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Objective: This study aimed to investigate brain plasticity by somatosensory stimulation

(SS) and sensory observation (SO) based on mirror neuron and embodied cognition

theory. Action observation therapy has been widely adopted for motor function

improvement in post-stroke patients. However, it is uncertain whether the SO approach

can also contribute to the recovery of sensorimotor function after stroke. In this study,

we explored the therapeutic potential of SO for sensorimotor dysfunction and provided

new evidence for neurorehabilitation.

Methods: Twenty-six healthy right-handed adults (12 men and 14 women), aged

18–27 (mean, 22.12; SD, 2.12) years were included. All subjects were evaluated with

task-based functional magnetic resonance imaging (fMRI) to discover the characteristics

and differences in brain activation between SO and SS. We adopted a block design

with two conditions during fMRI scanning: observing a sensory video of brushing (task

condition A, defined as SO) and brushing subjects’ right forearms while they watched a

nonsense string (task condition B, defined as SS). One-sample t-tests were performed

to identify brain regions and voxels activated for each task condition. A paired-sample

t-test and conjunction analysis were performed to explore the differences and similarities

between SO and SS.

Results: The task-based fMRI showed that the bilateral postcentral gyrus, left precentral

gyrus, bilateral middle temporal gyrus, right supramarginal gyrus, and left supplementary

motor area were significantly activated during SO or SS. In addition to these brain regions,

SO could also activate areas containing mirror neurons, like the left inferior parietal gyrus.
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Conclusion: SO could activate mirror neurons and sensorimotor network-related brain

regions in healthy subjects like SS. Therefore, SO may be a promising novel therapeutic

approach for sensorimotor dysfunction recovery in post-stroke patients.

Keywords: sensory observation, somatosensory stimulation, mirror neurons, sensorimotor network, functional

magnetic resonance imaging

INTRODUCTION

Stroke is the third leading cause of disability in adults
worldwide (1). Recovering sensorimotor function after stroke is a
common and sometimes tricky problem in clinical rehabilitation
(2). Conventional rehabilitation approaches include neural
facilitation, motor relearning, sensory retraining, transcutaneous
electrical nerve stimulation, and other techniques, that can
promote recovery of sensorimotor function to some extent (3–
5). However, stroke is often accompanied by damage to sensory
pathways, limiting the effects of conventional rehabilitation
modalities (6). Sensorimotor impairments remain a pervasive
problem for post-stroke patients, with the recovery of upper-
extremity function particularly recalcitrant to intervention (7).
We need to explore and develop more effective rehabilitation

strategies that supplement or replace traditional rehabilitation.

In recent years, rehabilitation methods based on mirror
neuron theory such as mirror therapy, motor imagery, and
action observation (AO) therapy have received more and more
attention (8, 9). Mirror neurons are a distinct class of neurons
that discharge both when performing a specific action and when
observing the same or similar action (10). They are the essential
neural substrate for action understanding, imitation, execution,
and empathy (11, 12). The mirror neuron system (MNS) is the
ensemble of cortical motor centers endowed with the mirror
mechanism, with different functions depending on its anatomical
location (10). In humans, the core MNS includes the inferior
frontal gyrus (IFG), ventral premotor cortex, inferior parietal
gyrus (IPG), and intraparietal sulcus (9, 13). In addition, the
extendedMNS involves additional brain areas, such as the insula,
middle temporal gyrus (MTG), and somatosensory cortex, which
connect to the core system (12). Studies confirm the existence
of an action observation–action execution matching mechanism
in specific regions of the MNS, which are located in the frontal
and parietal lobes (14, 15). AO therapy facilitated the recovery of
motor function in stroke patients by activating this specific MNS
(16). When an action is understood, it will cause resonance in the
observer’s motor areas (17). Notably, AO therapy relies on visual
feedback and emphasizes the kinesthetic experience of perceived
motion to generate motor representations, facilitating action
execution (18). As we know from embodied cognition theory,
our bodily experience is primarily derived from the integration
of sensory, perceptual, and motor signals and is mapped directly
to the sensorimotor cortex (19). AO prompts visual perception
to be mapped onto activated mirror neurons, forming a motor
representation (9, 14). The bidirectional flow of perceptual and
motor information then ultimately facilitates action execution
(20). Thus, it can be argued that the mirror neuron theory of

action understanding is one of the most influential examples
of embodied cognition theory (21). AO therapy shows a “top-
down” effect in neurorehabilitation by activating the MSN and
causing a reorganization of motor representations at the central
level (14). So far, AO therapy has been successfully applied to
the rehabilitation of motor function for stroke patients, children
with cerebral palsy, and individuals suffering from Parkinson’s
disease (22–24).

