
Circulation: Cardiovascular Imaging

50

Circulation: Cardiovascular Imaging is available at www.ahajournals.org/journal/circimaging

Circ Cardiovasc Imaging. 2022;15:e013200. DOI: 10.1161/CIRCIMAGING.121.013200� January 2022

 
Correspondence to: Koyelle Papneja, MD, David Geffen School of Medicine at UCLA, Division of Pediatric Cardiology, 200 Medical Plaza, Suite 330, Los Angeles, CA 
90095. Email kpapneja@mednet.ucla.edu
Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCIMAGING.121.013200.
For Sources of Funding and Disclosures, see page 59.
© 2022 The Authors. Circulation: Cardiovascular Imaging is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open 
access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any 
medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

ORIGINAL ARTICLE

Trajectory of Left Ventricular Remodeling in 
Children With Valvar Aortic Stenosis Following 
Balloon Aortic Valvuloplasty
Koyelle Papneja , MD; Zachary M. Blatman, BHSc; Ian D. Kawpeng; Jacqueline Wheatley, RDCS; Hanne Oscé, MD;  
Boning Li, MD, PhD; Myriam Lafreniere-Roula, PhD; Chun P.S.  Fan , PhD; Cedric Manlhiot, PhD; Lee N. Benson , MD;  
Luc Mertens , MD, PhD

BACKGROUND: Aortic valve stenosis is the most common type of congenital left ventricular (LV) outflow tract obstruction. 
Balloon aortic valvuloplasty (BAV) has become the first-line treatment pathway in many centers. Our aim was to assess 
the trajectory of LV remodeling following BAV in children and its relationship to residual aortic stenosis (AS) and 
insufficiency (AI).

METHODS: Children <18 years of age who underwent BAV for isolated aortic stenosis from 2004 to 2012 were eligible for 
inclusion. Those with AI before BAV, other complex congenital heart lesions, or <2 accessible follow-up echocardiograms were 
excluded. Baseline and serial echocardiographic data pertaining to aortic valve and LV size and function were retrospectively 
collected through December 2017 or the first reintervention. Longitudinal data was assessed using per-patient time profiles 
with superimposed trend lines using locally estimated scatterplot smoothing. Associations with reintervention or death were 
also evaluated.

RESULTS: Among the 98 enrolled children, the median (interquartile range) age at BAV was 2.8 months (0.2–75). The median 
(interquartile range) follow-up was 6.8 years (1.9–9.0). Children with predominantly residual AI (n=11) demonstrated 
progressive increases in their LV end-diastolic dimension Z score within the first 3 years after the BAV, followed by a plateau 
(P<0.001). Their mean LV circumferential and longitudinal strain values remained within the normal range but lower than in 
the non-AI group (P<0.001 and P=0.001, respectively). Children with predominantly residual aortic stenosis (n=44) had no 
changes in LV dimensions but had a rapid early increase in mean LV circumferential and longitudinal strain. The cumulative 
proportion (95% CI) of reintervention at 5 years following BAV was 33.7% (23.6%–42.4%).

CONCLUSIONS: Our study demonstrates that LV remodeling occurs mainly during the first 3 years in children with predominantly 
residual AI after BAV, with no subsequent significant functional changes over the medium term. These data improve our 
understanding of expected patient trajectories and thus may inform decisions on the timing of reintervention.
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Valvar aortic stenosis (AS) has a reported incidence 
of ≈4 per 10 000 live births and is the most com-
mon type of congenital left ventricular (LV) outflow 

tract obstruction.1 Published studies have demonstrated 
comparable results with transcatheter balloon aortic 

valvuloplasty (BAV) and surgical aortic valvuloplasty in 
the management of congenital valvar AS.2–5

BAV has become the first-line treatment pathway in 
many centers, and short-term outcomes, including residual 
AS, aortic insufficiency (AI), and procedural complications, 
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have been established.6 Morphological characteristics of 
the valve appear to have an influence on short-term out-
comes following the procedure and on the progression 
of the aortic valve gradient, although they have not been 
shown to affect the choice or timing of the initial interven-
tion.7–9 Long-term outcomes, including residual AI, reinter-
vention, and death, have also been studied.10–13 There is 
evidence that residual AI is a risk factor for reintervention 
including aortic valve replacement.14,15

