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Abstract

Background: Insulin is a therapeutic protein that is widely used for the treatment of diabetes. Its
biological function was discovered more than 80 years ago and it has since then been characterized
extensively. Crystallization of the insulin molecule has always been a key activity since the protein
is often administered by subcutaneous injections of crystalline insulin formulations. Over the years,
insulin has been crystallized and characterized in a number of crystal systems.

Results: Interestingly, we have now discovered two new crystal forms of human insulin. The
crystals were obtained when the two chaotropic agents, urea and thiocyanate were present in the
crystallization experiments, and their structures were determined by X-ray crystallography. The
crystals belong to the orthorhombic and monoclinic crystal systems, with space groups C222, and
C2 respectively. The orthorhombic crystals were obtained at pH 6.5 and contained three insulin
hexamers in R, conformation in the asymmetric unit whilst the monoclinic C2 crystals were
obtained at pH 7.0 and contained one Ry hexamer in the asymmetric unit. Common for the two
new crystals is a hexamer-hexamer interaction that has not been found in any of the previous
crystal forms of insulin. The contacts involve a tight glutamate-glutamate interaction with a distance
of 2.3 A between groups. The short distance suggests a low barrier hydrogen bond. In addition,
two tyrosine-tyrosine interactions occupying a known phenol binding pocket contribute to the
stabilization of the contacts. Within the crystals, distinct binding sites for urea were found, adding
further to the discussion on the role of urea in protein denaturation.

Conclusion: The change in space group from C222, to C2 was primarily caused by an increase in
pH. The fewer number of hexamer-hexamer interactions comprising the short hydrogen bond in
the C2 space group suggest that pH is the driving force. In addition, the distance between the two
glutamates increases from 2.32 A in the €222, crystals to 2.4 A in the C2 crystals. However, in
both cases the low barrier hydrogen bond and the tyrosine-tyrosine interaction should contribute
to the stability of the crystals which is crucial when used in pharmaceutical formulations.

Background people. The primary administration route is by subcutane-
The therapeutic hormone insulin is a small protein used  ous injections of microcrystals or mixtures of microcrys-
daily in the medical treatment of diabetes by millions of  tals and amorphous protein. After subcutaneous
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injection, the insulin crystals dissolve slowly, thus leading
to a slow intermediate release of insulin into the blood
stream. Ever since the biological function of insulin was
discovered in the 1920s [1], the molecule has been widely
characterized both biophysically and structurally. The
crystallographic structure was one of the first protein
structures determined [2]. It has since then been crystal-
lized in a number of space groups of which the most com-
mon belong to the monoclinic, rhombohedral, cubic and
tetragonal crystal forms. The type, size and morphology of
the crystals affect how fast insulin is released, which is
why crystallization of insulin has been studied exten-
sively. Alternative administration routes are presently a
rapidly expanding research field and insulin microcrystals
may be well suited for other delivery methods, including
pulmonary delivery or sustained release formulations [3-
5]. The insulin molecule consists of two chains, A and B,
with 21 and 30 residues respectively. Chain A is built up
by two helical fragments separated by a short loop linked
to one of the helices by an intra-chain disulfide bond. Two
additional disulfide bonds link chain A to the larger chain
B. In the biologically active form, insulin exists as a mon-
omer in which chain B contains a central helical region
flanked by two elongated parts. In the presence of divalent
ions like zinc, the monomers assemble into hexamers [6],
where each of the two central zinc ions is coordinated by
three histidine residues. In the hexameric form, chain B
has been shown to exist in two allosteric states denoted T
and R [7]. The R state has two allosteric binding sites usu-
ally referred to as the phenolic binding site and HisB10
anion site. The T — R state transition and the two different
B chain conformations, referred to as T; and R, have been
described by spectroscopic and crystallographic studies.
The T, conformation, which is characterized by an
extended conformation of residues 1-8 of chain B, is
obtained at low chloride concentrations and in absence of
phenol derivatives [8,9]. Phenolic derivatives are used as
preservative in insulin pharmaceutical formulations. The
most commonly used are phenol, meta-cresol, resorcinol
and methylparaben. The R conformation is obtained in
presence of these derivatives and at high chloride concen-
trations. In this form the first eight residues of the B chain
adopt a helical conformation, which together with the
central helical segment gives a continuous helix which
includes residues B1 to B19 [10-13]. This transition from
an extended to an alpha-helical conformation causes the
first residue of chain B, PheB1 to undergo a ~30 A shift in
position. Although chloride is the most commonly used
anion, other anions such as SCN-, OCN-, CN-, N;- and
NO, have also been shown to be useful [7,14,15]. Like
chloride, in the absence of phenolic derivatives and at
high concentrations, these anions are able to induce the R
state in three of six monomers in a hexamer. The remain-
ing three monomers have an extended conformation (T
state) in the region including residues B1 to B8. The R
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state of the first three monomers is incomplete with resi-
dues B4 to B8 in a helical conformation, while residues B1
to B3 have an extended conformation. This hexamer con-
figuration is denoted T;R,f, where the 'f' indicates a frayed
R conformation [16,17].