AO therapy activates the motor areas of the MSN to
improve motor function by generating motor representations
(18, 25). However, we cannot ignore the influence of sensory
representations onmotor function and the sensorimotor network
when considering motor control and motor rehabilitation.
Phenomena such as the rubber hand illusion (26, 27) and the
mirror synaesthesia (28, 29), and phantom limb sensations (30)
illustrate that sensory representations can also be embodied.
Studies of phantom limb phenomena show that individuals
continue to have awareness and experience sensations of bodily
unity and continuity despite actual sensory and motor loss
(31, 32). Similarly, the rubber hand illusion confirms that under
multisensory stimulation, vision typically dominates somatic
sensation and has the potential to perceive the virtual body as
its own (33). These findings are essential evidence for embodied
cognition theory, which posits that the neural systems that
perceive those properties can represent semantic knowledge of
perceptual properties (34). So, could sensory observation (SO)
facilitate the formation of sensory representations of perceived
sensory experiences and mapping to the sensory nervous system
with the help of visual stimuli? Research has established that
mirror neurons are both motor and sensory neurons (35).
Therefore, based on the combination of mirror neurons and
embodied cognition theory, it is reasonable to assume that SO
may activate the sensory areas of the MSN and form sensory
representations through understanding sensory information a
priori. The activation of the sensory nervous system may further
facilitate the integration of sensory and motor networks, which
would be more conducive to the recovery of sensory-motor
function. Nevertheless, our hypothesis remains to be tested.

The sensorimotor network is responsible for the control
of somatic sensation and movement, characterized by strongly
functional coupling to nearby areas (36). The motor component
of the sensorimotor network included the primary motor
cortex (M1) and caudal premotor, whereas the somatosensory
component included the primary somatosensory cortex (S1)
and most of the somatosensory area (Brodmann’s 5L) (36).
It has been demonstrated that peripheral nerve stimulation
can modulate M1 excitability via the existing cortico-cortical
connection between S1 and M1 or via direct projections
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from the thalamic nucleus (37, 38). Nasrallah et al. (39)
have demonstrated that effective sensory input is critical to
motor output, which regulates the integration of sensorimotor
networks. Therefore, the improvement of sensory function
through sensory input-based rehabilitation training may be
of great significance to the recovery of motor function (40).
Previous sensory rehabilitation investigation has focused on
somatosensory stimulation (SS) through “bottom-up” peripheral
sensory inputs (41). Nevertheless, the effect of SS may be
compromised in cases where the sensory circuits are impaired
(42). Mikkel et al. (43) showed that input of visual signals
improved tactile discrimination and acuity. It is possible that
visual stimulation promotes S1 activation and leads to increased

excitability of M1, which induces brain plasticity (20). Therefore,

we wondered whether SO forming a subjective experience could

produce effects similar to sensory stimulation. Could these

“top-down” sensory representations activate sensory or motor
areas in the sensorimotor network and thus facilitate sensory-

motor integration? To date, SO and sensorimotor rehabilitation
mechanisms have not been fully elaborated.

With the development of neuroimaging techniques, task-
based functional magnetic resonance imaging (fMRI) has

been employed to investigate neuroanatomical and functional
changes in sensation and movement (44). It provides a good
foundation for our research on the activation of mirror neurons
and the sensorimotor network during SO (45). This study
designed SO and SS as tasks to reveal the possible neural
mechanisms underlying the sensorimotor function changes and
their relevance with mirror neurons in healthy adults by a task-
based fMRI. We hypothesized that SO therapy has the potential
to treat sensorimotor dysfunction based on mirror neuron and
embodied cognition theory. We also expect SO to activate the
specific mirror neurons and sensorimotor network-related brain
regions to enhance sensorimotor integration, which is a crucial
hub for sensorimotor rehabilitation. It will provide a basis for
further research on SO in post-stroke patients.