Following BAV, there is potential for aortic valve catch-
up growth and LV growth or dilation.16 In children with 
severe AS and clinically evident heart failure, improve-
ment in LV function following BAV has also been dem-
onstrated.17 In an analysis of 25 children who underwent 
BAV with no significant residual AS or AI, there was an 
observed regression of LV mass after successful inter-
vention, although the timing of this regression was not 
established.18

Limited data have been published to date describing 
the long-term trajectory of LV size and function following 
BAV. Furthermore, the potential to determine the ideal 
timing of reintervention, specifically before irreversible LV 
dysfunction develops, is currently not known. The aim of 
the current study was to describe the trajectory of LV 
remodeling following BAV in children with valvar AS. The 

relationship between the parameters on baseline echo-
cardiogram and need for reintervention following BAV 
was also assessed.

METHODS
This is a retrospective single-center cohort study. Approval was 
obtained from the Research Ethics Board at The Hospital for 
Sick Children, which waived the requirement for informed con-
sent. The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.

Study Population
Inclusion criteria were (1) children from the newborn period 
through 18 years of age; (2) isolated valvar AS; (3) BAV at 
The Hospital for Sick Children between January 2004 and 
December 2012. Exclusion criteria were (1) more than mild-
moderate AI before BAV; (2) other levels of LV outflow obstruc-
tion or complex congenital heart lesions; (3) <2 accessible 
follow-up echocardiograms after the index BAV.

Data Collection
Echocardiographic data pertaining to aortic valve and LV size 
and function were collected from the baseline echocardiogram 
just before BAV and serially collected from 3 follow-up echo-
cardiograms until December 2017 or until the first reinterven-
tion. Data from 2 follow-up echocardiograms were collected if 
3 studies were not available. All measurements were retaken 
from the echocardiographic images. Study data were col-
lected and managed using REDCap (Research Electronic Data 
Capture) tools hosted at The Hospital for Sick Children.19,20

Two-dimensional speckle-tracking analysis of the LV endo-
cardium was performed offline using TOMTEC-Arena soft-
ware version TTA2.30 (TOMTEC Imaging Systems GmbH, 
Unterschleissheim, Germany) to calculate peak myocardial 
strain. Circumferential strain was performed using the para-
sternal short-axis view of the LV at the level of the papillary 
muscles and the mean was obtained by averaging 6 LV seg-
ments. Longitudinal strain was calculated using the apical 4-, 
3-, and 2-chamber views. In each view, LV strain was measured 
in six segments and the mean strain value was derived. Any 
views with >2 poorly tracking segments were excluded. Global 
longitudinal strain was not included due to the relatively small 
number of patients who had adequately tracking segments in 
all 3 apical views (a common challenge with apical imaging in 
infants and children).

Catheterization data, including invasive peak-to-peak aortic 
valve gradient before BAV and qualitative degree of AI by angi-
ography immediately after BAV, were collected from procedural 
reports.21 Clinical data on type of reintervention, indication for 
reintervention, and death during the study period were also col-
lected from electronic medical records. Possible indications for 
reintervention included residual AS (the presence of AS fol-
lowing BAV), residual AI (the presence of AI following BAV), or 
mixed AS/AI.

AS-Dominant and AI-Dominant Classification
Children were classified based on whether they had predomi-
nantly AS (AS-dominant) and whether they had predominantly 

Nonstandard Abbreviations and Acronyms

AI	 aortic insufficiency
AS	 aortic stenosis
BAV	 balloon aortic valvuloplasty
LV	 left ventricle
LVEDD	 LV end-diastolic dimension
LVEF	 LV ejection fraction

CLINICAL PERSPECTIVE
Aortic valve stenosis is the most common type of 
congenital left ventricular outflow tract obstruction. 
Despite being a significant lifelong disease, it is cur-
rently managed based on limited data, especially 
during childhood. Balloon aortic valvuloplasty has 
become the first-line treatment pathway in many pedi-
atric centers. We present a novel study demonstrat-
ing the trajectory of left ventricular remodeling over 
time in children with aortic valve stenosis who have 
undergone balloon aortic valvuloplasty. Our study 
demonstrates that in patients whose predominant 
residual disease is aortic insufficiency, left ventricu-
lar remodeling occurs mainly during the first 3 years 
after balloon aortic valvuloplasty, with no subsequent 
significant functional changes over the medium term. 
These data improve our understanding of expected 
patient trajectories and thus may inform clinical deci-
sions on the timing of reintervention.
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AI (AI-dominant) following BAV. AS-dominant classification 
(n=44) was defined by having an aortic valve mean gradient 
≥30 mm Hg on at least 2 follow-up echocardiograms or hav-
ing AS on one echocardiogram that was significant enough to 
prompt reintervention. AI-dominant classification (n=11) was 
defined by having at least moderate-to-severe AI on at least 2 
follow-up echocardiograms or having progressive AI to moder-
ate-severe on serial echocardiograms.