We here present a study which shows that certain chao-
tropic additives can induce two novel types of insulin crys-
tals, and that the type of crystals formed depends on the
charge state of insulin, i.e. is pH dependent. The structures
and crystal packing interaction of the two new crystal
forms have been analyzed and compared to crystal pack-
ing interactions in other previously known insulin crys-
tals.

Results and discussion

Crystallization of insulin is of high importance in phar-
maceutical formulations and in insulin manufacturing
and has been systematically investigated since the 1920s
[6,18-20]. By introducing chaotropic agents in the crystal-
lization experiments, we succeeded in identifying two
new crystal forms of native human insulin. The crystals
were found using two different crystallization experi-
ments. The first crystals were obtained in a crystallization
screen with varying concentrations of urea and sodium
chloride in presence of zinc and resorcinol. The crystals
were initially characterized by X-ray powder diffraction
and were shown to have a powder pattern differing from
previously known insulin crystal forms [21]. Further opti-
mizations of crystallization conditions resulted in crystals
suitable for single crystal analysis and determination of
crystal system which was found to be orthorhombic in
space group C222,. The crystals appeared in the pH range
6.0 - 6.5 while a second type of crystals, characterized as
monoclinic with space group C2 grew in the pH range 6.5
- 7.0. In the overlapping pH interval around pH 6.5, the
C222, crystals were present in wells with lower salt and
urea concentrations. A few drops contained a mixture of
the two crystal types. In a parallel experiment, the urea
and sodium chloride were substituted for thiocyanate.
Interestingly, the same two crystal types appeared here, at
the same pH intervals, with a clearer pH distinction at pH
7.0. Crystallization with thiocyanate or chloride ions
without a phenol derivative has previously been shown to
stabilize the T;R,fform of hexameric insulin in a rhombo-
hedral crystal system [16,17]. In our case when resorcinol
and thiocyanate were present, the orthorhombic C222,
and monoclinic C2 crystals appeared. The well character-
ized monoclinic crystals in space group P2, [10,11] were
present at pH values above 7.0 in wells with low salt and
high urea concentration and increased in frequency as the
pH was raised to become the dominating crystal form at
pH > 7.5. The crystals obtained in presence of urea will be
referred to as C222,urea and C2urea while the two crystal
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forms obtained with thiocyanate are referred to as
C222,scn and C2scn.

Structure of insulin in the orthorhombic lattice

The crystals grown at pH 6.5, from both the urea- and thi-
ocyanate (NaSCN) screen, were found to belong to space
group C222, with unit cell parametersa =59 A, b =220 A,
c =223 A. The asymmetric unit contains three insulin hex-
amers with a crystal solvent content of 64%. The hexamers
have R, conformation and contain two zinc atoms/hex-
amer coordinated to three histidine residues (HisB10). In
the C222,urea crystal, the zinc is additionally coordinated
by a chloride ion at an average distance of 2.15 + 0.10 A,
whilst in the C222,scn crystal structure the chloride ion is
replaced by a thiocyanate. The thiocyanate coordinates to
zinc through its nitrogen atom with an average distance of
1.82 + 0.04 A. The three hexamers in the asymmetric unit
are arranged in an angular formation where the central
hexamer connects the two outer hexamers with an angle
of ~110°, Figure 1a. The non-crystallographic three-fold
axes which pass through the two zinc atoms in each hex-
amer are almost orthogonal to each other. In both the
C222,urea and C222;scn structures, one co-crystallized
resorcinol molecule is bound to each insulin monomer in
the phenolic binding pocket. The resorcinol molecule is
hydrogen bonded with its first hydroxy group to the carb-
onyl O atom of CysAG6 (average distance 2.6 A), and the N
atom of CysAl1 (average distance 2.9 A). The second
hydroxy group hydrogen bonds to a water molecule with
an average distance of 2.7 A. This water molecule forms
another hydrogen bond to the O atom of CysA11 with an
average distance of 2.8 A. In the final stages of refinement,
one glycerol molecule was modeled into the C222,scn
structure at a position where it interacted through its oxy-
gen atoms with the amide nitrogen of PheB1 (2.9 A) and
the carbonyl oxygen of ThrA8 (2.9 A). The crystal packing
of the C222,urea structure is shown in Figure 1b.