MATERIALS AND METHODS

Participants
We recruited 30 undergraduate or graduate Chinese students
as healthy participants (15 men and 15 women; age range,
18–28 years; mean ± SD, 22.57 ± 2.49 years) for this study
through poster advertisements and word-of-mouth advertising.

FIGURE 1 | The basic fMRI experimental scheme. We adopted a block design with two conditions in our fMRI experiment with an ABBA task sequence.
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All participants were right-handed (Edinburgh handedness
inventory) (46), had normal or corrected-to-normal vision, had
no history of neurological or orthopedic diseases or drug or
alcohol abuse and were not pregnant or lactating. This study
was approved by the ethics committee at Yueyang Hospital of
Integrated Traditional Chinese and Western Medicine, Shanghai
University of Chinese Traditional Medicine, China (Ethics No.
2020-178). A total of 30 participants provided written informed
consent, and this study was performed following the Declaration
of Helsinki guidelines.

Experimental Design
The study design was based on a block design and involved
two conditions, as follows: (i) a video of a brush brushing
someone’s right forearm (task condition A) and (ii) a picture
with a white circle on a black background (task condition B).
There was a 30-s rest period between the two task conditions,
during which a picture with a white fixation cross on a
black background (rest period) was shown. When the brushing
video appeared on the screen, participants were instructed
to observe the brushing movements. When the picture with
a white circle or fixation cross on a black background was
visible, they were instructed to remain still, to think of nothing,
and to focus on the screen. The difference between the task
conditions was that, when the picture with a white circle
appeared, personnel used a brush to brush the participants’
right forearm. The brushing during task condition B was
performed by the same professionally trained physiotherapist.
Each task condition block was repeated twice in the ABBA
sequence, with a rest period block in between each task
condition block (9 blocks = 2 task condition A blocks + 2 task
condition B blocks + 5 rest period blocks). Each block lasted
for 30 s. Therefore, the total duration of the task was 4min
and 30 s.

Before fMRI scanning, participants were familiarized with
the fMRI task. After a task-based scan, participants were
instructed to close their eyes and keep their heads still, and
a T1-weighted structural scan was collected immediately.
The basic fMRI experimental scheme is illustrated in
Figure 1.

MRI Data Acquisition
Each participant underwent a series of scans using a 3-Tesla
MRI scanner (SIEMENS VERIO, Erlangen, Germany) with
an 8-channel head coil at Yueyang Hospital of Integrated
Traditional Chinese andWestern Medicine, Shanghai University
of Chinese Traditional Medicine, China. They were positioned
supine in the MRI scanner with a foam pad placed around
their head to reduce movement and provided with earplugs to
minimize theMRI noise. Stimulus presentation was controlled by
Presentation software (SA-9939, http://www.sinorad.com/pro-
show-103.html).

The MRI scanning session included a 4.5-min eyes-open
task-based scan and a 6-min eyes-closed T1-weighted structural
scan. Task-based fMRI images were obtained using the following
sequence: repetition time (TR) = 2,500ms; echo time (TE) =
30ms; field of view (FOV) = 192mm × 192mm; flip angle (FA)

= 90◦; acquisition matrix size = 64 × 64; voxel size = 3mm ×

3mm × 3mm; number of slices = 39; slice thickness = 3mm,
with no gap. Three-dimensional magnetization prepared rapidly
acquired gradient echo (MPRAGE) T1-weighted structural
images were obtained using the following sequence: TR =

1,900ms; TE = 2.93ms; FOV = 256mm × 256mm; FA = 9◦;
acquisition matrix size = 256 × 256; voxel size = 1mm × 1mm
× 1mm; number of slices = 160; slice thickness = 1mm, with
no gap.

fMRI Data Preprocessing and Analyses
The fMRI data were preprocessed and analyzed using the SPM12
software program (Statistical Parametric Mapping; https://
www.fil.ion.ucl.ac.uk/spm/). First, original DICOM data were
converted to NIFTI format, and their quality was checked.
Two participants were eliminated in the follow-up phase due
to insufficient data quality. Then, slice timing correction and
motion correction (realignment) were performed using a middle
slice as a reference (slice 39), and we excluded participants with
excessive head motion (translation > 2mm; rotation > 2◦).
Two participants were discarded due to excessive head motion.
Next, we normalized the realigned images using the Montreal
Neurological Institute (MNI)—T1 template (resampling voxel
size, 3mm × 3mm × 3mm). Finally, an 8-mm full width at
half-maximum (FWHM) Gaussian kernel was applied to smooth
the data.