Statistical Analysis
Freedom from death was estimated using the Kaplan-Meier 
method, and the cumulative proportion of reintervention over 
time was estimated using a nonparametric competing risk 
model with death as the competing risk.

The longitudinal parameters from serial follow-up echocar-
diograms were demonstrated using per-patient time profiles 
with superimposed trend lines using locally estimated scatter-
plot smoothing. Only echocardiograms that occurred before 
reintervention were used. Generalized estimating equations 
with independent correlation structure and standard errors 
estimated with the robust sandwich estimator were used to 
model the effect of time and patient group on echocardiogram 
parameters of interest. These models assumed linear covari-
ate relationships.

Cox regression models were used to estimate the associa-
tion of echocardiogram parameters at baseline with reinterven-
tion or death. Hazard ratios for reintervention or death were 
reported with 95% CIs.

Interobserver variability for strain analysis at baseline 
was assessed using intraclass correlation. Specifically, the 
intraclass correlation-3 method was applied.22 Interobserver 
variability was additionally assessed using the Bland-Altman 
agreement plot.23

RESULTS
The cohort was comprised of 98 children. Eighty-nine 
(93%) children had bicuspid aortic valve morphology. 
The echocardiographic parameters on baseline echo-
cardiogram are shown in Tables 1 and 2. Interobserver 
variability for strain analysis on baseline echocardio-
gram was good, with intraclass correlation values 
between 0.89 and 0.93 (Table S1). Bland-Altman 
agreement analysis also demonstrated that nearly all 
strain assessments were within the limits of agreement. 
The exception was LV mean longitudinal strain in the 
apical 3-chamber view, where the Bland-Altman plot 
demonstrated that one observer on average obtained 
higher values than the other, despite high intraclass 
correlation (0.932 [0.811–0.977]) for this parameter 
(Figure S1).

The median (interquartile range) duration of follow-up 
was 6.8 years (1.9–9.0), corresponding to a minimum 
duration of follow-up of 0.2 years and a maximum of 
13.3 years. Seventy-eight (80%) children had 3 follow-
up echocardiograms after BAV, whereas the remaining 
had 2 follow-up echocardiograms. The median (inter-
quartile range) age at BAV was 2.8 months (0.2–75; 

Table 3). The median (interquartile range) peak-to-peak 
aortic valve gradient by catheterization before BAV was 
49 (34–65) mm Hg.

Table 1.  Baseline Echocardiographic Characteristics by 
2-Dimensional and Doppler Imaging

Baseline patient characteristics

  Sex

    Male 81 (83%)

    Female 17 (17%)

Baseline measurements

  Age at baseline echocardiogram, y 0.20 (0.02 to 6.00)

  Aortic valve morphology

    Bicuspid 89 (93%)

    Monocuspid 7 (7%)

  Degree of AI

    None 55 (57%)

    Trivial 17 (17%)

    Mild 23 (24%)

    Mild–moderate 2 (2%)

  AV annulus in PLAX view, mm 8.6 (6.2 to 16.0)

  AV annulus Z score −0.4 (−2.2 to 1.0)

  Sinus of Valsalva in PLAX view, mm 11.2 (8.5 to 20.1)

  Sinus of Valsalva Z score −0.9 (−2.4 to −0.1)

  Sinotubular junction in PLAX view, mm 9.9 (7.2 to 15.8)

  Sinotubular junction Z score −1.3 (−2.0 to −0.1)

  Ascending aorta in PLAX view, mm 13.8 (10.0 to 23.8)

  Ascending aorta Z score 2.5 (1.7 to 3.4)

M-mode measurements

  LVESD, cm 1.7 (1.1 to 2.4)

  LVEDD, cm 2.4 (1.9 to 4.0)

  LVEDD Z score −0.2 (−1.9 to 1.0)

  LVEF, % 72 (67 to 79)

  LV PW, cm 0.5 (0.4 to 0.7)

  LV PW Z score 2.2 (1.0 to 3.0)