Structure of insulin in the monoclinic lattice

The crystals obtained at slightly higher pH (pH 7.0)
belong to the monoclinic space group C2 with cell dimen-
sionsa=100A,b=60A, c=62A, B=116°. They contain
one hexamer with R, conformation in the asymmetric
unit and have a solvent content of 50%. The crystal pack-
ing is shown in Figure 1c. Both the C2urea and C2scn
structures have two zinc atoms/hexamer located 14.7 A
and 15.2 A apart respectively. The zinc coordination is
identical to the C222, crystals. In the C2urea structure,
two additional resorcinol molecules could be fitted into
the electron density. The location of the first is very close
to binding site II, described in [13]. At this site, the first
hydroxy group of the resorcinol molecule is hydrogen
bonded to the OG atom of SerB9 (2.9 A) in an alternating
conformation. The other hydroxyl group interacts with
the carbonyl oxygen of GluB13 (2.5 A) and a water mole-
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cule (3.1 A). The water molecule, in turn, makes a hydro-
gen bond to the carbonyl oxygen of SerB9 (3.1 A). In
contrast to the phenolic binding interactions observed
earlier in the PDB entry 1ZEG[13], where the phenolic
oxygen hydrogen binds to HisB5, the angular orientation
of the HisB5 in the C2urea structure does not seem to per-
mit any interaction with the resorcinol molecule. The sec-
ond additional resorcinol is located at the surface of the
insulin in a solvent channel between two monomers, sur-
rounded by water molecules. At the end of refinement,
one glycerol molecule from the cryo-solution was added
to both C2 structures. The glycerol molecule in the C2scn
structure was found at a corresponding position as in the
C222,scn structure, while the glycerol molecule in the
C2urea structure was found in the solvent channel leading
towards one of the zinc atoms, where it interacted with
surrounding water molecules.

Refinement statistics for the four crystal forms is shown in
Table 1. 95.4% of the residues in the C222,urea structure
were found in the most favored regions of the Ramachan-
dran plot and 4.6% in additional allowed regions. For the
C222,scn structure, the corresponding values were 95.8%
and 4.2% and for the C2 structures (C2urea/C2scn)
96.4%/96.0% and 3.6%/4.0%, respectively. The models
showed no residues located in the generously allowed or
disallowed regions of the plot.

All four insulin molecules are structurally very similar.
Pair-wise superposition and comparison of the C2 struc-
tures results in a root-mean-square (r.m.s.) distance
between corresponding C,, atoms of 0.35 A and of 0.88 A
when all common atoms are included. For the C222,
structures the same r.m.s. distances are 0.26 A and 0.58 A.

A common feature of the four structures is the disruption
of the otherwise characteristic continuous a-helix from
reside B1 to B19. Instead of having a-helical conforma-
tion, some of the PheB1 residues in all four structures
have a non-helical conformation. In the C222, structures,
the majority of the B-chains (11/18 and 14/18 in the
C222,urea and C222,scn structures respectively) have this
conformation (conformation I) where the phi/psi values
of ValB2 are -80/+45. In the second conformation (II), the
phi/psi values are ~-60/-45, closer to the typical values for
an a-helix. The different B-chain conformations are illus-
trated in Figure 2, where they are superposed on each
other. The distance between the Ca-atom of the PheB1 res-
idue in the two different conformations is ~6 A. For some
of the residues, electron density could be seen for back-
bone atoms in more than one orientation. In such cases,
the conformation with highest density was chosen, where
also side chain atoms could be modeled with confidence.
It should be noted that the density is weak for the side
chain atoms of the Phel residue in chains B, F, b, f, h, j
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Figure |