After preprocessing, 26 participants were included in the first-
level and second-level general linear model (GLM) analyses. For
the first-level GLM analysis, we compared task condition A vs.
the rest period and task condition B vs. the rest period. We

TABLE 1 | Brain regions with significant differences based on a one-sample t-test

(two-sided) of SO (voxel-level, FDR-corrected p < 0.001, cluster size > 10 voxels).

Brain regions (AAL) Cluster

size

Peak MNI coordinates (mm) Peak t-value

x y z

Positive

Lingual_R 2,885 −42 −75 6 11.6111

Parietal_Inf_L 1,030 −42 −39 60 9.5659

Precentral_L 306 −27 −9 54 6.6405

Parietal_Sup_R 136 24 −60 60 6.2609

Temporal_Sup_R 120 63 −33 21 7.6118

Supp_Motor_Area_L 108 −6 −3 66 6.1263

Fusiform_L 47 −42 −45 −18 6.6534

Postcentral_R 24 57 −21 39 4.8478

Precentral_R 22 51 6 42 5.1614

Rolandic_Oper_L 21 −36 −3 12 4.9797

Negative

Angular_R 61 45 −75 33 −7.2183

Frontal_Sup_R 34 24 39 42 −6.2509

Hippocampus_R 21 30 −36 −3 −6.1587

Precuneus_R 18 12 −60 27 −5.2053

SO, sensory observation; FDR, false discovery rate; AAL, automated anatomical labeling;

MNI, Montreal Neurological Institute; L, left; R, right.
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defined task condition A vs. the rest period as SO and task
condition B vs. the rest period as SS. Additionally, six head
motion parameters obtained from the realignment step were
used as covariates in the first-level analysis. For the second-level
GLM analysis, we performed a one-sample t-test (two-sided) to
explore the brain activation pattern under two conditions, with
age and gender as covariates of no interest. Comparisons were
conducted using paired-sample t-tests and conjunction analysis
to determine differential and similar activations between SO
and SS.

Results were visualized with xjView software (https://www.
alivelearn.net/xjview/) and MRIcron software (https://www.
nitrc.org/projects/mricron/). Only brain regions that survived
a false discovery rate (FDR) corrected threshold of p <

0.001 at the voxel-level and a cluster size >10 voxels
were reported.

RESULTS

Whole-Brain Activation During SO
As shown in Table 1 and Figure 2, SO activated the bilateral
precentral gyrus (PreCG), left supplementary motor area
(SMA), right postcentral gyrus (PoCG), left IPG, right
superior parietal gyrus (SPG), right superior temporal gyrus
(STG), left fusiform, right lingual gyrus, and left rolandic
operculum (voxel-level, FDR-corrected p < 0.001, cluster size >

10 voxels).

Whole-Brain Activation During SS
As shown in Table 2 and Figure 3, SS activated the right
supramarginal gyrus (SMG), bilateral MTG, left PreCG, left
thalamus, right insula, right IFG (opercular part), and right
superior cerebellum (voxel-level, FDR-corrected p < 0.001,

FIGURE 2 | Axial slices with corresponding Z-coordinates (MNI) from the t-value map of SO (voxel-level, FDR-corrected p < 0.001, cluster size > 10 voxels). MNI,

Montreal Neurological Institute; SO, sensory observation; FDR, false discovery rate; L, left; R, right.
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TABLE 2 | Brain regions with significant differences based on a one-sample t-test

(two-sided) of SS (voxel-level, FDR-corrected p < 0.001, cluster size >10 voxels).