  IVS, cm 0.6 (0.4 to 0.7)

  IVS Z score 1.9 (1.0 to 3.4)

Ventricular measurements

  2D LVEDD in A4C view, cm 2.33 (1.81 to 3.38)

  LV area in systole in A4C view, cm2 5.01 (2.85 to 9.21)

  LV area in diastole in A4C view, cm2 7.98 (4.60 to 17.95)

  LV volume in systole in A4C view, mL 6.2 (2.5 to 15.3)

  LV volume in systole in A2C view, mL 8.5 (4.1 to 19.4)

  LV volume in diastole in A4C view, mL 13.5 (5.6 to 45.3)

  LV volume in diastole in A2C view, mL 18.4 (10.1 to 55.0)

  LVEF biplane Simpsons, % 65.8 (44.3 to 70.5)

  MV peak A velocity in A4C view, cm/s 57.0 (53.5 to 70.0)

  MV peak E velocity in A4C view, cm/s 107 (94 to 123)

  MV E/A ratio 1.73 (1.42 to 1.97)

2D indicates 2-dimensional; A2C, apical 2-chamber; A4C, apical 4-chamber; 
AI, aortic insufficiency; AS, aortic stenosis; E/A, peak E velocity to peak A velocity; 
IVS, interventricular septum; LV, left ventricle; LVEDD, LV end-diastolic dimension; 
LVEF, LV ejection fraction; LVESD, LV end-systolic dimension; MV, mitral valve; 
PLAX, parasternal long axis; and PW, posterior wall.
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Clinical Outcomes
The cumulative proportion (95% CI) of reinterven-
tion and death at 5 years following BAV was 33.7% 
(23.6%–42.4%; Table 4). There was only one death 
during the study period (Figure  1). Primary indica-
tions for initial reintervention were residual AS (57%), 
AI (14%), or mixed aortic valve disease (30%). The 
reinterventions included repeat BAV (48%), surgical 
aortic valve repair (15%), aortic valve replacement 
(35%), and heart transplant (2%; Table  5). Among 
those who required reintervention, 29 children had 
one reintervention, 5 children had 2 reinterventions, 
4 children had 3 reinterventions, and 1 child had 6 
reinterventions.

Higher LV ejection fraction (LVEF) and mean LV cir-
cumferential strain at baseline were each associated 
with decreased risk of reintervention (1 unit increments: 
hazard ratio [95% CI], 0.974 [0.959–0.989], P<0.001; 
0.939 [0.884–0.997], P=0.041, respectively). A greater 
aortic valve annulus Z score at baseline was also asso-
ciated with decreased risk of reintervention (1 unit 
increments: hazard ratio [95% CI], 0.806 [0.698–0.93], 
P=0.003; Table 6).

LV Remodeling
Children were classified based on whether they had pre-
dominantly AS (AS-dominant) and whether they had pre-
dominantly AI (AI-dominant) following BAV, as described 
above. Time profiles of echocardiographic parameters 
stratified by AS-dominant and AI-dominant status are 
shown in Figure 2 and Figure 3, as well as Figures S2 
through S5.

Children with predominantly residual AI (n=11) dem-
onstrated progressive increases in their LV end-diastolic 
dimension (LVEDD) Z score within the first 3 years after 
BAV, followed by a plateau (P<0.001). Children with pre-
dominantly residual AS (n=44) had no changes in LV 
dimensions but had rapid early increases in their mean 
LV circumferential and longitudinal strain.

DISCUSSION
Aortic valve stenosis treated with BAV is associated 
with high rates of reintervention, with ≈34% of children 
requiring reintervention at 5 years in our study. High rein-
tervention rates have been reported in previous studies 
as well, with freedom from aortic valve reintervention at 
10 years ranging from 29% to 54%.24,25 In our series, the 
most common indication for reintervention was residual 
AS, which accounted for 57% of the reinterventions. This 
is related to a conservative approach to dilation, using 
a balloon-annulus diameter ratio of ≈0.9, in an effort to 
avoid significant residual AI.26 The goal of the initial dila-
tion is therefore not to eliminate the aortic valve gradient 
entirely, but rather to improve it, within the notion that a 
more aggressive approach to any residual AS may be 
considered at a later stage if needed. AI or a combina-
tion of residual AS and AI was responsible for 43% of 
the reinterventions. Our study examined the trajectory 
of echocardiographic LV size and functional parameters 
after the initial balloon dilation. We distinguished between 
children with predominantly residual AS and those with 
predominantly residual AI. LV remodeling differed signifi-
cantly between the 2 groups. The AS-dominant group did 
not demonstrate significant changes in LV dimensions 
when corrected for body growth but demonstrated sig-
nificant functional changes with early increases in longi-
tudinal and circumferential strain measurements. As can 
be expected, in the AI-dominant group the LV progres-
sively enlarged during first 3 years after the initial BAV 
(P<0.001), with relatively lower longitudinal (P=0.001) 
and circumferential (P<0.001) strain measurements.

