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Abstract

Background: High-density oligomers of the prion protein (HDPs) have previously been identified in brain tissues of
patients with rapidly progressive Alzheimer’s disease (rpAD). The current investigation aims at identifying interacting
partners of HDPs in the rpAD brains to unravel the pathological involvement of HDPs in the rapid progression.

Methods: HDPs from the frontal cortex tissues of rpAD brains were isolated using sucrose density gradient
centrifugation. Proteins interacting with HDPs were identified by co-immunoprecipitation coupled with mass
spectrometry. Further verifications were carried out using proteomic tools, immunoblotting, and confocal laser
scanning microscopy.

Results: We identified rpAD-specific HDP-interactors, including the growth arrest specific 2-like 2 protein (G2L2).
Intriguingly, rpAD-specific disturbances were found in the localization of G2L2 and its associated proteins i.e., the
end binding protein 1, α-tubulin, and β-actin.
Discussion: The results show the involvement of HDPs in the destabilization of the neuronal actin/tubulin
infrastructure. We consider this disturbance to be a contributing factor for the rapid progression in rpAD.

Keywords: Rapidly progressive Alzheimer’s disease, rpAD, Growth arrest specific proteins, GAS, Growth arrest
specific 2 like 2, G2L2, Prion protein oligomers, PrPC, Co-immunoprecipitation, Cytoskeleton, Actin, Tubulin

Background
Alzheimer’s disease (AD) is the most prevalent form of
dementia, affecting over 30 million people worldwide
and representing 60–70% of all dementia cases [1].
Sporadic AD (spAD) and familial AD (FAD) cases are
classically characterized by a progressive cognitive de-
cline with an average post-diagnosis survival of eight

years [2]. However, some AD cases mimicking rapidly
progressive dementias, i.e. with accelerated progression
rates and steep cognitive decline, have been reported
over the past years [3–5]. These rapidly progressive Alz-
heimer’s disease (rpAD) cases are reported to have a
shorter post-diagnostic survival time as well (shorter
than four years) compared to those of typical AD cases
(eight years on average) [6–9]. Due to their rapid pro-
gression, these cases are often initially misdiagnosed as
prion diseases [10]. The physiological alterations respon-
sible for the accelerated disease course in rpAD patients
are poorly understood. No genetic linkage has been
found between rpAD and any of the well-established
autosomal pathogenic mutations in the PSEN1, PSEN2,
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APP, or PRNP genes coding for presenilin isoforms, the
amyloid precursor protein, and the cellular prion pro-
tein, respectively [11, 12]. Patients with rpAD exhibit a
distinct profile of CSF biomarker for neurodegeneration.
A study from Abu Rumeileh et al. (2017) reported a
remarkably higher CSF tau level in rpAD cases (me-
dian = 1223 pg/mL, n = 44) compared to that of spAD
(median = 697 pg/mL, n = 45) [13, 14]. However, CSF
levels of phosphorylated tau (p-tau), Aβ40, Aβ42, α-
synuclein and YKL-40 do not show significant differ-
ences between rpAD and spAD patients [15, 16].
Additionally, in a large scale study comprising over 300
patient samples, the CSF p-tau/tau ratio in rpAD pa-
tients was found to be lower than that in spAD [17].
Other features differentiating rpAD from spAD include
younger age of onset, lower frequency of the APOE4
allele [12], increased serum levels of proinflammatory
cytokines in rpAD (G-CSF, TNFα, IL-6 and IL-13) [18],
and a higher incidence of rpAD cases testing positive for
the 14–3-3 protein in the CSF [12]. Although not dir-
ectly comparable to our study due to difference in defin-
ition of rapid progression (survival in our study,
cognitive decline in study of Ba et al., 2017); rpAD
patients are also reported to exhibit region-specific
hypometabolism in [18F]fluorodeoxyglucose-positron
emission tomography by Ba et al., (2017) [17]. More-
over, a higher abundance of low molecular weight
(LMW) amyloid oligomers has been associated uniquely
with AD cases showing accelerated progression rates,
thus suggesting their possible involvement in the rapid
progression [19]. In a nuclear magnetic resonance study,
Qiang and coworkers have reported unique Aβ40 fibrils
prepared by seeded growth from extracts of brain cortex
tissues of rpAD patients. However, no physiological rele-
vance of theses variants has yet been studied further
[20]. In an earlier study, we described the presence of
high molecular weight oligomers of the cellular prion
protein (PrPC) in the frontal cortex, specifically in pa-
tients with a rapidly progressive form of AD [8]. Physio-
logical involvement of PrPC in the progression of AD
pathology is well described [21]. Previous studies have
emphasized the role of PrPC at the neuronal surface in
neurotoxic signaling utilizing cAMP/PKA or Erk acti-
vated Fyn kinase pathway [22, 23], whereas more neuro-
protective functions seem to be mediated by
extracellular fragments of PrPC, which sequester amyloid
oligomers and may inhibit their spread and toxicity [24,
25]. However, the physiological relevance of the prion
protein oligomers consistently identified in the brains of
rpAD patients has not been explored.
In the course of AD, the brain tissue undergoes many