Brain regions (AAL) Cluster

size

Peak MNI coordinates (mm) Peak t-value

x y z

Positive

Postcentral_L 1,611 −33 −39 57 11.1946

SupraMarginal_R 443 48 −18 24 9.0303

Postcentral_R 131 36 −39 51 8.6381

Cerebelum_6_R 126 30 −45 −24 8.7086

Temporal_Mid_L 113 −48 −60 6 7.1451

Thalamus_L 75 −15 −27 3 9.9551

Precentral_L 52 −57 6 36 6.3694

Temporal_Mid_R 47 57 −63 6 7.2924

Insula_R 44 39 −3 15 6.5018

Frontal_Inf_Oper_R 13 57 9 27 5.0783

Negative

Precentral_R 115 36 −15 45 −7.8682

Cuneus_L 84 3 −87 33 −6.1839

Occipital_Mid_L 77 −39 −84 −3 −5.9007

Occipital_Sup_R 75 27 −75 36 −6.8805

Occipital_Sup_L 72 −21 −72 24 −6.0855

Occipital_Mid_R 44 36 −81 6 −5.7753

Cerebelum_4_5_L 23 −15 −51 −21 −5.6422

SS, somatosensory stimulation; FDR, false discovery rate; AAL, automated anatomical

labeling; MNI, Montreal Neurological Institute; L, left; R, right.

cluster size > 10 voxels). Moreover, there were larger clusters of
activation in the bilateral PoCG.

The Differences in Whole-Brain Activation
During SO vs. SS
As shown in Table 3 and Figure 4, activation differences showed
that SO activated PreCG more strongly than SS (voxel-level,
FDR-corrected p < 0.001, cluster size >10 voxels). Conversely,
brain regions of PoCG showed greater activation in SS than in SO
(voxel-level, FDR-corrected p < 0.001, cluster size >10 voxels).

The Similarities in Whole-Brain Activation
During SO vs. SS
As shown in Table 4 and Figure 5, conjunction analysis revealed
that both tasks activated the bilateral PoCG, left PreCG, bilateral
MTG, right SMG, and left SMA (voxel-level, FDR-corrected p <

0.001, cluster size >10 voxels).

DISCUSSION

Neurorehabilitation therapies based on mirror neuron and
embodied cognition theory play a vital role in motor dysfunction
after stroke and are widely used in clinical rehabilitation
nowadays (11, 47, 48). However, insufficient attention has
been paid to sensory function rehabilitation. We believe
that motor and sensory functions are inseparable parts of
neurorehabilitation. Therefore, this study compared the effects

of SO and SS on mirror neurons and the sensorimotor network-
related brain regions in healthy subjects, which would provide
more possibilities for the recovery of sensorimotor dysfunction
after stroke.

A previous study has reported that observing someone’s
fingers being touched causes S1 to be activated (49). Another
study has reported that SO could activate the secondary
somatosensory cortex (S2) but not the S1 (50). In our SO task,
we confirmed activation in PoCG, which is consistent with our
hypothesis but inconsistent with the findings reported in a study
by Chan et al. of 40 healthy participants (51). However, it has
been controversial whether the somatosensory cortices can be
activated by SO. Chan et al. thought that previous studies may
have misattributed the activation of the somatosensory cortices
because of the proximity (51), which may be one of the reasons
for the controversy. Furthermore, we identified that, in some
studies, the somatosensory cortex could be activated during SO,
and their results were assessed at an uncorrected threshold with
a small sample size (i.e., the number of subjects included in the
analysis ≤15) (49, 52). A neuroimaging study has demonstrated
the importance of multiple-comparison correction, and false-
positive results can be controlled as much as possible with ≥25
subjects (53). In this study, 30 healthy participants were recruited,
and 26 participants were included in the final analysis. Moreover,
all our results were FDR-corrected. Only a significant FDR-
corrected threshold of p < 0.001 at the voxel-level and a cluster
size >10 voxels were reported. This may imply that our results
have more strength. It should also be noted that these studies
observed different parts of the body being touched, such as the
legs, hands, fingers, and face (49, 50, 52, 54). Although SS of
different body parts can lead to different sensations, it is not
yet conclusive whether SO of different body parts can produce
different sensory representations.