Baseline echocardiographic parameters and their 
relationship to risk of reintervention were evaluated. 
This analysis demonstrated that better LV function 
before BAV, measured by LVEF and mean LV circum-
ferential strain, was associated with a decreased risk of 
reintervention (1 unit increments: hazard ratio [95% CI], 

Table 3.  Initial BAV Intervention Characteristics

Age at BAV, y 0.23 (0.02–6.21)

Weight at BAV, kg 6.2 (3.5–24.8)

Peak-to-peak invasive gradient before BAV, mm Hg 49 (34–65)

Degree of AI by angiography after BAV

  None 34 (35%)

  Mild 47 (48%)

  Moderate 13 (13%)

  Moderate–severe 2 (2%)

  Severe 2 (2%)

AI indicates aortic insufficiency; and BAV, balloon aortic valvuloplasty.

Table 2.  Baseline Echocardiographic Characteristics by 2-Dimensional Speckle-Tracking, Compared to 
Normal Institutional Controls Between 0 and 6 Years of Age

Strain measurements N Study group N Control group P value

LV mean circumferential strain 60 20.1 (14.5–22.8) 74 19.3 (18.8–20.3) 0.72

LV mean longitudinal strain in A4C view 81 18.1 (12.4–21.6) 74 20.5 (19.7–21.3) <0.001

LV mean longitudinal strain in A2C view 51 19.2 (13.7–21.1) 65 22.7 (20.6–24.5) <0.001

LV mean longitudinal strain in A3C view 44 18.2 (12.8–20.1) 61 21.0 (19.3–22.6) <0.001

A2C indicates apical 2-chamber; A3C, apical 3-chamber; A4C, apical 4-chamber; and LV, left ventricle.
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0.974 [0.959–0.989], P<0.001; 0.939 [0.884–0.997], 
P=0.041, respectively). A larger aortic valve annulus 
before BAV was also found to be associated with a 
decreased risk of reintervention (1 unit increments: haz-
ard ratio [95% CI], 0.806 [0.698–0.93], P=0.003). This 
finding contrasts with previous studies where a larger 
annulus was associated with a higher risk for developing 
AI.27 This probably reflects a more conservative contem-
porary approach during the intervention, using smaller-
sized balloons in children with larger annuli. Whether this 
supports a surgical approach in patients with hypoplas-
tic aortic valves as a more durable strategy than BAV 
remains controversial and requires further investigation.28

Our data depicting the longitudinal changes in LV size 
and function over time in children following BAV pro-
vides novel and interesting information about how the LV 
responds to residual AS or AI after the procedure. The 
findings in children with predominantly residual AI are 
especially revealing and important for clinical care. We 
observed progressive LV dilation occurring mainly during 
the first 3 years after BAV, followed by a plateau. The 
early dilation is consistent with the expected physiologi-
cal adaptation of the LV to volume loading with eccentric 

hypertrophy. Our data also demonstrate that the dilation 
over the first 3 years after intervention does not occur at 
the expense of LV systolic function, with preservation of 
LVEF and strain values within normal range. This seems 
to indicate that the remodeling process is adaptative. 
The plateau reached after 3 years potentially indicates 
a period at which a new steady-state occurs through 
adaptation to the volume loading. Our novel finding may 
inform clinical decision-making regarding the timing of 
reintervention, allowing identification of a potentially mal-
adaptive process when the trajectory of LV size or func-
tion deviates from the norm. For instance, it would be 
concerning if the LV dilation process in a given patient 
resumed again later, after the plateau. Possible causes 
for such a progression would include worsening AI, which 
could potentially be addressed surgically, or development 
of LV dysfunction leading to dilation to maintain cardiac 
output. Conversely, a stable LVEDD Z score beyond 3 
years after BAV with otherwise normal ventricular func-
tion would be reassuring in a child with residual AI and 
may support a decision to defer reintervention and avoid 
the associated procedural risks.