Crystal packing. (a) The asymmetric unit of the C222, crystal form viewed down the non-crystallographic three-fold axis of
the central hexamer. The flanking hexamers are located around the central hexamer at an angle of ~110°. The local non-crys-
tallographic three-fold axis of the two outer hexamers is almost orthogonal to the central non-crystallographic three-fold axis.
The zinc atoms are illustrated as large spheres to mark the position of the three-fold axes. The hexamers are numbered from
I to lll. (b) The crystal packing in the C222, space group drawn with main chain trace with the asymmetric unit in magenta. (c)
The crystal packing of the human insulin in space group C2. The asymmetric unit molecule is colored magenta. The inserts in

(b) and (c) show crystals of the C222, and C2 forms, respectively.
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Table I: Data processing and refinement statistics for the orthorhombic and monoclinic insulin crystallized in presence of urea and

thiocyanate respectively.

Data sets
Urea containing crystals

Na-SCN containing crystals

C222,urea C2urea C222,scn C2scn
Data processing
Values in parenthesis are for the highest resolution shell
Wavelength (A) 1.0 1.1 1.3 1.3
Cell axis a, b, ¢ (A) 58.9,219.3,2237 100.2, 60.2, 62.9 59.0,219.5,224.5 100.6, 60.8, 62.1
Cell angles o B v (deg) 90.0 90.0 90.0 90.0 116.290.0 90.0 90.0 90.0 90.0 I16.1 90.0
Temperature (K) 100 100 100 100
Diffraction limit (A) 2.05 1.70 1.97 1.70
Highest resolution shell (A) 2.1 -2.05 1.75-1.70 20-1.97 1.75 - 1.704
No. of observations 450 276 (23593) 72 333 (3616) 885 954 (9682) 143 773 (4037)
Unique reflections 91 251 (6331) 34195 (1952) 102 732 (3997) 34924 (1890)
Redundancy 4.9 (3.7) 2.1 (1.8) 8.6 (2.4) 4.1 (2.1)
Rimerge® (%) 8.6 (39.3) 3.4 (l6.9) 9.0 (37.3) 4.3 (13.3)
Il (1) 11.6 (3.2) 13.7 (4.1) 17.7 (2.4) 21.6 (6.5)
Refinement statistics
Values in parenthesis are for the highest resolution shell
Resolution range (A) 28.31 -2.05 19.57 - 1.70 19.99 - 1.97 19.78 - 1.70
Highest resolution shell (A) 2.10-2.05 1.74-1.70 2.02-1.97 1.75-1.704
No. of reflections 86 749 (6376) 32471 (l621) 97 508 (6629) 33 178 (1700)
Completeness 99.9 (100) 92.3 (62.5) 99.5 (93.1) 94.8 (67.5)
R value (%) b 18.4 (21.3) 18.5 (22.9) 17.5 (21.7) 17.8 (25.5)
Riree Value (%) b 22.7 (28.8) 22.3 (33.4) 21.1 (25.4) 22.1 (33.1)
r.m.s.d.c
Bond length (A) 0.016 0.012 0.014 0.011
Bond angles (deg) 1.6 1.3 1.4 1.3
B factors (A 2) ¢
Average all atoms 322 27.2 338 20.9
All PheBI 40.1 (18) 274 (6) 42.4 (18) 18.7 (6)
a-helical PheBl 42.0 (7) 29.5 (3) 36.8 (5) 21.7 (3)
Non-helical PheBlI 389 (1) 254 (3) 43.6 (13) 15.8 (3)
@R erge = S|l - 1]/SI where |;is an individual intensity measurement and | is the mean intensity for this reflection.

bR value = crystallographic R-factor = S|F | - |Fc.ic|/S|Fopsls Where Fobs and Fcalc are the observed and calculated structure factors respectively.
Riree Value is the same as R value but calculated on 5% of the data not included in the refinement.