systemic changes including, more prominently, the de-
velopment of neurofibrillary tau tangles [2], amyloid-β
senile plaques [26, 27], synaptic damage [28–30] and

dysregulation of the cytoskeletal machinery [31]. The
cytoskeleton plays a crucial role in the growth and func-
tion of the neurons [32]. Effective transport systems in
the neuronal cytoplasmic processes, the intracellular
organization of organelles, and a degree of signal trans-
duction are primarily orchestrated by the microtubule
system in the neurons [33–37]. This microtubular sys-
tem works with the association of dyneins [38], kinesins
[39], spectrins, plakins and spectraplakins [40]. Neurons
also rely on a more transient actin system for establish-
ing the dendritic spines, extending the neurites, and for
inter-neuronal connections, in cooperation with the as-
sociated proteins such as integrins, cofilin and formin
[41–44]. Various cytoskeletal anomalies are associated
with Alzheimer’s disease as well. Synaptotoxicity in AD
is attributed to the malfunctioning in the Rho-associated
protein kinase (ROCK) and cofilin-actin machinery [45,
46], along with altered drebrin / Ca2+ /F-actin-controlled
microtubule dynamics [47]. Amyloid-β has also been re-
ported to alter the dendritic morphology in hippocampal
neurons [48]. Microtubule / kinesin-mediated axonal
vesicle transport is also affected in the course of the dis-
ease, caused by detachment of tau from microtubule fila-
ments after hyperphosphorylation [38, 49]. Drummond
et al. (2017) described cytoskeletal proteins differentially
associated with the amyloid plaques in rpAD and spAD.
The expression of the POTE ankyrin domain family
member E, tubulin polymerization-promoting protein,
and tubulin alpha-4A chain was found significantly in-
creased in the cortical amyloid plaques of rpAD patients,
encouraging further studies of cytoskeletal proteins in
rpAD brains [50]. PrPC is also reported to interact
with cytoskeletal components including cofilin [51],
actin [52], and tubulin resulting in the inhibition of mi-
crotubules assembly [53–55]. In the current study we
aimed to identify cytoskeletal proteins interacting with
the previously described high density PrPC oligomers
(HDPs) in the brains of rpAD patients, thereby gaining
insight into the pathophysiological relevance of HDPs in
rpAD.

Methods
Sample collection and processing
Patient material was obtained after the approval of local
ethics committees at the University Medical Center,
Goettingen. Frontal cortex samples from patients with
spAD (n = 10), rpAD (n = 9), dementia with Lewy bodies
(DLB) (n = 3), age-matched non-demented controls
(Con) (n = 10) and other rapid dementias including small
vessel disease (SVD) (n = 3), rapidly progressive demen-
tia with Lewy bodies (rDLB) (n = 2), and dementia with
frontotemporal lobar degeneration (DFTL) (n = 3) cases
were provided by the brain bank of the Institute of
Neuropathology (HUB-ICO-IDIBELL Biobank) and the
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biobank of the Hospital Clinic-IDIBAPS, Spain, accord-
ing to their biomedical study legislation (Ley de la Inves-
tigación Biomédica 2013 and Real DecretoBiobancos,
2014). Frontal cortex samples from patients with spor-
adic Creutzfeldt-Jakob disease (sCJD) subtypes (MM1:
n = 6, MM/MV2: n = 6, VV2: n = 6) were obtained from
the Department of Neurology at the University Medical
Center, Göttingen, Germany. The rpAD patients met the
current selection criteria for rpAD [6–9, 11, 12, 19].
These inclusion criteria are as follows:

1. Initial classification as prion diseases based on
clinical features

2. Presence of typical AD pathological features, i.e.,
higher Braak stages

3. Post diagnostic survival time (disease duration)
shorter than four years

4. Exclusion of other forms of rapid progressive
dementias and copathologies e.g. prion diseases,
extensive Lewy body pathology, vascular damage or
tumors based on postmortem neuropathological
examination

5. Absence of a family history suggestive of familial
AD

Cortex samples of the non-demented controls ex-
hibited only mild AD pathology (Braak stage I – II).
Both, rpAD and spAD samples presented AD patholo-
gies ranging from Braak stage IV to VI. Likewise, the
sCJD subtypes cohort (used as positive controls for
the PrP-oligomers) presented classical profiles for
prionopathies. The rDLB samples had co-pathology of
AD, argyrophilic grain disease (AGD), tauopathy, or
progressive supranuclear palsy (PSP). Patients from
the DFTL cohort also showed features of motor
neuron disease (MND) and TDP-43 pathology. All of
the vascular pathology patients (SVD) co-exhibited
higher stages of AD pathology. Further details includ-
ing neuropathological assessment and the processing
of the samples for different analyses in the current
study are reported as supplementary data (Add-
itional file 2). There were no significant differences in
age distribution and postmortem intervals among the
disease groups included in this study, as shown in
supplementary data (Suppl. Fig. 1).

