hoc mar-

ginal effects tests revealed that this impact was consistent throughout the GPA distribution.

We predicted that the treatment would lower self-report scores on our measures of exter-

nalizing and internalizing, but our models largely failed to detect differences between the treat-

ment and control groups on these measures. When baseline differences were taken into

Table 4. Impacts of the Chicago School Readiness Project on adolescent outcomes.

No Controls Full Controls Full Controls/ Attrition Adjusted Full Controls/ Site Characteristics

(1) (2) (3) (4)

Executive Function (H&F)
Mixed Trials Accuracy 0.138 0.176+ 0.204+ 0.042

(0.081) (0.094) (0.100) (0.144)

Mixed Trials Reaction Time (adjusted) 0.072 0.010 0.001 0.053

(0.057) (0.078) (0.103) (0.134)

Self-reported GPA 0.06 0.192� 0.195 0.446��

(0.090) (0.087) (0.107) (0.139)

Behavior Problems
Internalizing 0.079 -0.025 -0.033 -0.025

(0.053) (0.113) (0.112) (0.140)

Externalizing 0.028 -0.119 -0.116 0.221

(0.098) (0.112) (0.131) (0.156)

Emotional Regulation (EGNG)
Angry D-Prime -0.089 -0.159 -0.143 -0.140

(0.079) (0.106) (0.106) (0.123)

Angry RT (adjusted) -0.094 -0.319��� -0.313� -0.117

(0.075) (0.076) (0.114) (0.168)

Sad D-Prime -0.028 -0.095 -0.064 -0.215

(0.061) (0.103) (0.127) (0.157)

Sad RT (adjusted) -0.025 -0.238� -0.231+ -0.199

(0.029) (0.084) (0.109) (0.135)

Baseline Covariates Included
Blocking Group Inc. Inc. Inc.

Demographic, Family and Parent Characteristics Inc. Inc. Inc.

Child Baseline Skills and Behavior Inc. Inc. Inc.

Classroom/Teacher Characteristics Inc. Inc. Inc.

Note. Robust standard errors were adjusted for site-level clustering in preschool and are presented in parentheses, and “Inc.” is used to denote when a particular set of

control variables was included in a given regression model. All outcome variables were standardized, so coefficients can be interpreted as effect sizes. Multiple

imputation (25 imputed datasets) was used to account for missing data on control variables. In Columns 1, 2, and 4, only non-missing cases on each outcome variable

were considered, so sample sizes for each respective measure reflect the sample sizes listed in Table 3. In Column 3, we estimated a separate set of 25 multiply imputed

datasets that included imputation on the outcome variables, so each regression model shown in Column 3 included the full sample size (n = 602).

+ p<0.10

� p< 0.05

�� p < 0.01

��� p < 0.001

https://doi.org/10.1371/journal.pone.0200144.t004
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account, we observed that adolescents in the treatment group had lower externalizing scores

by about 1/10th of a SD, but this effect was far from statistically significant.

Finally, we predicted that the treatment group would show a greater capacity for emotional

regulation on the EGNG measure, but our findings suggested a more complex pattern of

results. Estimates that included adjustments for baseline differences produced statistically sig-

nificant impacts on both measures of reaction time, as treatment students had lower adjusted

reaction times when viewing angry (ß = -0.32, SE = 0.08, p< 0.001) and sad (ß = -0.24,

SE = 0.08, p< 0.05) faces relative to neutral faces. These results indicate that the treatment

group may have exhibited heightened sensitivity to negative emotion, as students in the treat-

ment group responded more quickly when faced with an emotionally expressive face. Interest-

ingly, we also found negative, though not statistically significant, point estimates on both the

Angry D-Prime and Sad D-Prime measures, indicating that the treatment group may have also

had some difficulty with accuracy on the measure.

Supplemental results

In the following section, we describe results from alternative statistical models that were pur-

sued in order to confirm the reliability of the results reported in Table 4. We pursued these

additional tests to examine whether our results were sensitive to statistical modelling decisions

that could be viewed as arbitrary (e.g., using multiple imputation to adjust for missing data on

baseline covariates instead of full information maximum likelihood) and to examine potential

threats to the validity of our results due to study design shortcomings (e.g., attrition).

