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Abstract

Rps15p, an essential ribosomal protein, was previously shown to be critical for nuclear export of small subunit pre-particles.
We have designed a synthetic lethal screen in Saccharomyces cerevisiæ to identify its genetic partners and further elucidate
its role during ribosomal biogenesis. Our screen revealed interactions with mutants affected at various stages during
ribosome biogenesis, from early nucleolar steps to nuclear export. Mutations were identified in genes encoding proteins
involved in early ribosome biogenesis steps, like the small subunit processome component Utp15p, the 90S pre-ribosome
factor Slx9p and the H/ACA snoRNP core protein Nhp2p. In addition, we found a synthetic lethality with BUD23, a gene
encoding a methyltransferase involved both in rRNA modification and small subunit nuclear export. Interestingly, deletion
of snR36 or snR85, two H/ACA snoRNAs that direct modifications close to Rps15p’s binding site on the rRNA, produces mild
and opposite effects on growth in an rps15 hypomorphic background. These data uncover an unreported link between a
ribosomal protein and rRNA modification machinery.
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Introduction

Ribosome biogenesis in eukaryotes is a complex process that

takes place, for most of it, in the nucleolus, a specialized domain of

the nucleus. RNA polymerase I synthesizes a large ribosomal RNA

precursor (pre-rRNA) that includes three out of the four ribosomal

RNAs constituting the ribosomal subunit, i.e. the 18S, 5.8S and

25S rRNAs in yeast. Conversion of this large precursor to the

mature species involves sequential removal of flanking and internal

sequences, the external (ETS) and internal transcribed spacers

(ITS), through action of endonucleases and exonucleases (Fig. 1;

for a review, see [1]). In addition to cleavage, the pre-rRNA is

subjected to a series of nucleotide modifications, mostly ribose 39-

O-methylations and pseudo-urydilations. These modifications are

catalyzed by small nucleolar ribonucleoparticles (snoRNPs)

through specific base-paring between their RNA component

(snoRNA) with the surrounding of the position to be modified.

These RNA processing steps are intimately coupled to the

assembly of diverse proteins with the precursor RNAs, which

starts as soon as transcription is initiated. These proteins include

the 79 ribosomal proteins, which remain associated to the mature

subunits, as well as a large number of trans-acting factors. The

large ribonucleoproteic particle thus assembled in the early part of

the pathway, or 90S pre-ribosome, is composed mainly of so-called

UTP proteins (U-Three Particle), which associate to the U3

snoRNP [2]. After participating in the early 18S rRNA maturation

steps, these factors are released from pre-ribosomal particles when

paths to form the precursors to the 40S and the 60S ribosomal

subunits separate after A2 cleavage (Fig. 1).

The multiple steps of this process are highly organized in the cell

nucleus as indicated by the dynamics of the nucleolus, the

formation and morphology of which strictly depend on the activity

of ribosome biogenesis [3]. The late steps of ribosome biogenesis,

however, sequentially take place in the nucleoplasm and in the

cytoplasm. For instance, the 40S ribosomal subunit, when

exported from the nucleus, contains the 20S pre-ribosomal RNA

which 39-end maturation in the cytoplasm yields the mature 18S

rRNA. The determinants of the nuclear export of the 40S subunit

are still poorly known. The exportin Crm1p is necessary [4], but

although potential interactors of this exportin in the pre-40S

particles were described, no critical binding site or essential

adapter with the pre-40S particles has been found yet [5]. By

screening yeast strains expressing sub-optimal levels of specific

ribosomal proteins, we identified the ribosomal protein Rps15p as

a particular actor of nuclear export of the pre-40S particles [6], a

function conserved in mammalian cells [7]. Depletion of Rps15p

provokes retention of the pre-40S particles in the nucleus without

affecting the upstream RNA processing steps. It is tempting to

speculate that Rps15p interacts with proteins involved in nuclear

export of the pre-40S particles, like nuclear export factors or

nucleoporins. Alternatively, shielding of a particular domain in the

ribosomal RNA could be critical for nuclear domain, as already
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proposed for other pre-40S particle components like the

transacting factor Rrp12p [8] or other ribosomal proteins whose

depletion slows down nuclear export [9], albeit not as strongly as

in the case of Rps15p.

Here, either through a random screen or starting from an

educated guess, we have looked for mutations causing synthetic

lethality with a thermosensitive allele of RPS15 to find genetic

interactors potentially involved in nuclear export. Our study

reveals an unexpected link between RPS15 and rRNA modifica-

tion machinery.