Sucrose density gradients
Density gradient fractions were prepared as described
previously [8]. Briefly, frontal cortex homogenates (10%
w/v in PBS/2% sarkosyl, pH 7.4) were centrifuged at 500
x g for 5 min. Then 400 μL of the supernatant was
layered on a 10–45% sucrose gradient prepared in a
13 × 51mm Beckman thin-wall polyallomer tube by
layering serially diluted sucrose solution (10, 15, 20, 25,

30, 35, 40, 45% w/v in PBS/1% N-lauryl sarkosyl, pH
7.4). Ultracentrifugation was carried out at 5 °C, 50,000
rpm for 73min in an Optima TL 60 ultracentrifuge
equipped with a SW-55ti rotor (Beckman Coulter). From
each sample, twenty density fractions (200 μL each) were
collected from top (lighter) to bottom (denser) fractions
separately (Fig. 1a).

Preparation of protein and peptide pools from high-density
gradient fractions
For co-immunoprecipitation and subsequent mass
spectrometric analysis, equal volumes of corresponding
density gradient fractions from the biological replicates
(n = 6) of each pathological cohort were pooled together
(Fig. 2). The pooled high density factions (HDFs) were
further subjected for mass spectrometric analysis and
co-immunoprecipitation assays.

Antibodies
All primary and secondary antibodies used for immuno-
blotting and co-immunofluorescence in this study are
listed in Suppl. Tables 1 and 2.

Co-immunoprecipitation of density fractions
To study unique interactomics signatures of PrPC

oligomers in the different density fractions, co-
immunoprecipitation was employed using the
anti-PrP SAF70 antibody. Phosphatase- and protease-
inhibitor cocktails were added before proceeding to
the co-immunoprecipitation assay. Co-IP kits (catch
and release HT immunoprecipitation kit, Merck) were
used to ensure assay homogeneity. Co-
immunoprecipitation experiments were carried out in
a well-controlled setting with resin-only controls
(HDFs were directly incubated with the antibody-
binding resin without adding the antibody). The pro-
teins detected in the resin-only controls were consid-
ered to be due to unspecific binding to the antibody-
binding resin and, when detected, were excluded
from the HDF-IP eluates.

Mass spectrometric analysis
Protein/peptide sequence identification by data-dependent
acquisition
The HDFs and the Co-IP eluates were separated on
4–12% Bis-Tris gradient gels (NuPAGE Novex Bis-
Tris Mini gels, Invitrogen). Following Coomassie
staining, the stained areas were excised, diced, and
washed in ddH2O. Peptide digestion and identification
was carried out following protocols described previ-
ously [52, 56]. The eluents were analyzed on a Q
Exactive hybrid quadrupole/orbitrap mass spectrom-
eter using Excalibur v2.4 software (Thermo Fisher
Scientific) and a top10 method in data dependent
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acquisition mode for analyzing the peptide ions.
Raw2MSM v1.17 software (MPI for Biochemistry,
Martinsried, Germany) extracted tandem mass spectra
and performed database searching. MS/MS spectra
were evaluated using Mascot (Matrix Science,
London, UK; version 2.4.1) instructed to search the
Homo sapiens reference proteome (UniProt/SwissProt,
revision 02–2017, 92,928 entries) with a 5 ppm pre-
cursors mass tolerance and a 0.02 Da mass tolerance
for fragments. Each of the Co-IP eluates and HDFs
was analyzed twice for MS/MS (two technical dupli-
cates) to reduce data noise. Only peptides identified
with a confidence level greater than 95.0% were ac-
cepted, and a minimum peptide score of two was re-
quired for a peptide identification to be considered as
valid.

Sequential windowed Acquisition of all Theoretical
Fragment ion Mass Spectra (SWATH)-based proteomics
For global proteomic analysis, frontal cortex homoge-
nates (50 μg total protein per sample), of various demen-
tia groups (spAD: n = 3, rpAD: n = 3, DLB: n = 3, SVD:
n = 3, DFTL: n = 3, and rDLB: n = 2) and controls (n = 3)
were utilized. Two independent MS/MS measurements
(technical replicates) were made for each sample to im-
prove the statistical confidence.
To prepare the peptide library, homogenates from

each sample were pooled and separated into eight frac-
tions using a reversed phase spin column (Pierce High
pH Reversed-Phase Peptide Fractionation Kit, Thermo
Fisher Scientific). The separated fractions were then sub-
jected to tryptic digestion as described previously [52,
56]. The protein digests were analyzed on an Eksigent