Attrition. Study attrition can potentially bias treatment impact results if attrition differen-

tially affects the composition of the treatment or control group. Although we observed that the

23% attrition rate did not differ between the treatment and control groups (p = 0.51), we also

investigated whether other baseline characteristics predicted attrition out of the study sample.

In S6 Appendix, we present results from a linear probability regression model in which the

probability of leaving the sample was modeled as a function of treatment status, blocking

group, and the full set of baseline covariates. With this regression model, we again found that

treatment status was not statistically significantly related to the probability of leaving the sam-

ple (p = 0.18), and we observed only one statistically significant predictor of attrition among all

the baseline covariates investigated: children of parents who graduated from high school were

more likely to leave the sample (ß = -0.12, SE = 0.05, p< 0.05). We also examined bivariate

correlations between attrition and baseline covariates, and again found limited evidence that

students who did and did not leave the sample systematically differed. These results indicated

that differential attrition probably had little effect on the study results.

However, to further test the possible effect of study attrition, we replicated our main treat-

ment impact results from Column 2 of Table 3 using 25 multiply imputed datasets that

included imputation for the outcome variables of interest. In effect, these regression models

use the baseline data to predict what students’ scores might have been had they remained in

the sample. In Column 3 of Table 4, we present the results from these fully-controlled regres-

sion models that adjusted for attrition effects, and results were quite similar to the results

shown in Column 2, again indicating a minimal impact of study attrition.

Site characteristics. In the original end-of-preschool treatment impact evaluations [4,5],

impact estimates were derived from models that included controls for site characteristics, but

did not include controls for the blocking group fixed effects. This approach has been criticized

for not fully taking the clustered design of the study into account [91], which is why our pre-

ferred estimates in Column 2 include the blocking group fixed effect. However, in Column 4

of Table 4, we present estimates derived from models that included site characteristics without
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blocking group fixed effects to provide estimates comparable to those shown in the original

evaluations. With these models, the magnitude and direction of the coefficients were largely

similar to the previous specification, with two notable exceptions: the H&F mixed trials accu-

racy coefficient fell to a non-statistically significant 0.04 and the GPA effect more than doubled

in size (ß = 0.47, SE = 0.14, p< 0.01). These results suggest that site level variation within the

paired blocking groups may account for some degree of imbalance between the treatment and

control groups, though the substantially larger standard errors also implies a high degree of

imprecision this set of models. Unfortunately, our data were simply not adequately powered to

control for a host of site characteristics without introducing substantial error.

Sensitivity checks. As described above, we pursued a number of sensitivity checks to

ensure that arbitrary statistical decisions did not drive our results. These supplementary analy-

ses are all presented and described in detail in the supplementary appendix (S6 Appendix),

and across these models, we were looking for convergent validity to support the findings

reported in Table 4. As such, we present results that used alternative methods for dealing with

missing data, alternative approaches to modeling treatment impacts (i.e., Hierarchical Linear

Modeling; logistic regression for GPA), and alternative measurement specifications for

EGNG. Across these alternative statistical approaches, point estimates were largely similar to

the estimates shown in Table 4, though standard errors did fluctuate, indicating some degree

of imprecision in our results.

Finally, in the supplemental material (S7 Appendix), we also present results from various

tests of treatment impact heterogeneity, and we failed to detect any consistent pattern of treat-

ment impact heterogeneity across measures of gender, race, or poverty. We found some indi-

cation that GPA effects were largely driven by children in the first cohort, but this cohort effect

was not consistently detected across other outcomes. In the supplemental material, we describe

these heterogeneity tests in detail.

Discussion

Our results provide some promising, albeit inconclusive, evidence that a high-quality, early-

childhood intervention targeting classroom quality and self-regulation could produce impacts

detectable during adolescence. We hypothesized that the CSRP intervention would have posi-

tive long-run effects on measures of executive function and academic achievement, and we

also expected the program to reduce behavioral problems and support emotional regulation.

Across our models, we found positive impacts for children who participated in the CSRP pro-

gram on measures of adolescent executive functioning and academic achievement, but these

effects were only detected when covariates were included. However, we found no evidence of

long-run treatment effects on measures of problem behaviors. These “point in time” findings

stand in contrast to earlier findings of the impact of CSRP in supporting some students to shift

to more positive behavioral trajectories during elementary school [60]. This difference in result

may be due to alternate analytic approaches, or due to developmental differences that occurred

between elementary school and the period of adolescence considered here. In keeping with

this open question, we also found that adolescents in the treatment group had heightened sen-

sitivity to angry and sad emotional stimuli relative to the adolescents in CSRP’s control group,

and these differences in emotional regulation could lead to unobserved differences in

behavior.