Earlier studies have suggested that progressive AI 
is common after BAV.29 This can be related either to 
valve remodeling after the balloon-associated injury in 
combination with regression of LV concentric hypertro-
phy or improved LV compliance, resulting in increasing 
regurgitant volume through the damaged valve. Our data 

Table 4.  Cumulative Proportion of Reintervention and Death

1 y 5 y 10 y

Cumulative % (95% CI) Cumulative % (95% CI) Cumulative % (95% CI)

Reintervention 20.4% (12.0%–28.0%) 33.7% (23.6%–42.4%) 43.6% (31.4%–53.6%)

Death 0.0% (0.0%–0.0%) 1.0% (0.0%–3.0%) 1.0% (0.0%–3.0%)

Event free 79.6% (69.8%–86.2%) 65.3% (54.5%–73.6%) 55.4% (42.9%–65.2%)

Figure 1. Cumulative proportion of reintervention and death. 
BAV indicates balloon aortic valvuloplasty

Table 5.  Reintervention Characteristics

Reintervention characteristic N Statistic

Reintervention following BAV 98  

  No  58 (59%)

  Yes  40 (41%)

Type of first reintervention 40  

  BAV  19 (48%)

  AV repair  6 (15%)

  AV replacement  14 (35%)

  Heart transplant  1 (2%)

Primary indication for first reintervention 37  

  AI  5 (14%)

  AS  21 (57%)

  Mixed AS/AI  11 (30%)

Peak-to-peak invasive gradient before BAV, mm Hg 18 40 (36 – 52)

AI indicates aortic insufficiency; AS, aortic stenosis; AV, aortic valve; and BAV, 
balloon aortic valvuloplasty.
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suggest that this residual AI seems to affect the LV most 
within the first 3 years after the initial intervention.

Currently, decisions to reintervene on children with 
residual AI are largely based on meeting thresholds at 
one moment in time. These threshold criteria from the 
2008 update to the American College of Cardiology/
American Heart Association guidelines include LV dila-
tion with an LVEDD Z score >4, systolic dysfunction with 
an LVEF <50%, and associated symptoms.30 However, it 
is also important to consider the trajectories of these LV 
parameters, as suggested by the 2020 American Col-
lege of Cardiology/American Heart Association guide-
lines for adults with AI. These guidelines, which do not 
include parameters for the pediatric population, recom-
mend that intervention may be considered when there is 

a progressive decline in LVEF to the low-normal range 
(55%–60%) or a progressive increase in LV dilation 
into the severe range (LVEDD>65 mm).31 Similarly, in 
children, an LVEDD Z score >4 likely has quite differ-
ent implications when it is stable compared to when it is 
increasing. Also, functional parameters need to be taken 
into consideration in combination with LVEDD Z score, as 
stable LVEF and LV strain parameters in the setting of an 
enlarged ventricle are likely suggestive of LV adaptation.

The longitudinal trajectory in children with predomi-
nantly residual AS differed when compared with all oth-
ers, showing no significant changes in LV dimensions but 
a rapid early increase in mean LV circumferential and lon-
gitudinal strain. Opening the aortic valve by BAV results 
in an acute reduction of LV afterload with improvement 
in LV functional parameters. The residual AS results in 
a functional adaptation with persistently increased LVEF 
and increased LV circumferential and longitudinal strain.

The hypertrophic response of the LV to chronic pres-
sure loading in children with congenital AS results in 
reduced systolic wall stress and above-normal LVEF. 
This effect appears to differ from adults with acquired 
AS, who have normal or increased wall stress with either 
normal or reduced ejection performance.32 In a hemody-
namic study of children who underwent surgical aortic 
valve repair or replacement, Dorn et al33 demonstrated 
that, postoperatively, wall stress increased toward normal 
and LVEF decreased toward normal. The hyperdynamic 
state in children with congenital AS should be taken into 
account when assessing AS severity. Although in adults, 
reduced contractility can result in low-gradient AS, the 
reverse may occur in children resulting in potential over-
estimation of AS severity at younger ages. In addition 
to the effect of pressure recovery, LV contractile state 
and hyperdynamic function should likely be taken into 
account rather than deciding on reintervention based on 
AS gradient alone.