Fig. 1 Experimental setup and characterization of disease-specific PrP conformers. A) Scheme of the fractionation of different conformers.
Density gradient centrifugation with a 10–45% sucrose step gradient was used to separate the density variants. Centrifugation was carried
out at 50,000 rpm and 5 °C. Twenty density fractions were taken from top to bottom (lighter to dense) and used for downstream
biochemical assays. B) Profile of high-density PrP (HDP) oligomer occurrence in cortical isolates of rpAD, spAD, sCJD patients (+ve con)
and non-demented controls (ND. Con). In contrast to spAD, HDP oligomers were detected in density fractions 12 to 17 in rpAD, thus
overlapping with HDPs isolated from sCJD samples
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nanoLC425 nanoflow chromatography system associated
with a TripleTOF 5600+, hybrid triple quadrupole-TOF
mass spectrometer equipped with a Nanospray III ion
source (Ionspray voltage 2400 V, interface heater
temperature 150 °C, and sheath gas setting 12), con-
trolled by Analyst TF 1.7.1 (AB Sciex). The peptides
were dissolved in loading buffer (2% acetonitrile (ACN)
and 0.1% formic acid (FA) in ddH2O) to give a final con-
centration of 0.3 μg/μL. For each analysis, 1.5 μg of
digested protein were concentrated on a precolumn
(0.15 mm ID × 20mm, self-packed, Reprosil-Pur120
C18-AQ 5 μm, Dr. Maisch, Ammerbuch-Entringen,
Germany) followed by separation on an analytical RP-
C18 column (0.075 mm ID × 250mm, Reprosil-Pur 120
C18-AQ, 3 μm, Dr. Maisch) with a 100 min linear gradi-
ent of 5–35% ACN/0.1% FA at a flow rate of 300 nL/
min. Qualitative LC-MS/MS analysis was performed

using a Top30 data-dependent acquisition method as de-
scribed previously [57].
For SWATH analysis of the sample homogenates,

MS/MS data were acquired using 100 variable size
windows across the 400–1200m/z range. Fragments
were produced using rolling collision energy settings
for charge state 2+, and fragments acquired over an
m/z range of 180–1500 for 40 ms per segment. A
250 ms survey scan resulted in an overall cycle time
of 4.3 s. Two replicate injections were acquired for
each biological sample. Protein identification was
achieved using ProteinPilot Software version 5.0 build
4769 (AB Sciex). A total of 152,341 MS/MS spectra
were searched against the UniProtKB Homo sapiens
reference proteome (revision 02–2017, 92,928 entries).
A total of 1756 proteins were identified with a false
discovery rate of 1%.

Fig. 2 Disease subtype-specific interactors bound to high-density prion protein oligomers. A) The experimental setup for carrying out the co-
immunoprecipitation of HDPs and their potential interactors. B) Numerical Venn-diagram showing the overlap of subtype-specific HDP interactors.
pF12-pF17: pools of high-density fractions 12–17 from multiple patient samples. IP-F-Con: high-density PrP (HDP) interactors in control HDFs
pools from 12 to 17 (collectively), IP-F-spAD: HDP interactors in spAD HDFs pools from 12 to 17, IP-F-rpAD: HDP interactors in rpAD HDFs pools
from 12 to 17, IP-F-MM1: HDP interactors in sCJD-MM1 HDFs pools from 12 to 17, IP-F-VV2: HDP interactors in sCJD-VV2 HDFs pools from 12 to
17, IP-F-MM2: HDP interactors in sCJD-MM2 HDFs pools from 12 to 17
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Co-immunofluorescence analysis
Coronal sections (5 μm thick) for co-immunofluorescence
slides were prepared from formic acid-fixed, paraffin-
embedded cortex samples from AD patients (spAD: n = 5,
rpAD: n = 5) and non-demented controls (n = 5) following
a protocol described previously [58]. Confocal microscopy
was carried out using an SPE laser-scanning microscope
(Leica, Germany; 543 and 633 nm helium-neon and 488
nm argon excitation wavelengths). Ten unbiased micro-
graphs were scanned per tissue section from the cortical
grey matter area. Individual images were separately ana-
lyzed for co-localization using the ImageJ (WCIF plugin)
software. Threshold Mander’s overlap coefficient and
Pearson’s linear correlation coefficient (rP) values were
calculated to quantify fluorescence channel correlations
and to illustrate the strength and direction of the linear re-
lationship between the two fluorescence channels. One-
way ANOVA followed by Tukey’s post-hoc test was used
to compare the mean values of Threshold Mander’s over-
lap coefficients.

Results
High-density prion protein oligomers (HDPs)
Specific occurrence of HDPs has been reported in brain
homogenates of rpAD compared with spAD in our pre-
vious work [8]. Density gradient ultracentrifugation was
performed using 10–45% step gradients to obtain twenty
varying density fractions. Oligomeric prion protein was
detected consistently in the isolated fractions 12 to 17

(Fig. 1b) [8]. Due to the unique overlap of properties of
the high-density fractions of rpAD and sCJD, the frac-
tions 12 to 17 were further used for downstream interac-
tomics (Fig. 2a).