¢Root-mean-square deviations of the parameters from their ideal values.

dFigures in parenthesis indicate number of monomers in each group.

and | in the C222,scn structure and chains h, j, 1 in the
C222,urea structure (chain names refer to the continuous
naming convention of all chains in the PDB file). The
PheB1 orientations in the C2 structures resemble those of
the C222, structures. Three out of the six B-chains in each
structure have a non-helical conformation. The electron
density is generally better defined in these two structures,
which is reflected in the crystallographic B-factors. A com-
parison of the B-factors shows that PheB1 residues with
non-helical conformation have a lower B-factor in three of
the four structures, Table 1.

In contrast to the T;R,f conformation, where B1-B3 have
an extended conformation, only resides B1-B2 have a
non-helical state. A similar, non-helical conformation of

the PheB1 residue has previously been observed for one of
the B-chains in an R insulin in complex with resorcinol
(PDB ID: 1EVR) [11]. In that case, the carbonyl oxygen of
PheB1 is coordinating a sodium ion which was further
coordinated by the C terminal AsnA21 of a symmetry-
related molecule. In our case, PheB1 is stabilized in a non-
helical conformation by a hydrogen bond between amide
nitrogen of PheB1 to the carbonyl oxygen of ThrA8 in a
neighboring molecule, or a hydrogen bond between the
carbonyl oxygen of PheB1 and the amide nitrogen of
AsnB3 in the same chain. There are further interactions
with symmetry-related molecules, such as the PheB1
amide nitrogen interactions with the OH group of a sym-
metry-related TyrA14, or the carbonyl oxygen of CysA20
and AsnA18.
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Figure 2

Superposed B chains from the four structures. (a) C2urea, (b) C2scn, (c) C222,urea and (d) C222,scn. Three B chains in
each of the two C2 structures and the majority of the B chains in the C222, structures have the PheBI residue in an extended
conformation (the top most population). Labels indicate chain names used in the final PDB files. For illustrative purpose, the
side chain of the C-terminal LysB29 is included in the figures to illustrate the flexibility. This side-chain was subsequently omit-
ted from several chains in the final PDB files due to disordered electron density.
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In close proximity to the PheB1 residue of the three B
chains with non-helical conformation in the C2urea struc-
ture there was an electron density peak with a height of 5
o in the 2F -F.map and ~5 ¢ in a F -F. difference map. The
location of the peak was close to the position where the
carbonyl oxygen of PheB1 would be located if the confor-
mation was a-helical. Given the observed electron density,
a chloride ion was fitted into this position. It is coordi-
nated to the amide nitrogen of HisB5 (3.2 A) and two or
three water molecules at an average distance of 3.3 A. The
corresponding sites in the C222,urea structure were too
disordered to be interpreted in a similar manner.

Location of main-chain and side-chain atoms was ambig-
uous for the residues LysB29 and ThrB30 in most of the
chains in the four structures. Furthermore, the following
residues were modeled with alternating side chain confor-
mations; C2urea structure: GInB4.2, SerB9.5, ValB18.5,
LeuB17.6; C2scn structure: GluB13.3, ValB18.4;
C222,urea structure: LeuB17.1.1, ArgB22.1.4, GlnB4.1.6,
ValB18.11.4 AsnB3.111.1; C222;scn structure: ValB18.1.2,
ValB18.11.4, ValB18.I1.5 (the roman numerals refer to the
hexamer number while the single integer following a
punctuation indicates monomer).

Crystal packing
There is a strikingly high similarity between the crystallo-
graphic contact surfaces of the C222, and C2 crystal

Figure 3
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forms. For five of the six contact sites found in the C2 crys-
tal form, there is a corresponding contact surface with
equivalent residue composition in the C222; structure.
Each hexamer in the C222, structure has one symmetry-
related contact surface that is identical to the hexamer-
hexamer contact in the asymmetric unit. Including the
hexamer-hexamer contacts within the asymmetric unit
results in five such contact interfaces. In comparison, the
C2 structure has in total six neighboring symmetry-related
hexamers of which only one has the same kind of pair-
wise interactions as the asymmetric hexamer-hexamer
contact in the C222, structure. An overview of the crystal
contacts in the C222, and C2 crystals is shown in Figure 3.