In patients with predominantly residual AS, a decline 
in LV strain parameters, potentially reflective of ventricu-
lar dysfunction, was not observed in our patient cohort 
before reintervention or before the end of the follow-up 
period. Reintervention for residual AS was based mainly 
on increased aortic valve gradients. The remodeling data 
demonstrate that the gradient increases occurred at 
decreasing septal thicknesses and preserved ventricu-
lar deformation. This suggests that the gradients may 
have prompted relatively early reinterventions, before the 
occurrence of adverse effects on LV function.

We focused mainly on systolic function in our analysis, 
as assessment of diastolic function in children is very dif-
ficult. It is particularly challenging when longitudinal data 
are used, as most diastolic parameters are affected by LV 
growth and heart rate, making their clinical use difficult 
as well. Dusenbery et al34 showed that in children and 
young adults with AS and normal LVEF, reduced longi-
tudinal and radial strain was associated with findings of 

Table 6.  HRs and 95% CI Obtained From Univariable Cox 
Regression Models Using Reintervention or Death as the 
Outcome

Variable HR (95% CI) P value

Sex 0.609 (0.239–1.552) 0.30

Age at BAV (1 y increment) 1.000 (1.000–1.000) 0.21

Baseline echocardiogram measurements

  Aortic valve peak gradient, mm Hg 0.995 (0.983–1.006) 0.36

  Aortic valve mean gradient, mm Hg 0.987 (0.966–1.008) 0.21

  Degree of AI 0.88 (0.616–1.256) 0.48

  AV annulus Z score* 0.806 (0.698–0.93) 0.003

  Sinus of Valsalva Z score* 0.795 (0.65–0.972) 0.026

  Ascending aorta Z score 0.915 (0.748–1.119) 0.39

  LVEDD Z score 0.952 (0.816–1.11) 0.53

  LVEF, %* 0.974 (0.959–0.989) <0.001

  LV PW Z score 0.977 (0.807–1.183) 0.81

  IVS Z score 0.992 (0.818–1.203) 0.93

  LVEF biplane Simpsons, % 0.982 (0.959–1.006) 0.134

  LV mean circumferential strain* 0.939 (0.884–0.997) 0.041

 � LV mean longitudinal strain in A4C 
view

0.949 (0.899–1.001) 0.055

 � LV mean longitudinal strain in A2C 
view

0.949 (0.869–1.036) 0.24

Angiographic parameters at initial BAV

 � Peak-to-peak catheterization  
gradient before BAV, mm Hg

1.000 (0.986–1.016) 0.93

  Degree of AI by angiography after BAV

    Trivial … …

    Mild 0.729 (0.360–1.476) 0.38

    Mild–moderate … …

    Moderate 1.236 (0.502–3.044) 0.65

    Moderate–severe 1.362 (0.178–10.401) 0.77

    Severe* 7.33 (1.552–34.690) 0.012

Each model was run on complete cases for the variable of interest. A2C indi-
cates apical 2-chamber; A4C, apical 4-chamber; AI, aortic insufficiency; AV, aor-
tic valve; BAV, balloon aortic valvuloplasty; HR, hazard ratio; IVS, interventricular 
septum; LV, left ventricle; LVEDD, LV end-diastolic dimension; LVEF, LV ejection 
fraction; and PW, posterior wall.