Identification of interactors binding to HDPs in brain
tissue
The HDPs with the interacting proteins were isolated
from the density gradient fractions by immunoprecipi-
tation and were characterized by MS/MS analysis as
described above. A total of six interactors were identi-
fied, either uniquely present in rpAD-specific HDFs
or commonly shared by rpAD and sCJD subtype-
specific HDFs, whereas the HDP interactomes of con-
trols and spAD subtypes had no common interactors
with rpAD. Intriguingly, some of the HDP interactors
from rpAD HDFs were also commonly found as the
interactors of HDP conformers from sCJD subtypes.
Three HDP interactors, namely mammalian
ependymin-related protein 1 (EPDR1), Calcium/cal-
modulin-dependent protein kinase type II (CaMKII)
subunit beta (CAMK2B) and CaMKII subunit delta
(CAMK2D), were found in Co-IP eluates of rpAD
HDFs (IP-F-rpAD) and sCJD-MM1, -MM2 and VV2
subtype fractions, i.e. IP-F-MM1, IP-F-MM2 and IP-
F-VV2, respectively. IP-F-VV2 and IP-F-rpAD also
shared another common interactor, namely GTP-
binding protein Di-Ras2 (DIRA2) and 14–3-3 protein
sigma (1433S), whereas GAS2-like protein 2 (G2L2)

Table 1 HDP-binding interactors in rpAD high-density fractions identified by mass spectrometry assisted co-immunoprecipitation
using anti-PrP antibody

No. IDs UniProt
Acc. No.

Protein name Occurrence Sub-
cellular
location

Disease Relevance

1 KCC2B Q13554 Calcium/calmodulin-dependent
protein kinase type II subunit beta

rpAD-F12,
sCJD-MM1-F13, 17, sCJD-
MM2-F16, 17, sCJD-VV2-F16,
17

C, Ck, Ce,
Sr, Sy

Alzheimer’s disease [59]

2 KCC2D Q13557 Calcium/calmodulin-dependent
protein kinase type II subunit delta

rpAD-F12,
sCJD-MM1-F13, 17, sCJD-
MM2-F16, 17, sCJD-VV2-F16,
17

Cm, Sl

3 EPDR1 Q9UM22 Mammalian ependymin-related
protein 1

rpAD-F12,
sCJD-MM1-F13–16, sCJD-
MM2-F13–16, sCJD-VV2-F12,
14, 15

S Unknown

4 DIRA2 Q96HU8 GTP-binding protein Di-Ras2 rpAD-F13, 15,
sCJD-VV2-F17

Cm Unknown

5 G2L2 Q8NHY3 GAS2-like protein 2 rpAD-F16 C, Ck Unknown

6 1433S P31947 14–3-3 protein sigma rpAD-F17,
sCJD-VV2-F17

C, Nu, S Parkinson’s disease [60], Alzheimer’s
disease, Creutzfeldt Jakob disease [61],
Epilepsy [62]

F12 to F17: HDF-pool 12 to 17. Ce: centrosome, Sy: synapse, Sr: sarcoplasmic reticulum, C: cytoplasm, Ck: cytoskeleton, Nu: nucleus, S: secreted, Cm: cell
membrane, Sl: sarcolemma, The localization of proteins and accession number are assigned as in the ExPASy protein database and Uniprot data base, respectively.
Disease relevance of the HDP-interacting proteins was identified using Uniprot database search, as well
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was observed to uniquely interact with rpAD-specific
HDPs (Fig. 2, Table 1). Subtype-unique HDP interac-
tors and the interactors commonly occurring in sam-
ples from both spAD and sCJD subtypes are
discussed in the supplementary data section (Suppl.
Tables 3–7).

Expression of G2L2 and associated proteins
Among the proteins identified as HDP interactors in
rpAD, G2L2 was selected for further functional verifi-
cations, given its essential role in cytoskeletal integ-
rity, i.e. in actin-mediated microtubule growth, and
the possible relevance of the latter for AD pathology.
G2L2 is reported for its role in co-alignment of actin
filaments and microtubules, where it acts by cross-
linking the two structures. This actin/microtubule
cross-linking is assisted by the end-binding protein-1
(EB-1) at the plus end of the microtubules [63–65].
In order to study G2L2 in the sample cohorts in
more detail, proteins functionally associated with the
physiology of G2L2, including EB-1, tubulin and actin,
were also studied. Expression of these proteins in
frontal cortex homogenates was assessed by western
blot analysis. We found no significant differences in
the levels of G2L2 between the AD subtypes and con-
trols. Likewise, no significant differences were de-
tected between the groups for EB-1, α-tubulin, and β-
actin (Fig. 3).