Results

Screening of RPS15 genetic partners
To ascribe precise functions to Rps15p and identify its partners,

we designed a synthetic lethal genetic screen based on a yeast

hypomorphic mutant rps15-1, thermosensitive at 37uC. At 25uC,

this mutant has a generation time doubled relative to the WT

strain, indicating a defect even at permissive temperature. We

identified mutants worsening the phenotype associated with the

rps15-1 allele, by isolating synthetic lethal mutants at 25uC.

Permissive conditions are provided by a conditional expression of

wild-type RPS15 from a galactose-inducible/glucose repressible

promoter, while the mutant rps15-1 allele is located at the

chromosomal locus, expressed via its own constitutive promoter

(Fig. 2). After UV mutagenesis, we isolated 8 strains bearing a

mutation synthetic lethal with rps15-1, that grew on galactose but

not on glucose. Loss of function at the chromosomal rps15-1 locus

was excluded since synthetic lethality was not rescued with plasmid

pFL38-rps15-1 (Fig. 2). The strains satisfying this secondary

screening were called Ins3, 5, 7, 9, 11, 13, 15 and 17 (Ins is Not

S15).

Complementation Cloning of the ins mutants
With the exception of Ins3, which happened to be sterile, all Ins

mutants were backcrossed with an rps15-1 strain and proved to be

recessive. By transforming a yeast genomic library (kindly provided

by P. Thuriaux) and selecting on glucose at 25uC, reproducibly

complementing clones were obtained for Ins9 and Ins15. Plasmids

complementing Ins99s growth on glucose, and remaining thermo-

sensitive, all contained genomic regions encompassing the NHP2

gene (YDL208W). Nhp2p is essential for function of H/ACA-type

snoRNPs [10], which serve as guides to pseudo-uridylate about 46

U residues on rRNAs, including thirteen in the 18S rRNA.

Plasmids complementing synthetic lethality in strain Ins15

contained UTP15 (YMR093W), an essential gene coding for a

component of the U-Three Particle, as defined by Baserga and co-

workers [2]. Sequencing of nhp2 in the Ins9 strain identified a TG

deletion near the end of nhp2 ORF, leading to a frameshift

mutation 20 codons before the end of the coding sequence. This is

predicted to change the C-terminal sequence, and further lengthen

the protein by 11 amino-acids. In the Ins15 strain, we found that

utp15 translation start codon was mutated from AUG to AUU. As

UTP15 is an essential gene, translation initiation is likely to

proceed in some other unidentified way, which might still support

poor growth in the presence of WT Rps15p, but become lethal in

an rps15-1 background. The two mutated alleles ins9 and ins15

were thus renamed nhp2ins9 and utp15ins15. When co-expressed

from a centromeric plasmid, nhp2ins9 and utp15ins15 were actually

able to suppress growth defects on glucose in the Ins9 (ins9, rps15-

1, GAL::RPS15) and Ins15 (ins15, rps15-1, GAL::RPS15) strains

respectively, albeit much less efficiently than the wild-type allele

(data not shown). To confirm that these mutations are indeed

responsible for the synthetic lethality with rps15-1, we crossed the

Ins9 and Ins15 strains to either the Dnhp2::kanMX4, rps15-1 or

Dutp15::kanMX4, rps15-1 null mutants respectively. The resulting

Dnhp2/nhp2ins9, rps15-1/rps15-1 diploid strain was not viable in the

absence of a complementing wild-type copy of RPS15, while the

backcross with the NHP2+, rps15-1 strain yielded a viable diploid

strain. Similar results were obtained with utp15ins15. We thus

conclude that nhp2ins9 and utp15ins15 are indeed mutations

synthetically lethal with rps15-1.

Complementation cloning in the other INS genes was

unsuccessful. However, since Ins7 and Ins9 showed very similar

molecular phenotypes (see below), we sequenced the NHP2 locus

in Ins7, and found the exact same nhp2ins9 mutation. For

Figure 1. Schematic overview of yeast ribosomal biogenesis
pathway. White circles indicate the next processing steps. Gray boxes
indicate different processing intermediates. Dashed line represents the
nuclear envelop, and arrows the export process. rRNA species names
are indicated on the sides. 5S rRNA is transcribed independently and
then joins pre-60S particles.
doi:10.1371/journal.pone.0010472.g001

Figure 2. Schematic view of the synthetic lethal screen used.
GAL, galactose containing media; GLC, glucose containing media, used
to repress the GAL promoter. Bold lines represent yeast chromosomes;
circles represent yeast episomes.
doi:10.1371/journal.pone.0010472.g002
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simplification, these strain will be referred to as Ins7/9, bearing

the nhp2ins9 mutation.