A special crystal interaction at the dimer-dimer interface

Each of the two hexamer-hexamer interfaces in the asym-
metric unit of the C222, crystals involves tyrosine-tyro-
sine interactions between different Tyr A14 groups. Tyr
Al4 is located at the dimer-dimer interface within the
insulin hexamer so that the crystal packing brings four dif-
ferent Tyr A14 groups in proximity, Figure 4. The tyrosine
side chains are pair wise stacked, such that the OH-group
of TyrA14 in the first hexamer hydrogen bonds to the
backbone oxygen of a TyrA14 in the neighboring hexamer
(2.8 A). The OH-group of the latter TyrA14 forms, in turn,
hydrogen bonds to two water molecules. The polar inter-
actions between the hexamers, Figure 4, comprise hydro-
gen bonds between GInA15.1 NE2 - GluA17.11 OE2 (3.0

b)

Overview of the crystal contacts. The crystal contacts in the C222, (a) and C2 (b) crystals are shown in sphere represen-
tation where the interfaces comprising the tyrosine-tyrosine and glutamate-glutamate interaction are shown in red.
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ArgB22

Figure 4

One of the hexamer-hexamer interfaces in the C222,
urea structure. The two tyrosine-tyrosine interactions
(TyrAl4-TyrAl4) are flanking a close glutamate-glutamate
contact of 2.3 A. Both glutamates interact with ArgB22 (dis-
tance 2.8 A). There are further two contacts between a
GIuA17 and GInAI5 from the neighboring hexamer. Resi-
dues from the neighboring hexamer are colored blue and
marked with an *. Distances are given in Angstrém (A).

A), GluA17.I OE1 - GInA15.1I1 NE2 (3.1 A) (I or .II
denotes different hexamers). Additionally, there is an
unusually short contact between two glutamates,

GluA17.I OE1 - GluA17.11 OE1 (2.32 + 0.07 A). In spite

http://www.biomedcentral.com/1472-6807/7/83

of the relative high pH of 6.5, the short Glu-Glu distance
suggests a protonated carboxyl group of one of the gluta-
mates. Normally, the pKa value for an exposed glutamate
residue is ~4.4 in water environment. Given that GluA17
is protonated, the pKa value must thus be higher. One
arginine (ArgB22) is located 2.8 A from each glutamate
and could potentially shift the pKa value by its inductive
effect. The pK, value could also be shifted by the sur-
rounding hydrophobic environment. GluA17 is flanked
by the two tyrosine-tyrosine interactions, and it is conceiv-
able that an uncharged protonated glutamate is more
favorable in that environment. The short distance is indic-
ative of a strong, low barrier hydrogen bond, where the
proton is shared between the two carboxylates. Such low
barrier hydrogen bonds have been found in protein active
sites as part of enzyme catalysis [22,23] but also on pro-
tein surfaces [24].

As the pH is increased to 7.0, the second crystal form C2
appears. In this crystal form, there is only one crystal pack-
ing interaction comprising the tight glutamate-glutamate
and tyrosine-tyrosine interaction, Figure 3. The increased
pH could be the reason for the smaller number of such
contacts. At higher pH, the shared hydrogen between the
two glutamates becomes more delocalized and the repul-
sive forces will dominate. Consequently, the distance
between the carboxylates is longer, 2.40 A, versus 2.32 A
for the C222, structures, indicating a weaker interaction at
this pH. At pH values above 7.5, only the monoclinic P2,
crystal form [11] is observed, in which no such interface
exists.

Interestingly, the position occupied by the tyrosine from a
neighboring hexamer is known to bind phenolic com-
pounds like resorcinol and m-cresol [11,13]. In Figure 5a-
c the phenolic binding sites in the pdb files 1IEVR (R hex-

Figure 5

Comparison of the binding pocket for a phenol derivative as seen in other structures and the position for hex-
amer-hexamer interaction as observed in this study. In (a), the phenolic binding pockets of 1EVR (blue) and 1EVé6 (pur-
ple) are superposed. One resorcinol and one meta-cresol molecule is shown to bind in the pocket created by the two flanking
tyrosine residues. The side chain of the tyrosine to the right in 1EVR is missing in the pdb file. In (b) the same structures are
superposed with the C222,urea structure (orange). The side chain of the left tyrosine is flipped to accommodate the hexamer-
hexamer interaction shown in (c), where a neighboring hexamer from the asymmetric unit is included (grey). The tyrosine side
chain of the second hexamer occupies the same position as the phenolic compounds.
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americ insulin complexed with resorcinol) and 1EV6 (R,
hexameric insulin complexed with m-cresol) [11] are
compared with one of the hexamer-hexamer interfaces in
the C222,urea structure. The phenyl ring of the neighbor-
ing tyrosine superposes the phenolic derivatives and
should contribute to the stability of both the hexamer
contact and the insulin structure.