Differential co-localization of G2L2 and HDP affects the
cytoskeletal integrity in the neurons
Neuronal co-localization of G2L2 and HDP affects G2L2/EB-
1 binding
Immunohistological observations were made in the grey
matter areas of the frontal cortex. A certain subtype-
specific trend was observed in G2L2/PrP co-localization.
The highest level of co-localization between PrPC and
G2L2 was observed in rpAD followed by spAD samples
(Fig. 4a). Threshold Mander’s overlap coefficients values
have been used to assess the co-localization of red and
green channels in the microscopic images. Where tM1
represents the overlaps of pixels from the red channel
(G2L2) on those of the green channel (PrP), and tM2-
overlaps of pixels from the green channel (PrP) on those
of the red channel (G2L2). Mander’s overlap coefficient
values reveal the highest G2L2-PrPC co-localization in
rpAD followed by spAD and controls (Fig. 4b). However,
a significant decrease in G2L2 and EB-1 co-localization
was observed in rpAD compared with spAD and con-
trols (Fig. 4c). The differences in the Mander’s overlap
coefficient values (Fig. 4d) also represent the lowest
levels of co-localization in rpAD followed by a higher
overlap in spAD and the highest in the controls.

Disturbance in G2L2/EB1 co-localization is associated with
loss of β-actin/α-tubulin integration
Actin-tubulin co-alignment was also studied using con-
focal laser scanning microscopy. Frontal cortex sections

Fig. 3 Expression of G2L2 and associated proteins in the frontal cortex of experimental cohorts. A & B) Immunoblots showing the expression
levels of G2L2, EB-1, α-tubulin, and β-actin. GAPDH served as loading control. C-F) Densitometric quantification for expression of G2L2, EB-1, α-
tubulin, and β-actin in spAD (n = 7), rpAD (n = 7), and control (n = 6) cases, as assessed in three technical replicates. No significant differences
were found for G2L2 and its associated proteins. Statistical significance was calculated with one-way ANOVA followed by Tukey’s post-hoc test
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(5 μm thick) were stained for α-tubulin and β-actin.
Confocal z-sections were scanned and later used to con-
struct three-dimensional images. A more pronounced

actin-tubulin co-localization was observed in the axonal
processes of gray matter neurons of the spAD samples
in comparison with rpAD (Fig. 4e, panel d and Fig. 4f,

Fig. 4 Neuronal co-localization of G2L2 and HDP effects G2L2 / EB-1 binding and cytoskeletal integrity in the rpAD brain cortex. A)
Representative photomicrographs (panels Aa-Af) from frontal cortex sections of rpAD, spAD and controls stained with anti-G2L2 and anti-PrP
(SAF70) antibodies. Highest co-localization of G2L2 and PrP was observed in frontal cortex sections from rpAD, followed by spAD and controls. B)
Threshold Mander’s coefficient values for the overlap of G2L2 channel pixels to PrP channel pixels (tM1) were significantly higher in rpAD than in
spAD. The average tM2 (Mander’s coefficient for the overlap of PrP channel pixels to G2L2 channel pixels) was also significantly higher in rpAD
than that of spAD. C) Representative frontal cortex sections of rpAD, spAD and controls stained for G2L2 and EB-1 (panels Ca-Cf) show lowest
G2L2/EB-1 co-localization in rpAD frontal cortex sections followed by those of spAD and control, respectively. D) Significantly decreased tM1
(G2L2) and tM2 (EB-1) values were seen in rpAD compared with spAD and Con sections. Statistical significance was calculated with one-way
ANOVA followed by Tukey’s post-hoc test. *p < 0.05; **p < 0.005; ***p < 0.001. E&F) Representative micrographs of spAD (E) and rpAD (F) sections
stained using anti-α-tubulin and anti-β-actin antibodies are shown. Panels Ea-Ec and Fa-Fc show the single channel images. Panels Ed and Fd
show the channel merges. Panels Ee and Fe correspond to the 3D reconstructions from z-stacks of spAD and rpAD, respectively. Insets Ef and Ff
show representative IC plots. Relatively stronger actin/tubulin co-localization was observed in spAD compared with rpAD patients. Confocal
images were scanned from the frontal cortex sections of spAD (n = 5), rpAD (n = 5) and controls (n = 5). Scale bars in panels A&C = 50 μm; in
panels E&F = 25 μm
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panel d). Likewise, correlation plots prepared for the
actin and tubulin channels revealed a significantly
greater overlap between the channel intensities (Fig. 4e,
panel f and Fig. 4f, panel f). Three-dimensional recon-
structions of the z-sections also showed longer stretches
of filaments with actin-tubulin co-localization in spAD
compared with rpAD, with higher actin and tubulin
channel overlap (Fig. 4e, panel e and Fig. 4f, panel e).