Phenotypic analysis
Ribosome biogenesis is arguably a well-ordered and compart-

mentalized process, as depicted in Figure 1. Early 35S maturation

takes place in the nucleolus, where A2 cleavage separates large and

small pre-subunit maturation pathways. Pre-40S particles are

rapidly exported to the cytoplasm where an endonucleolytic

cleavage at site D releases the ITS1 from the 18S rRNA, thus

completing maturation. Rps15p was shown to be involved in

nuclear export, a late step in ribosome biogenesis [6]. Since

mutations synthetic lethal with rps15-1 were identified in NHP2

and UTP15, two genes coding for proteins known to have a role in

the early steps of pre-RNA maturation, we sought to characterize

the rRNA sub-cellular distribution in the double mutant strains to

understand the origin of the synthetic lethal relationship. By using

a D-A2 (ITS1) probe in fluorescence in situ hybridization (FISH)

experiments, it is possible to visualize all 18S rRNA precursors, as

depicted in Figure 1. In wild-type yeast cells, for instance, there is a

mild ITS1 signal in both cytoplasm and nucleoplasm, along a

strong nucleolar signal (Fig. 3). At 25uC in the presence of glucose,

the rps15-1 reference strain presents essentially a wild-type

phenotype (Fig. 3), with lower cytoplasmic accumulation of the

D-A2 signal in a small minority of cells. At 37uC, this strain shows

a strong nucleolar and nucleoplasmic accumulation (Fig. 3),

similar to Rps15p depletion [6]. We analyzed the distribution for

the 18S rRNA precursors in mutant cells grown in permissive (Gal)

and restrictive (Glc) conditions. Representative pictures for some

mutants in restrictive conditions are shown in Fig. 3, and our

observations are summarized in Table 1. There is a strong

nucleolar signal in restrictive conditions for Ins7/9 and Ins15

consistent with defects in early processing steps. However,

persistence of a cytoplasmic signal similar to the one in the

rps15-1 reference strain indicates that pre-40S particles export is

still taking place. In contrast, all other Ins strains are devoid of a

cytoplasmic ITS1 signal, and display retention of pre-40S particles

in the nucleoplasm, which indicates that pre-40S particles are not

exported to the cytoplasm.

We then characterized defects at the molecular level by

Northern Blot, probing whole cellular RNAs with various

oligonucleotides depicted in Fig. 4. rRNA signals were normalized

to 25S rRNA or 18S rRNA (Fig. 1). These observations are

summarized in Table 1. In both permissive and restrictive

conditions, the Ins7/9 strains show a strong decrease of the 32S

pre-rRNA, while 35S pre-rRNA accumulates. This is paralleled by

23S RNA accumulation and 27SA2 RNA decrease. This

phenotype indicates that early cleavages A0, A1, A2 are defective.

Regarding Ins15, all rRNAs except 25S rRNA drastically under-

accumulate, irrespective of their size, including 35S pre-rRNA,

suggesting a defect in rDNA transcription. These pre-rRNA

processing defects are consistent with the nucleolar accumulation

observed with the D-A2 probe by FISH, and resembles the

molecular phenotypes observed upon depletion of Nhp2p or

Utp15p: Utp15p was proposed to be required for optimal rRNA

synthesis [2,11], whereas Nhp2p depletion led to an A0-A1-A2

cleavage defect [10]. In glucose, the depleted GAL-nhp2 strain

presented a decreased 20S rRNA level [10] while the Ins7/9

strains described here displayed a steady 20S rRNA level in

permissive conditions and an actual increase in restrictive

conditions. This suggests a maturation defect additive to that

induced by Nhp2 loss of function, likely due to the rps15-1

mutation, as 20S pre-rRNA accumulation is also observed for the

rps15-1 reference strain (Fig. 4, lane 1 and 2). Similar results are

observed with utp15ins15.

None of the other mutant stains showed remarkable processing

phenotypes, except Ins11 which displayed abnormal 21S RNA in

parallel with a disappearance of 27SA2 RNA, indicative of

defective cleavage at site A2. The Ins17 strain, and to a lesser

extent Ins13, showed a much stronger level of 20S rRNA when

normalized to 18S (Fig. 4) or 25S rRNAs. However, in contrast to

Ins7/9 and 15, pre-40S particles in Ins3, 5, 11, 13 and 17 were

Figure 3. Detection of small subunit ribosomal precursors by fluorescence in-situ hybridization. WT, parental rps15-1 strain at the
indicated temperature, or representatives Ins strains after two generations in glucose containing media were stained with DAPI (upper row) or ITS1-
cy3 probe (middle row). Empty triangles point towards DAPI (nucleoplasmic) staining; white triangles point towards ITS1 nucleolar staining. Bar
represents 5 mm.
doi:10.1371/journal.pone.0010472.g003
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strongly retained in the nucleoplasm, which suggests that the

mutations involved affect the export competence of these particles,

either in cis or in trans.