Maintaining the integrity of the sensorimotor network is the
critical basis for maintaining sensorimotor function. We found
that the bilateral PoCG, left PreCG, and left SMA, which are parts
of the sensorimotor network, were activated in a conjunction
analysis with SS and SO conditions. The activated brain regions
are mainly concentrated in the left hemisphere because SS or
SO of visual stimulation was performed on the subjects’ right
forearm. Katharina et al. revealed that a large part of S2 receives
both ipsilateral and contralateral stimulation (55). Another
study suggested that S2 may have hemispheric dominance, with
different functional divisions between the left and right S2,
regardless of the subjects’ handedness (56). However, in this
study, SS of the right forearm of the right-handed subjects could
activate the bilateral PoCG and recruit more neurons in the left
PoCG. Whether this is because of hemispheric dominance for
sensory remains to be determined in future studies. Notably,
there was a small cluster of activation in PoCG during SO, but
there were large clusters in PreCG. The results of differential
activation also showed that SO activated clusters in the PreCG
more than the PoCG, while SS activated areas in the PoCGmore.
These findings are not difficult to understand. Indeed, SO is part
of AO, which aims to observe the action of brushing but could
make up for the lack of sensory representation. Moreover, SO
therapy is more convenient to carry out and less demanding on
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FIGURE 3 | Axial slices with corresponding Z-coordinates (MNI) from the t-value map of SS (voxel-level, FDR-corrected p < 0.001, cluster size > 10 voxels). MNI,

Montreal Neurological Institute; SS, somatosensory stimulation; FDR, false discovery rate; L, left; R, right.

equipment. It can easily be implemented in the clinic or even
at home. The SO video can be played on nearly any electronic
device, such as a mobile phone, tablet, computer, and even a
television. Thus, we suggest that SO therapy, as a special form
of AO therapy, has therapeutic potential for use in the treatment
of sensorimotor dysfunction.

As expected, the IPG, PreCG, SPG, SMA, and PoCG can be
activated in SO, suggesting that SO may be able to modulate the
sensorimotor network by activating the MNS. This also provides
a theoretical basis for SO therapy in neurorehabilitation. IPG and
SPG, as important components of the posterior parietal cortex,
are involved in information integration, such as the selection,
preparation, and execution of movements (57, 58). Rozzi
et al. determined that mirror neurons are mainly distributed
in the inferior parietal lobule, which is very important for
action organization and action understanding (59). We observed

TABLE 3 | Brain regions with significant differences based on a paired-sample

t-test of SO and SS (voxel-level, FDR-corrected p < 0.001, cluster size > 10

voxels).

Brain regions (AAL) Cluster

size

Peak MNI coordinates (mm) Peak t-value

x y z

Positive

Occipital_Mid_L 2,767 42 −81 6 10.3526

Precentral_R 88 36 −15 45 6.8359

Negative

Postcentral_L 231 −33 −27 72 −8.4383

Rolandic_Oper_L 34 −48 −27 21 −6.6247

Rolandic_Oper_R 16 45 −21 18 −6.3004

SO, sensory observation; SS, somatosensory stimulation; FDR, false discovery rate; AAL,

automated anatomical labeling; MNI, Montreal Neurological Institute; L, left; R, right.
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FIGURE 4 | Axial slices with corresponding Z-coordinates (MNI) from the t-value map for differential activation of SO and SS (voxel-level, FDR-corrected p < 0.001,

cluster size > 10 voxels). MNI, Montreal Neurological Institute; SO, sensory observation; SS, somatosensory stimulation; FDR, false discovery rate; L, left; R, right.

TABLE 4 | Brain regions with significant differences based on a conjunction

analysis of SO and SS (voxel-level, FDR-corrected p < 0.001, cluster size >10

voxels).

Brain regions (AAL) Cluster

size

Peak MNI coordinates (mm) Peak t-value

x y z

Postcentral_L 351 −33 −45 54 8.4509

Temporal_Mid_L 61 −48 −63 9 6.4086

Precentral_L 37 −57 9 33 5.6978

Postcentral_R 34 36 −42 57 5.8526

Precentral_L 24 −27 −9 57 6.8952

SupraMarginal_R 21 63 −30 18 5.6565

Supp_Motor_Area_L 19 −6 −3 57 5.7551

Temporal_Mid_R 14 57 −60 6 5.5967

SO, sensory observation; SS, somatosensory stimulation; FDR, false discovery rate; AAL,

automated anatomical labeling; MNI, Montreal Neurological Institute; L, left; R, right.

significantly strong activations in IPG, which is consistent with
the findings of Rozzi et al. (59). From this, we hypothesized that
the IPG may be a central hub of the mirror neuron circuits,
and the entire MNS may be tightly connected through the IPG.
However, little is known at this time about mirror neuron circuits
and the neural mechanisms underlying MNS activation by SO.
Substantial further research is required to determine whether
post-stroke patients have the same activation patterns in the brain
as healthy people.