When projecting what our results might mean for the current landscape of early interven-

tions, it is important to recall the design of our study. Unlike other large-scale early interven-

tion evaluations [22,26], our study did not compare students’ participation in a single ECE

program versus non-participation. Rather, children assigned to the control group in our study

Long-term impacts of CSRP

PLOS ONE | https://doi.org/10.1371/journal.pone.0200144 July 12, 2018 17 / 25

https://doi.org/10.1371/journal.pone.0200144


were still enrolled in Head Start, meaning that our results inform policy conversations about

models to improve Head Start rather than debates about the overall effectiveness of Head Start

participation. In some respects, the fact that our study compared a Head Start improvement

model versus business-as-usual Head Start constitutes a design strength, as many other ECE

evaluations have struggled to accurately determine whether children in the control group

sought alternative childcare arrangements or simply remained in relative care at home [16].

Thus, our study presents a clear comparison between two types of investment in the delivery

of a single ECE program, but this comparison prevented us from testing whether Head Start

produced long-lasting effects over alternative programs or informal early childcare

arrangements.

Instead, our results suggest that efforts to improve Head Start could produce potentially

beneficial long-term effects for the children already receiving Head Start services. Head Start

still constitutes the largest federal investment in ECE, yet much recent attention has shifted

toward developing new, state and locally funded, preschool programs [e.g., New York City,

Boston, etc.]. Most recent preschool program models are more academic in focus, and they

often operate inside pre-existing elementary schools, effectively adding an additional grade

level prior to kindergarten. The rationale for scaling up academic preschool programs has

been partly fueled by quasi-experimental evidence of the benefits of universal prekindergarten

[92], correlational evidence showing the predictive importance of early academic skills [93],

and because of the disappointing results of the Head Start Impact Study [94]. Moreover, policy

advocates have also suggested that building new preschool programs from the ground up

might be easier than trying to work within the existing structure of the Head Start system

[95,17].

However, our results raise the possibility that improving Head Start, and working within

the long-standing infrastructure, may be a worthwhile policy consideration. Of course, the

CSRP model could not be implemented at scale without some cost, as the intervention intro-

duced 5 professional development sessions led by trained clinicians, and treatment teachers

also received extensive access to master’s level mental health consultants. While far from con-

clusive, our results suggest that such efforts may have led to long-term benefits for the cogni-

tive functioning and academic achievement of low-income children facing a wide range of

poverty-related stressors in their homes and neighborhoods. Certainly, future work is needed

to investigate whether these results hold throughout secondary school, but these initial long-

term findings imply that researchers should consider cost-effective ways to improve Head

Start when engaging in discussions regarding ECE program investment.

We were somewhat surprised by our findings for the Emotional Go/ No Go (EGNG) task.

On one hand, we found that children in the treatment group reacted more quickly (when

adjusting for their “baseline” reaction time) in trials where they were asked to respond to

angry and sad faces. On the other hand, we also found some indication that children may have

had more difficulty with emotional regulation as we also observed negative D-Prime scores for

children in the treatment group (though these effects were only statistically significant when

using mean imputation to adjust for missing baseline data, see S6 Appendix). We did not

hypothesize such a result, but taken with the reaction time findings, this implies that treated

children were more alert and responsive to negative emotion as adolescents. It should be noted

that a response on a direct assessment administered via a computer task is not the same as mal-

adaptive behavior, and we found no effects of the treatment on measures of behavioral prob-

lems. When viewed alongside the impacts on executive function and academic achievement,

these findings may simply indicate greater sensitivity to the presence of negative emotional sti-

muli. Positive changes in cognitive ability may have also led to heightened vigilance to negative

emotion, which may have particular salience for CSRP students’ navigation of peer and
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community contexts given this sample’s relatively high exposure to violence and crime in

inner-city Chicago [96].