Analysis of crystal contact surfaces

In order to compare the different crystal forms of insulin,
the contact sites were characterized by means of polarity
and contact area. A summary of the properties for the var-
ious contact sites for the four structures presented in this
study is shown in Table 2. Data for other crystal forms of
hexameric insulin are also included. The surface area bur-
ied by crystal contacts range from 1423 A 2 to 3314 A 2,
which constitutes a fraction of buried surface area of
between 10.6% and 24%. The smallest value is found for
the orthorhombic C222, crystals where the total contacts
surface for the three hexamers is 4269 A 2, which amounts
to a contact surface of 1423 A 2/hexamer. The largest sur-
face area originates from the rhombohedral crystal form,
space group R3 with T, configuration of the B-chain, PDB
ID: 1MSO [9]. The monocdlinic crystals in space group C2
and P2, as well as the tetragonal crystal in space group
P4,2,2 all have six contact sites while the rest have eight.
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The size of individual contact sites ranges from 236 A 2 to
414 A2,

The contact surfaces were characterized as either polar
(oxygen and nitrogen atoms, including ionisable groups)
or non-polar (carbons). The four structures presented in
this study constitute a group with a high fraction of non-
polar contact surface, ranging from 53% to 56% of the
total contact area, compared to 41% to 50% for the other
crystal forms. The monoclinic P2, crystal form is the most
hydrophilic, with a 40/60 distribution between hydro-
phobic and hydrophilic contact area. This analysis is lim-
ited in that bound water molecules were not considered in
the crystal contact interactions since the criteria for mode-
ling water molecules may vary among crystallographers
and are also dependent on data quality. Several interac-
tions could however involve hydrogen bonds to water
molecules. Side chains with missing atoms were rebuilt in
order to use the surface with an atom composition repre-
senting the true surface for the property calculations. They
were however rebuilt automatically and could potentially
be in a wrong orientation.

Comparing the residue identity of the crystal contacts for
the crystals presented in Table 2 shows that seven of the
interface residues are common for all crystal forms

Table 2: Properties of crystal packing contact surfaces of insulin hexamers in seven different space groups.

Protein C2urea C2scn C222lurea C222Iscn IEVR[II] IEV3[I1] IMSO[9] ITRZ[I7] nph-insc
Space group C2 c2 C222, C222, P2, R3 R3 R3 P4,2,2
B-chain configuration Re Re R¢ Re Re Re T, T3R,f R¢
pH 7.0 7.0 6.5 6.5 6.7 85 6.3 6.4 7.3
Solvent content. (%) 50 50 64 64 49 40 36 48
Avg B-factor
protein atoms (A2) 255 19.5 32.1 335 41.1 302 12.0 328 34.8
exposed atoms (A2) 27.9 21.5 34.0 359 42.5 34 12.3 347 36.5
contact atoms (A2) 25.0 17.6 26.4 29.1 41.9 358 14.1 372 343
Tot SASA (A2)e 14546 14478 40059 41532 15245 13573 13689 13904 15067
A.(AY)p 2117 2226 4269 4060 2113 2006 3313 2438 2279
fract of tot SASA (%) 14.6 15.4 10.6 9.8 13.9 14.8 242 17.5 15.1
Atom type specific area as a fraction of A
C area (%) 55 53 53 41 45 46 50 48
O area (%) 25 24 31 32 33 35 37 32 38
N area (%) 21 20 16 15 27 20 18 16 14
S area (%) 0 0 0 0 0 0 0 2 0
C aromatic (%) 31 36 35 35 25 32 14 29 30
C aliphatic (%) 23 20 18 18 16 13 32 21 18
Pos charged Area (%) 5 3 3 3 5 0 16 16 2
Neg charged Area (%) 7 6 13 13 4 5 9 4 9
aSASA = Solvent accessible surface area.
b A one = contact area between reference molecule and a symmetry related molecule.
¢In house structure of human insulin co-crystallized with protamine.
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(GInA5, ThrA8, TyrAl14, GInAl5, AsnAl8, TyrA19 and
PheB1). Altogether, the contact sites for the six crystal
types compared in this study cover almost the entire sur-
face of an insulin hexamer. A comparison of the exposed
residues with the residues involved in crystal contacts
shows that all residues with an exposure of more than
20% participate in some contact interface. The degree of
exposure was calculated according to [25]. A number of
studies, where crystal packing contacts have been system-
atically investigated [26,27] conclude that atomic compo-
sition within crystal contacts is indistinguishable from
that of the protein surface and is rather non-specific. Stud-
ies of pancreatic ribonuclease [28] and cutinase [29], crys-
tallized in a number of space groups, showed in
accordance with the present study that virtually the
entirely protein surface can be involved in crystal contacts.