Proteomics of HDFs also indicate higher degree of
cytoskeletal disintegration in rpAD
MS/MS analysis of HDF pools was carried out and the
observed proteomic variations (unique peptide counts)
were compared with the baseline global proteomic data
sets obtained by SWATH-MS to recognize variations in
cytoskeletal proteins. Levels of tubulin subunits were ob-
served to be significantly reduced in HDFs from rpAD
patients compared with HDFs from other groups. A sig-
nificant decrease was also seen in the levels of certain
neurofilament subunits, actin and actin-binding proteins
in rpAD HDFs. Conversely, significantly higher levels of
microtubule-associated proteins (MAP 1A, MAP 1B, and
MAP 2), flaming (FLNA), filaggrin (FLG) and plectin
(PLEC) were observed in rpAD HDFs compared with
sCJD-specific HDFs. Interestingly, the levels of the
microtubule-associated protein tau (MAPT) were found
to be lower in rpAD-specific HDFs compared with
spAD-specific HDFs, although higher than the HDFs
from Con and sCJD subtypes (Fig. 5a, Additional file 4).
Among the cytoskeletal proteins from the global prote-
ome data, the expression of actin G (ACTG) was found
to be significantly increased in rpAD compared with
controls, whereas no significant differences were ob-
served between the spAD and rpAD. Expression of
ACTG was significantly decreased in SVD and DFTL
compared with rpAD. Contactin 1 (CNTN1) expression
was also found to be significantly higher in SVD and
DFTL than in rpAD. Expression of tubulin alpha 1a
(TBA1A) was observed to be significantly higher in
rpAD than in other rapid dementia samples, i.e. DFTL,
SVD, and r-DLB. Likewise, expression of TBA4A was
differentially higher in rpAD compared with controls,
DLB, DFTL, and SVD (Fig. 5b, Additional file 3).

Discussion
Multiple PrP conformers have previously been described
in association with transmissible spongiform prion dis-
eases in animals and humans [66, 67]. The presence of
high-density PrP conformers (HDPs) associated specific-
ally with rpAD have recently been identified by our
group [8]. Here we aimed to deepen our understanding
of these findings by isolating HDP complexes, identifying
HDP interactors, and by downstream proteomic
analyses.

Diverse sets of prion protein interactors were identi-
fied from subtype-specific HDFs. In our study, we identi-
fied fewer rpAD-specific HDP interactors compared
with sCJD. As reported previously, sCJD tissues exhibit a
wider spectrum of PrP/PrPSc oligomers [66, 68, 69] com-
pared with rpAD [8]. A greater diversity of PrP/PrPSc

oligomers in sCJD pathology can be a potential reason
for the relatively diverse interactome found for sCJD PrP
oligomers. There was no overlap of HDP-interactors of
rpAD samples with either spAD or control patient tis-
sue, reaffirming the subtype-specific occurrence of cer-
tain PrP species in rpAD. Interactors common for the
rpAD and sCJD datasets point towards the presence of
common PrP oligomers present in both disease entities.
Proteins interacting with the HDPs in rpAD included
CaMKII subunits (KCC2B, KCC2D), EPDR1, DIRA2,
G2L2, and 1433S. All of these interactors, except for the
G2L2 protein, were part of the HDP-interactomes in
both rpAD and sCJD. CaMKII, besides regulating Ca2+

in neurons, is also responsible for reorganizing actin into
bundles in the development of dendritic spines [70].
GTP-binding Di-Ras2 is a Ras GTPase known for its in-
volvement in determining cell morphogenesis. G2L2 has
been reported to play a role in actin-tubulin communi-
cation and connectivity [71]. Protein 14–3-3 sigma is a
protein with many known interactions and is involved in
p53, protein kinase C, and AKT/mTOR signaling [72].
Strong evidence had been presented in the literature for
the involvement of 14–3-3 isoforms in various neurode-
generative disease, particularly in prion dementias and
Alzheimer’s disease, where 14–3-3 isoforms are found
associated with PrPSc and Aβ plaques and serve as bio-
marker [73, 74]. Physiological outcomes of novel interac-
tions of G2L2 with the PrP oligomers are discussed in
the following. Actin and tubulin interlinking and com-
munication are necessary for the proper functioning of
cellular transport systems, morphogenesis, repair and
many other related functions in the cells. This link is
mainly controlled by spectraplakins via their ability to
connect actin and tubulin filaments [40]. Likewise, the
family of growth arrest-specific (GAS) proteins and
GAS-like (GASL) proteins plays a role in linking actin
and tubulin filaments [71]. Mutations in the G2L2 pro-
tein were reported to increase the risk of developing
Alzheimer’s disease [75]. Stroud and coworkers [63]
have provided a comprehensive experimental account of
the GAS and GASL and proposed a model in which the
GASL proteins G2L1 and G2L2 control microtubule sta-
bility via attachment to end-binding protein-1 (EB-1).
The interaction of G2L2 and EB-1 with tubulin is also
reported to account for microtubular stability [63]. In
our study, we found a negative correlation between
HDP-G2L2 interaction and G2L2 and EB-1 binding in
the rpAD cohort. This disturbance in the G2L2/EB-1
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system may lead to a malfunction of actin-assisted
microtubule growth in neurons. The shortening of the
actin-tubulin co-localization fibers that is specifically ob-
served in the frontal cortex of rpAD patients can be

interpreted as a consequence of the disturbances in the
G2L2/EB-1/tubulin system. Figure 5c illustrates a pos-
sible mechanism of how HDPs interact with the cyto-
skeletal system. Proteomic data of HDFs also show more