For discussions around the long-term effects of early intervention, our findings provide an

important data point, though our results were somewhat mixed. In the current study, we found

null effects on measures of behavior problems, indicating fadeout, though we found positive

effects on measures of executive function and achievement, indicating some degree of treatment

impact persistence. It should be noted that the positive effects estimated for EF and GPA were

not large, as the EF effect was approximately 1/5th of a SD, and the GPA effect was similar in

magnitude. For GPA, this effect size suggests a change of approximately .10 grade units, which

is small, but could be important for students who face longer odds than their more economically

advantaged peers when applying to, attending and persisting in college [97].

Given that the treatment considered here was a relatively limited program, and given that

children in the control condition still attended Head Start, it may be surprising that we

observed any differences between the treatment and control groups 10 years after the program

ended. Indeed, other recent intervention evaluations using quasi-experimental designs [19,98]

have also found sustained effects on measures of educational attainment and achievement, but

most of these studies investigated larger programs that were compared against counterfactual

conditions that included no program exposure. It is clear that we need further work to con-

tinue investigating whether the CSRP program might have sustained effects on other impor-

tant dimensions of attainment, such as high school graduation and college enrollment. This

work will be critical to fully understanding whether the modest gains in adolescent achieve-

ment and cognitive functioning could translate into key adult outcomes.

Limitations

Our study is not without limitations. First, due to the developmental gap between the end-of-

preschool period and the adolescent follow-up period, we could not collect the same measures

in adolescence that were collected at the end of preschool. For example, end-of-preschool mea-

sures of academic achievement were simple counting and letter-naming tasks, whereas the

adolescent measure of achievement was self-reported GPA. Although self-reported GPA is

likely to capture academic skills that developed from the basic school-readiness skills measured

in preschool, it probably also captures the degree to which adolescents have adjusted to school

and their perception of their own success in their school setting. Similarly, the EF measures

from the two periods were linked as they both captured attention regulation and inhibitory

control, but the H&F task was measured via a computerized assessment and it also took

processing speed into account. The difference was in part due to the reality that the early child-

hood assessment was conducted over 10 years ago, prior to the wide availability of standard-

ized computer-based assessment tools that can be used across the lifespan such as the NIH

Toolbox Dimensional Change Card Sort [99]. Despite this measurement limitation, our find-

ings lend preliminary and promising support to the hypothesis that higher-order cognitive

processes such as EF and academic achievement demonstrate continued plasticity to environ-

mental enrichment provided early in childhood.

As with other field experiments with a relatively small number of sites to be assigned (18

Head Start centers), we found evidence that the cluster-random assignment procedure did not

successfully produce treatment and control groups that were balanced across all characteristics

observed at baseline. This meant that our results were highly sensitive to the inclusion of

covariates, and our treatment impacts for executive function and academic achievement were

only present when adjustments for baseline imbalance were included in the model. Although

our fully-controlled estimates adjusted for any observable differences between treatment and
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control groups that could have led to bias in our long-run treatment impact estimates, we can-

not rule out whether unobserved differences also biased our effects. Yet, it should be noted

that our estimated effects tended to become larger as covariates were added, rather than

smaller, introducing the distinct possibility that our findings could represent lower-bound esti-

mates. Indeed, it is difficult to imagine a possible unobserved source of confounding variation

that would have driven our estimates in the opposite direction once included, but such possi-

bilities are merely speculative.

Further, many of our results were imprecisely estimated, and standard errors differed

between models with alternative specifications. This led many of our p-values to fall within the

“marginally statistically significant” range [i.e., p< 0.10]. While these limitations warrant con-

cern and should be considered when interpreting our results, such issues are not unique to our

study. For example, the classic evaluation studies for Perry Preschool and ABC were both

plagued by attrition and small sample sizes. A recent study re-estimated the long-term treat-

ment impacts for Perry and ABC and reported that most of the positive long-run results for

both interventions were found at an alpha level of 0.10 when using a one-sided p-value test of

statistical significance [16]. Thus, although our findings are merely suggestive rather than con-

clusive, this evidence still contributes to the existing literature base on the long-term effects of

early intervention.

Conclusion. Our study offers preliminary and promising evidence that efforts to improve

Head Start could carry important long-term positive benefits for children growing up in highly

impoverished, urban communities within the U.S. Certainly, these findings warrant further

investigation, and a true cost-benefit analysis of CSRP cannot be undertaken until more work

uncovers whether the findings reported here extend into later periods of adolescence and

adulthood. However, we believe these findings offer an important early step toward fully

understanding how early intervention can affect children’s chances for long-term success.
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