*Significant associations.
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Figure 2. Time profile of echocardiographic (echo) parameters for aortic stenosis (AS)–dominant patients (red) vs all other 
study patients (black).
AS-dominant classification (red) was defined by having an aortic valve mean gradient ≥30 mm Hg on at least 2 follow-up echo or having AS on 
one echo that was significant enough to prompt reintervention. A4C indicates apical 4-chamber; AI, aortic insufficiency; IVS, interventricular 
septum; LV, left ventricle; LVEF, LV ejection fraction; LVEDD, LV end-diastolic dimension; and PW, posterior wall.
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Figure 3. Time profile of echocardiographic (echo) parameters for aortic insufficiency (AI)–dominant patients (red) vs all other 
study patients (black).
AI-dominant classification (red) was defined by having at least moderate-to-severe AI on at least two follow-up echo, or having progressive AI to 
moderate-to-severe on serial echo. A4C indicates apical 4-chamber; AI, aortic insufficiency; IVS, interventricular septum; LV, left ventricle; LVEF,  
LV ejection fraction; LVEDD, LV end-diastolic dimension; and PW, posterior wall.
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focal fibrosis by late gadolinium enhancement on cardiac 
magnetic resonance imaging. In those with AS, myocar-
dial extracellular volume fraction, measured by gado-
linium contrast T1 mapping cardiac magnetic resonance 
imaging, was significantly elevated and was associated 
with echocardiographic features of diastolic dysfunc-
tion.35 This indicates that LV fibrosis and diastolic dys-
function may have to be considered. Longitudinal data on 
progression of fibrosis and diastolic dysfunction are still 
limited. Our data provide some evidence that the use of 
aortic valve threshold gradients as the main indication for 
reintervention, without studying the effect on LV hyper-
trophy and function, may require further critical evalu-
ation. The optimal timing for reintervention for residual 
AS has not been well established, and the criteria are 
largely consensus-based rather than data-driven. In their 
review, Jashari et al36 described evidence of subclinical 
myocardial dysfunction in children with AS and coarcta-
tion before initial intervention. Long-term follow-up after 
intervention demonstrated an incomplete improvement 
in myocardial dysfunction, suggesting a need for lon-
gitudinal studies of functional parameters to determine 
ideal timing of intervention, before irreversible subclinical 
remodeling of the LV myocardium. Although our study 
serves as an important step in this pursuit, further stud-
ies including a longitudinal description of LV remodeling 
both before and after reintervention are needed.

For both residual lesions, our data indicate that lon-
gitudinal patient trajectories are possibly more impor-
tant than cross-sectional cutoff points for reintervention. 
Congenital AS is an important lifelong disease but is 
currently managed based on limited data, especially dur-
ing childhood. The decisions made by pediatric cardiolo-
gists, pediatric cardiac interventionalists, and pediatric 
cardiothoracic surgeons to (re)intervene on children with 
congenital AS after BAV have major lifelong implica-
tions. Mechanical aortic valve replacements, with their 
associated thrombosis and anticoagulation risks, pose 
significant clinical challenges particularly in active young 
children with inherent risk of head injury. Compared with 
mechanical aortic valve replacement, long-term freedom 
from stroke or major bleeding is superior after the Ross 
procedure.37 However, aortic valve replacement by the 
Ross procedure has only a 79.9% freedom from reop-
eration at 20 years.38 Although intervening too late may 
have dire consequences in this population, intervening 
too early poses substantial implications including a risk 
for future reinterventions that otherwise may not have 
been needed.

More patient-specific clinical and echocardiographic 
data are required to further define subsets of phenotypes 
within this population and to predict their individual tra-
jectories and outcomes. To that aim, future steps would 
involve a multicenter study to access a higher volume 
and more diverse set of pediatric patient data. A sophis-
ticated analysis, potentially with the use of machine 

learning technology, may ultimately allow us to build 
prediction and decision tools for each individual patient 
based on evidence.

Study Limitations
The retrospective nature of this study design was a pri-
mary limitation. In addition, patients with <2 follow-up 
echocardiograms available at our tertiary institution were 
excluded. This may have introduced bias, as patients with 
mild residual disease are more likely to be followed at 
outside institutions, and referred back only if and when 
reintervention is felt to be indicated.

A quantitative exploration of whether there is an asso-
ciation between time to reintervention and changes over 
time in LV parameters would involve joint modeling of 
outcome and longitudinal data. This would require addi-
tional data points and could not be done with only two to 
three follow-up echocardiograms before reintervention.

Conclusions
Our data suggest that in infants and children with pre-
dominantly residual AI, LV remodeling occurs mainly 
during the first 3 years after BAV, with no subsequent 
significant functional changes over time. Patients with 
predominantly residual AS show rapid early increases 
in LV strain following BAV, with no significant decline 
before reintervention. This novel understanding of LV 
remodeling over time in subgroups of children follow-
ing BAV may support our clinical decision-making. 
However, further investigation using a larger cohort 
is needed.

Superior LV function at baseline, measured by LVEF 
and mean LV circumferential strain, is associated with a 
decreased risk of reintervention in neonates and chil-
dren following BAV. Bigger aortic valve annulus dimen-
sion before BAV is also associated with a decreased 
risk of reintervention, which may be a consideration in 
choice of intervention and which may inform the way we 
counsel families on the likely need for reintervention in 
specific cases.

Future studies are needed for an exploratory analy-
sis of the relationship between LV remodeling and timing 
of reintervention. More serial data from a larger patient 
sample is needed to develop risk prediction and decision 
tools based on individual patient phenotypes.
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