Relative to the parental strain, all Ins strains under-accumulated

18S rRNA, while the levels of 25S rRNA did not seem to be

affected, proving our screen based on an rps mutant to be small

subunit specific. We observed however a very unusual form of

rRNA with the 25S probe in mutants Ins7/9, building up to high

levels in restrictive conditions. We probed this RNA with oligos

25S-01 (complementary to 2347-2377 in 25S rRNA), 25S-02

Table 1. Phenotype summaries for Ins strains.

D-A2 FISH (a) Northern Blot (b)

nucleolus nucleoplasm cytoplasm 35S 32S 27SA2 23S 21S 20S

Ins3 + ++ - + (c) = = + (c) = =

Ins5 + ++ - = = = = = =

Ins7 ++ + + + - = + (c) = =

Ins9 ++ + + + - = + (c) = =

Ins11 + ++ - = = - + (c) + =

Ins13 + ++ - = = = = = +

Ins15 ++ +/2 +/2 - - - - = -

Ins17 + ++ (d) - = = = = = ++

(a)+ same as rps15ts, ++ accumulation, - absence, +/2 intermediate. Restrictive conditions except where noted (d).
(b) = comparable to rps15ts, + accumulation, - reduction. Permissive and restrictive conditions, except where noted (c).
(c)only in restrictive conditions.
(d)in restrictive and permissive conditions.
doi:10.1371/journal.pone.0010472.t001

Figure 4. Northern blot of whole rRNAs. Schematic representation and names of the identified RNAs are listed on the right. Pre-rRNAs were
detected with probes D-A2 (upper panel), E-C2 (middle panel) and 18S and 25S (lower panel). These probes are depicted as black squares along the
identified rRNA species (see table 3 for sequence). Cells were grown as in Fig. 3 in medium containing galactose (G) or glucose (D).
doi:10.1371/journal.pone.0010472.g004
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(1431–1452) and 25S-03 (638–658), of which only 25S-01 and 02

were positive. With an estimated size of around 2,1 Kb, this new

rRNA species spans the 39 two-thirds of the mature 25S rRNA

and we therefore named it 25S2/3. It is known that absence of

some pseudouridylation guide H-ACA snoRNAs can actually

perturb rRNA cleavages [12,13], but we do not know at this point

if 25S2/3 rRNA is an aberrant processing by-product or a partial

25S rRNA degradation product.

bud23 and slx9 are synthetic lethal with rps15-1
As we were not able to identify the other ins mutations by

complementation experiments due to high reversion rates, we

looked at phenotypic analogy with mutations described in the

litterature. For instance, Ins17, which shows the strongest 20S

rRNA accumulation in the nucleoplasm, is linked to the MAT

locus as evidenced by analyzing tetrads obtained from the initial

backcross to rps15-1 (data not shown). BUD23 has been described

as being a non-essential methyltransferase responsible for

modifying 18S rRNA residue G1575. BUD23 is closely linked to

the MAT locus, and deletion for bud23 leads to a small subunit

export phenotype [14] very similar to the one observed for the

Ins17 strain even in permissive conditions. This strongly pointed

towards ins17 to be a BUD23 allele. We first decided to examine

whether bud23 deletion is synthetic lethal with rps15-1. A

Dbud23::kanMX4 strain was crossed with an rps15-1 strain, and

the resulting diploid was set to sporulate. G418r thermosensitive

spores were incapable of forming colonies, indicating that a

Dbud23, rps15-1 genetic combination is synthetically lethal.

Sequencing of BUD23 in the Ins17 strain showed no mutation

in the ORF or 250 nucleotides surrounding. Thus BUD23 is an

additional genetic interactant with RPS15.