Meanwhile, SS showed increased activation of the thalamus
and insula. In particular, the thalamus is thought to be the final
gateway for sensory input to the cerebral cortex and plays a
crucial role in the sensorimotor circuits (60, 61). A recent study
reported that increased gray matter volume in the thalamus
is positively correlated with the recovery of motor function
after stroke (62). Persistent functional reorganization within the
neural networks may underlie the motor recovery process after
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FIGURE 5 | Axial slices with corresponding Z-coordinates (MNI) from the t-value map for similar activation of SO and SS; yellow activation shows areas recruited by

SO, green activation shows areas recruited by SS, and red areas represent activation overlap between SO and SS, respectively (voxel-level, FDR-corrected p < 0.001,

cluster size > 10 voxels). MNI, Montreal Neurological Institute; SO, sensory observation; SS, somatosensory stimulation; FDR, false discovery rate; L, left; R, right.

stroke, and activation of cortical circuits or thalamic circuits may
help to induce neural network plasticity (63). In addition to the
thalamus, the insula was also activated by SS. In the macaque
monkey literature, the insula is considered an integration center
of motor, sensory, emotional, and social information (64). In
humans, the insula has extensive connections with the frontal,
parietal, temporal, and limbic regions, which are thought of as the
key components of neural circuitry (65). It is regrettable that no
significant activation was observed, which may be related to the
visual input rather than somatosensory input during SO. Future
studies should explore the effects of SO on brain structure and
function in patients in order to better understand the neural
mechanism for sensorimotor dysfunction recovery in post-stroke
patients. It is also worth determining in the future whether the
combined treatment of SO and SS is more effective than each
therapy alone.

As far as we know, this is the first study to compare the
effects of forearm SO and SS onmirror neurons and sensorimotor
networks in healthy individuals. This study provides preliminary

results in SO and hopes to enrich and refine the theory of mirror
neurons and embodied cognition. On the other hand, this study
also emphasizes the importance of the sensory process in motor
function recovery. We will continue to explore the effects of
multisensory integration on brain activation in sensorimotor-
related regions in future studies so as to developmore precise and
individualized rehabilitation programs for patients after stroke.

LIMITATIONS

This study compared SS and SO in terms of mirror neurons
and sensorimotor networks. However, certain limitations should
be mentioned. First, participants’ head motions were inevitable.
For this reason, a foam pad was used to hold the head in place
to minimize the head motion. Furthermore, participants with
excessive head motion were discarded, and the head-motion
parameters were controlled as covariates in the analysis. Before
the experiment, subjects were also given a good understanding of
the experiment and familiarized with the scanning environment.
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Second, the material we used for task A was a brushing video,
while the materials for rest and task B were static symbols.
The experimental materials do not match enough. Third, the
rest period was also an important condition. Therefore, there
are actually three conditions. In this study, we used an ABBA
design. Future studies can consider Latin square design. Next, the
operation of brushing cannot be accurately timed, and temporal
errors are difficult to avoid. To minimize such errors, we asked
the same professionally trained physiotherapist who had known
in advance about the ABBA sequence to operate the brushing
task. In such a way, we ensured that the brushing operator had
enough psychological expectations and was prepared to brush
the participants’ right forearms in time. In addition, the objective
evaluations are incomplete; for example, an assessment of the
rubber hand effect is missing. Finally, this study was limited to
healthy young adults, and future studies will need to enroll post-
stroke patients to investigate the activation of sensorimotor and
mirror neurons by SO or SS and to reveal motor function changes
by SO or SS training.

CONCLUSIONS

SO had a similar activation pattern as SS in healthy subjects,
and it could activate more mirror neurons and brain regions
related to the sensorimotor networks. Based on our preliminary
study findings, SO may be a more convenient, novel, and
promising alternative therapy for sensorimotor dysfunction
recovery in post-stroke patients. In particular, linking the theory
of mirror neurons and embodied cognition to exploring the
effectiveness of sensorimotor integration rehabilitation opens a
new pathway toward a comprehensive and deep understanding
of neurorehabilitation mechanisms. Further large-scale clinical
studies to validate the efficacy of SO therapy on functional
recovery for post-stroke patients are necessary.
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