Fig. 5 Variations in cytoskeletal proteins in high-density fractions. A) The relative abundance of cytoskeletal proteins in HDFs detected by high-
resolution MS/MS analysis is represented as z-score. Significant reduction of cytoskeletal proteins was seen in rpAD-specific HDFs (F12–F17: HDF
pool 12 to 17). B) Differences in expression of cytoskeletal and associative proteins as determined by the SWATH-MS. Heatmaps represent the
relative protein expression indicated as z-scores for spAD (n = 3), rpAD (n = 3), DLB (n = 3), rDLB (n = 2), D-FTL (n = 3), SVD (n = 3), and controls
(n = 3). C) Model showing the recruitment of G2L2 to high-density prion-oligomers. The recruitment of G2L2 towards HDPs results in the loss of
its binding to EB-1, affecting the actin-guided microtubule (MT) integrity
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extensive cytoskeletal disintegration in rpAD than in
spAD and control patients. Decreased levels of tubulin
in rpAD HDFs are indicative of greater damage to the
cytoskeletal system, fitting to what has previously been
described [76]. The decrease in tubulin integrity is a sign
of various pathological cascades associated with rpAD
that differ from those associated to spAD. PrPC was re-
ported to inhibit microtubule synthesis by its direct
interaction with tubulin [53, 54]. The PrP oligomers
uniquely identified in rpAD may be associated with
tubulin-sequestering that results in a greater degree of
microtubule damage. Low tubulin HDF levels in rpAD
are accompanied by a decrease in the MAPT levels as
well as higher levels of MAP 1 and MAP 2. A previous
report by Ba et al. (2016), with rapid progression defined
on the basis of cognitive decline compared to that of
survival time in our study, showed a significant de-
crease in the p-tau/tau ratio in cerebrospinal fluid
(CSF) of rpAD patients (n = 55) compared with that
in spAD patients (n = 257) [17]. As the p-tau mole-
cules change their conformation and undergo
oligomerization, ultimately leading to the formation of
tau tangles [77], the aforementioned discrepancy in
CSF p-tau/tau levels in rpAD patients indicates that
the rpAD cohort will show a decrease in MAPT olig-
omers. The cortical expression of MAP 1 and MAP 2
however does not differ between rpAD and spAD as
seen in the global proteomic data. Elevated HDF
MAPs levels can result from their self-interaction [78]
or from a stronger interaction with tubulin, actin and
other regulatory factors, such as kinases, as previously
reported [78–83]. MAP sequestering also correlates
with the loss of microtubule integrity in the rpAD
cortices. Together with the malfunctioning in the
microtubule system, neurons suffer from a variety of
other degenerative events. Considering the size and
complexity of a neuron, a robust intracellular trans-
port system is obviously necessary to maintain the
critical connections between the cell body and its dis-
tant neural processes for supplying the various types
of neuronal cargo, such as organelles, vesicles, cell
signaling molecules, RNA molecules, neurotransmit-
ters, receptors, and adhesion molecules [36, 37]. The
actin-guided microtubule growth also plays a critical
role in the structural stability of neurons including
kinesin-based axon differentiation and polarization
[37, 84], MAP-assisted axon growth [85], and finally
the morphodynamics of dendritic spines [36, 37]. The
higher levels of the cytoskeletal proteins in sCJD
HDFs indicate that a different set of mechanisms is
involved in CJD pathology. Interaction between tubu-
lin and PrP has been reported by many previous stud-
ies [53, 54]. We argue that the higher levels of
cytoskeletal proteins (tubulin isoforms and MAPs)

found in the sCJD high-density fractions in our study
are correlated to the relatively higher levels of HDPs
with which they interact.

Conclusion
The results suggest an involvement of high-density PrP
oligomers in the cytoskeletal damage of the frontal cortex
specific to rpAD, as indicated by confocal microscopy and
proteomic profiling. The proposed competitive binding of
HDPs to G2L2 resulted in the interruption of G2L2/EB-1/
Tubulin interaction, which lead to a greater extent of dis-
integration and damage to the cytoskeletal system. These
rpAD-specific cytoskeletal alterations can contribute in
the accelerated disease progression of rpAD patients.
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