Similarly, Ins11 stood out during our phenotypic analysis, as it

showed accumulation of both 23S and 21S rRNA. Based on this

phenotype, which was not often described in the literature, we

sequenced some candidates in the Ins11 strain, like RPS19A/B,

RPS18A/B, RPS3, YAR1, ENP1, LTV1, and SLX9, but found that

none of them was mutated (data not shown). Because deletion of

the non-essential gene SLX9 shows a striking phenotypic

resemblance with Ins11, with the same rRNA precursors

accumulating [15], we wondered if it would also present genetic

interactions with RPS15. We crossed a Dslx9::kanMX4 mutant with

our rps15-1 mutant. After sporulation, Dslx9, rps15-1 spores were

incapable to grow, indicating synthetic lethality. Thus, we

identified two genes which deletion is synthetic lethal with rps15-

1, in addition to the mutations identified in our synthetic lethal

screen. When attempting to construct a Dbud23, rps15-1 [pFL38-

GAL::RPS15] strain, recombinant descendants were unviable in

Galactose, suggesting that a Dbud23 deletion is also lethal when

Rps15p is over-expressed with a GAL promoter. This could

explain why no BUD23 mutant was isolated in our screen.

Moreover, our screen was clearly not saturated, as no additional

lethal mutation was selected for in rps15-1.

Are specific rRNA modifications responsible for synthetic
lethality?

NHP2 and BUD23, two of the mutated genes showing synthetic

lethality with rps15-1, are involved in rRNA modifications,

suggesting a functional link between Rps15p and rRNA

modifications. Nhp2p is required for synthesis and stability of

H/ACA snoRNPs, which are responsible for targeting pseudo-

uridylation [10]. We examined the influence of the nhp2ins9

mutation on the state of the H/ACA snoRNAs accumulation

(Fig. 5). Abundance of snoRNAs in nhp2ins9 strains was clearly

affected, with very low levels of all the H-ACA snoRNA tested,

except snR30 and snR37, even in a RPS15+ background (in

galactose, G, in Fig. 5), while snR190, a C/D box snoRNA

involved in rRNA methylation through a different type of snRNP,

remained unaffected.

Interestingly, a few pseudo-uridines lie near Rps15p’s binding

site (extrapolated from the bacterial 30S subunit structure [16]),

the closest being at positions U1181 (red in Fig. 6A, 6B) and

U1187 (blue in Fig. 6A, 6B), guided by snR85 and snR36

respectively. Bud23p is a methyltransferase responsible for 18S

rRNA modification, the m7G1575 methylation [14]. It is

noteworthy that G1575 is located near helix 29 (H29, shown in

yellow in Fig. 6A, 6B), while Rps15p’s binding to rRNA, as

deduced from the position of its bacterial homolog S19 in the

prokaryotic 30S crystal structure [16] (green in Fig. 6A, 6B), is

located at the H30-H31-H32 junction, only a few Å away.

Remarkably, snR85 and snR36 were almost undetectable in the

Ins7/9 strains (Fig. 5). While we do not know if under-

accumulation of these snoRNA greatly reduces or abolishes 18S

rRNA modifications, we directly questioned whether synthetic

lethality between nhp2ins9 and rps15-1 was due to specific absence

of these snoRNAs. We constructed double mutants rps15-1, Dsnr36

and rps15-1, Dsnr85, as well as the triple rps15-1, Dsnr36, Dsnr85

mutant. All genetic combinations were viable, indicating that the

synthetic lethal relationship between rps15-1 and nhp2ins9 cannot be

explained by the absence of the snR36 and snR85 guided

modifications in the vicinity of Rps15p’s binding site. However,

although deletion of these snoRNAs displayed no measurable

growth defect in a wild-type background (Fig. 6C, bottom row), we

observed faster growth when snr85 was deleted in the rps15-1

background, while the snr36 deletion had a synthetic sickness effect

with rps15-1 (Fig. 6C, top row). In liquid culture, generation times

were consistent, ranging from 3.8 h for Dsnr85, rps15-1 to 4.5 h for

Dsnr36, rps15-1, with the parental rps15-1 strain doubling every

4.1 h (data not shown). When snr36 and snr85 deletions were

combined, both synthetic suppression and synthetic sickness

Figure 5. Northern blot of snoRNAs. snoRNA species listed on the
right were probed with relevant oligonucleotides as listed in Table 3.
Strains and growth conditions (G for galactose, permissive and D for
glucose, restrictive) are listed at the top. Cells were grown as in Fig. 3.
doi:10.1371/journal.pone.0010472.g005
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appear to neutralize each other, as this triple mutant grew like the

rps15-1 parental strain (Fig. 6C, top row).

Similar to deletion of snR36 and snR85, a BUD23 allele

encoding an enzymatically inactive protein (G57E or D77K from

[14]) was not synthetic lethal with rps15-1 (data not shown),

indicating that the absence of methylation m7G1575 is not

sufficient to explain synthetic lethality between Bud23D and

rps15-1.

Thus, as anticipated from the structure of the 40S subunit, these

data suggest a complex interplay between Rps15p and the pseudo-

uridylation at position U1181 or U1187. However, synthetic

lethality between nhp2ins9 and rps15-1 appear to be due to a wider

impairment of the H/ACA snoRNP function.

Discussion

We designed a novel approach to perform a synthetic lethal

screen aimed at uncovering more precisely the function of Rps15p

in ribosome biogenesis. We identified 8 mutants in a specific

screening process based on conditional (galactose induced/glucose

repressed) expression of the WT allele. Upon functional

complementation on glucose (Fig. 2), two mutations were

identified in NHP2 and UTP15. The rps15-1 allele was also found

to be synthetic lethal with deletions of BUD23 or SLX9. The

mutants were assigned to two main classes: those retaining pre-40S

particles in the nucleoplasm, which could be genuine mutants in

the export pathway, like Ins3, Ins5, Ins13, Ins17, and Dbud23; and

mutants affected in early, nucleolar steps in ribosome biogenesis,

such as Ins11, nhp2ins9, utp15ins15 and Dslx9. In double mutants

rps15-1, nhp2ins9 and rps15-1, utp15ins15, 20S pre-rRNA is readily

detected in the cytoplasm, indicating that pre-40S particles are

exported from the nucleus despite upstream defects, even in

restrictive conditions. It is possible that overall rRNA processing is

slowed down, but can still be pursued up to the final cytoplasmic D

cleavage; lethality could arise from a trivial ‘‘flow’’ defect in

ribosome production, due to two independent bottlenecks. But

more specific hypotheses for the observed synthetic lethality can be

envisioned. It has been reported that Utp15p depletion triggers

cell cycle arrest [17]. The Ins15 strain stops growth almost

immediately in restrictive conditions, merely undergoing one

additional division. In this case, it is conceivable that the two

hypomorphic mutations rps15-1 and utp15ins15 provoke a cell cycle

arrest in restrictive synthetic conditions, when their defects are

additive. Regarding NHP2 synthetic lethality, numerous snoRNAs

deletions have been described as yielding defects in ribosome

biogenesis defects causing translational defects [12], and the rps15-

Figure 6. Positions of Rps15p and rRNA modifications on 18S rRNA, and growth phenotypes for snoRNA-deleted mutants. A. 2D
representation for yeast 18S rDNA sequence. Red : Helix 30, Blue : H31 and loop, Grey : H32 and distal unpaired nucleotides, Yellow : H42 and
surrounding unpaired nucleotides. Rps15p contacts (green) with 18S rRNA are extrapolated from those between S19 and 16S rRNA [16]. 2D
representation obtained from CRW http://www.rna.ccbb.utexas.edu/ [30] for Genebank sequence #U53879. B. 3D representation of the ribosomal
region surrounding prokaryotic S19, in green (Rps15p homolog). Colors as above. Equivalences for eukaryotic 18S rRNA U1181 (red, target of snr85),
U1187 (blue, target of snr36) and G1575 (yellow, target of Bud23p) are indicated in colored spheres. Obtained using Pymol and PDB #1FJG. C. Yeast
spotted as single cells. Relevant genotype are indicated at the top concerning snoRNAs and right for RPS15 background.
doi:10.1371/journal.pone.0010472.g006
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1 mutation affects translational accuracy (GS & FG, unpublished).

Additive mutations affecting either ribosome primary function, or

subunit imbalance in the cytoplasm, could lead to a strong

translational phenotype causing cell death.

Although examples of synthetic lethality between early players

and late players in ribosomal small-subunit biogenesis have been

identified before, as for GAR1 and RIO1 [18], isolation of NHP2

and UTP15 as RPS15 genetic interactors was quite unexpected.

Moreover, a good part of the synthetic lethal mutants isolated here

accumulate early 21S or 23S rRNA precursors, while Rps15p

depletion was shown to result in 20S pre-RNA accumulation.

Rps15p could be involved in several steps during ribosome

biogenesis. Rps15p depletion [6] or the rps15-1 mutant at

permissive temperature affect the export function, but early

nucleolar steps could be affected in the rps15-1 mutant especially at

restrictive temperature, as suggested by the accumulation for 23S

rRNA precursor in the rps15-1 strain at restrictive temperature

(Fig. 4, lane 4). Such phenotypic discrepancies have already been

revealed by studies on RPS14, showing a strikingly different

phenotype for depletion of the whole protein causing an early

small subunit processing blockage [19], or point mutations leading

to late high-level 20S cytoplasmic accumulation [20]. However,

RPS15 depletion induces a late maturation defect, while the rps15-

1 recessive mutant would display an early processing phenotype,

which seems counter-intuitive. So reciprocally, it is possible that

although hypomorphic mutations in Utp15p and Nhp2p, whose

depletion results in early ribsome biogenesis defects, rather perturb

downstream steps in the pathway. For instance, specific snoRNAs

shortage in the nhp2ins9 mutant might have consequences more

downstream in conjunction with rps15-1. In this respect, we tried

to identify specific synthetic lethality between rps15-1 and a subset

of H-ACA snoRNA guides targeted close to the binding site of

Rps15p on 18S rRNA, driven by snrR36 and snR85. This idea

was strengthened by the finding of a synthetic lethal interaction

between rps15-1 and absence of Bud23p, which methylates G1575

in 18S rRNA, close to Rps15p’s binding site. Although deletion of

the two snoRNAs resulted either in synthetic sickness with rps15-1

or partial suppression of rps15-1 growth impairment, it could not

explain the nhp2ins9 synthetic lethality with rps15-1.

Nevertheless, the synthetic phenotype presented by either

snoRNA deletion is striking, for such a synthetic sickness (Dsnr36)

or partial suppression (Dsnr85) has never been reported for a single

snoRNA to our knowledge. Although additive effects were

observed for combinations of snoRNA deletions [12,21], opposite

phenotypes that suppress each other, as observed for Dsnr36 and

Dsnr85 in the rps15-1 background, have never been shown before.

This effect might be explained in part by the fact that the targets of

these snoRNAs overlap on the 18S rRNA, making it impossible for

both snoRNAs to intervene simultaneously. Also, in a bacterial in

vitro reconstituted system, the binding of S19 to 16S rRNA was

reported to sustain a conformational switch, which involves H30

and H31 [22]. These two helices are targeted in yeast by snR85

and snR36, which could affect in opposed way this conformational

rearrangement, triggered by S19 homolog, Rps15p. Our data thus

give hints on the interplay between a ribosomal protein and

snoRNA mediated modifications that significantly impair ribo-

some biogenesis and/or function. Such an approach could be

extended to identify other specific interactions between ribosomal

protein mutants and snoRNA deletions to help understand the role

of rRNA modifications, which are still largely unknown.

Finally our most intriguing result is the accumulation of an

aberrant large subunit 25S2/3 rRNA form in the nhp2ins9 mutant,

when Rps15p is mutated and thus limits small subunit availability.

It raises the possibility that a 60S/40S imbalance leads to

degradation of the large subunit. In an nhp2ins9 mutant, such a

degradation process could be stalled on the hypomodified 25S

rRNA. This degradation pathway could involve the TRAMP

complex and the exosome [23] or the recently described

ubiquitine-mediated NRD (Non-functional Ribosome Decay)

[24]. How absence of rRNA modifications could perturb

degradation remains to be understood. Accumulation at high

levels of this stalled degradation product could actually be an

explanation for synthetic lethality between rps15-1 and nhp2ins9,

and be a genetic starting point to identify actors in this pathway.

Table 2. Yeast strains used in this work.

Strain Relevant Genotype Source

BY4741 MATa his3D1 leu2D0 met15D0 ura3D0 Euroscarf WT

ME14-i3 MATa his3D1 leu2D0 lys2D0 ura3D0 rps15-1 This work a)

Ins x MATa his3D1 leu2D0 lys2D0 ura3D0 rps15-1 insx [pFL38-GAL::RPS15] ME14-i3 UV-mutagenized

ME17-F4 MATa Dhis3D1 leu2D0 ura3D0 lys2D0 Dnhp2::kanMX4 [pCM189-NHP2] Euroscarf Y23906 spore

ME17-F7 MATa Dhis3D1 leu2D0; ura3D0 lys2D0 Dutp15::kanMX4 [pCM189-UTP15] Euroscarf Y26228 spore

YO7184 MATa his3D1 leu2D0 met15D0 ura3D0 Dbud23::KanMX4 Euroscarf

YO4711 MATa his3D1 leu2D0 met15D0 ura3D0 Dslx9::KanMX4 Euroscarf

LMA458 MATa his3D1 leu2D0 lys2D0 ura3D0 snr85::KAN Kindly provided by A. Jacquier and M. Fromont-Racine [28]

ME17-i5 MATa his3D1 leu2D0 lys2D0 ura3D0 snr85::KAN rps15-1 ME14-i3 x LMA458 spore

ME17-i6 MATa his3D1 leu2D0 met15D0 ura3D0 snr36::URA3 BY4741 b)

ME17-i8 MATa his3D1 leu2D0 lys2D0 ura3D0 snr36::URA3 rps15-1 ME14-i3 b)

ME18-a1 MATa his3D1 leu2D0 lys2D0 ura3D0 snr85::KAN snr36::URA3 LMA458 b)

ME18-d6 MATa his3D1 leu2D0 lys2D0 ura3D0 snr85::KAN snr36::URA3 rps15-1 ME17-i5 x ME17-i8 spore

a)strain GAL-RPS15 [6] transformed with a PCR holding the rps15-1 allele (kindly from P. Milkereit, unpublished). A thermo-sensitive clone was isolated and cured from
pFL38-GAL::RPS15 plasmid. rps15-1 locus was sequenced for confirmation.

b)transformed with PCR product amplified from the Dsnr36::URA3 strain from [29], kindly provided by E. Fayet-Lebaron. Absence of SnR36 was checked by Northern
blotting.

doi:10.1371/journal.pone.0010472.t002
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Materials and Methods

Yeast strains and media
Regular yeast genetic methods were used [25]. Relevant

Saccharomyces cerevisiae strains are listed in Table 2 and can be

obtained on demand to the corresponding author. Cells were

grown either in YP medium (1% yeast extract, 1% peptone)

supplemented with 2% galactose or 2% glucose as the carbon

source, or in YNB medium (0.17% yeast nitrogen base, 0.5%

(NH42SO4) supplemented with 2% galactose or 2% glucose and

the required amino acids and bases. When required, G418 and

doxycyclin were added at 0.2 mg/ml and 30 mg/ml final

concentrations, respectively.

Plasmids
pFL38-RPS15wt or pFL38-rps15-1 contain the promoter and

coding sequence for RPS15 or rps15-1, followed by a PGK

terminator (Valérie Choesmel-Cadamuro, unpublished). pFL38-

Gal::RPS15wt was described earlier [6]. pCM189-NHP2 and

pCM189-UTP15 are based on ARS-CEN, URA3 pCM189 [26],

with the cloned ORF under control of the TET promoter,

repressed in presence of doxycyclin. pRS315 [27] and pAJ2154,

2155 and 2156 were described previously [14] and kindly

provided by R. Sardana.

Oligos and probes
Oligonucleotides sequences used to construct strains and

plasmids can be obtained on demand to the corresponding

author. Oligonucleotides used for FISH or northern blot are listed

in Table 3.

Fluoresence In Situ hybridization
Detection of pre-rRNAs by FISH was performed as described

[4], using ITS1 (D-A2) oligonucleotidic DNA probe TT*GCA-

CAGAAATCTCT*CACCGTTTGGAAT*AGCAAGAAAGAA-

ACT*TACAAGCT*T, where T* is an amino-modified deoxy-

thymidine conjugated to Cy3. DNA was stained with DAPI.

Images were captured with a CoolSnap CCD camera (Photo-

metrics) mounted on a DMRB microscope (Leica) and processed

with Metamorph software (Universal Imaging).

Northern Blotting
Total RNAs were prepared from yeast cells using Trizol

(Invitrogen), essentially as described by the manufacturer. Briefly,

25 ml of cell culture at 1-26107 cells/ml were centrifuged and the

pelleted cells were washed once in water, resuspended in 0.5 ml

Trizol (Invitrogen) with 200 ml acid-washed glass beads (0.4–

0.5 mm diameter) in a 2 ml eppendorf tube, and mixed with a

vortex for 6 min at 4uC. After 5 min at 65uC and 5 min at room

temperature, 200 ml Chloroform were added, followed by mixing

for 15 sec. After 3 min at room temperature and 15 min

centrifugation at 139000 g and at 4uC, 400 ml of aquous phase

were precipitated for 10 min at room temperature in a fresh tube

with 500 ml isopropanol. RNA was pelleted 15 min at 139000 g,

4uC, washed once with cold 70% ethanol, centrifuged for 5 min at

13000 g, 4uC, and then dried at room temperature after

supernatant removal. RNAs were resuspended in 50 ml formamide

and heated for 5 min at 55uC.

Three mg RNA was fractionated on a 1% agarose gel in 30 mM

triethanolamine, 30 mM tricine, and 1.25% formaldehyde, for

large RNA species, or 6% polyacrylamide/urea gels in TBE

(0.89 M Tris base, 0.89 mM boric acid, and 20 mM EDTA) for

snoRNAs, and then transferred to a Hybond-N+ membrane (GE

Healthcare) in 0.5x TBE buffer by passive transfer or semi-dry

electrotransfer (Trans-Blot SD, BioRad), followed by UV cross-

linking to the membrane. Blots were hybridized with 59 32P-

labeled oligodeoxynucleotides (Table 3) using RapidHyb Buffer

(Amersham).
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