Urea binding

The C222,urea and C2urea crystals were grown in pres-
ence of 3 M and 4 M urea, respectively. Seven urea mole-
cules were built into the C2 structure. Five of these were
located at equivalent positions in the monomers, Figure 6.
The nitrogen atoms hydrogen bond primarily to the carb-
onyl oxygen of GInA5, but the carbonyl oxygen of SerA9
and IleA10 are also within a reasonable hydrogen bond-

Figure 6

Urea binding site. The most commonly occupied binding
site for the urea molecule in the C2urea and C222 urea
structures. Hydrogen bonds are primarily directed towards
the carbonyl oxygen GInA5 but surrounding carbonyl oxy-
gens from SerA9 and lleA 10 are within reasonable distances.
Marked distances are given in Angstrém (A).
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ing distance (average 3.1 A). In monomer six, the urea is
either disordered or not present. Instead, a water molecule
was built into the density. Nine out of 18 possible equiv-
alent positions in the C222, structure were occupied by
urea. In the nine positions without a urea molecule, water
was built in. Furthermore, these positions are more dis-
tant to a neighboring hexamer and therefore have a less
well-defined electron density which may explain the ina-
bility to model a urea molecule. Exceptions from the
above generalization are the monomers 1.4 and III.1,
which are close to a neighboring hexamer, but the elec-
tron density indicates two ordered water molecules.

Insulin has been shown to be tolerant of high concentra-
tions of urea and other denaturants [30,31] and urea has
previously been used to increase its solubility. One exam-
ple is the inclusion of urea to promote growth of larger
crystals of an insulin-protamine complex [32]. No signifi-
cant conformational changes were detected in our struc-
tures as a result of direct urea interactions. In spite of its
common use as a chemical denaturant of proteins, the
molecular mechanism of urea-mediated unfolding is not
known. Identification of denaturant interactions with
proteins may give insight into the early stages of protein
unfolding [33]. For a denaturant to be effective, protein-
solvent interactions must be disturbed and this is thought
to happen either through a direct or an indirect mecha-
nism [34]. A direct mechanism would involve binding of
urea molecules to the protein surface and thus compete
with water-protein interactions and enhance the solubil-
ity of hydrophobic residues. Indirect urea denaturation
would involve disruption of solvent-mediated hydropho-
bic interactions which would destabilize the protein struc-
ture. In addition, studies have shown that urea and
guanidine hydrochloride at sub-denaturant concentra-
tions stabilizes proteins at a sub global level in a mecha-
nism called protein stiffening [35,36]. The present study
shows that urea at concentrations ~3 M has one specific
binding site on the surface of the insulin molecule, inter-
acting with backbone carbonyl groups of primarily GInA5
but also of SerA9 and IleA10 residues. Given the high con-
centrations of urea present in the crystallization experi-
ments, we would expect to detect even weak binding sites
with a K, of several hundred mM. Thus it seems unlikely
that insulin denaturation occurs via a direct mechanism
which requires binding of several urea molecules. On the
other hand we see no signs of partial unfolding in our
structures which would be indicative of an indirect mech-
anism. A recent study suggests that the denaturant effect of
urea is neither due to a direct or indirect mechanism but
rather an effect of a reduction of ion pairing between ionic
and polar groups at aggregate surfaces [37], something
which also could explain the relative higher fraction of
non-polar surface at crystal contacts in our crystal forms.
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Conclusion

In spite of the extensive research on insulin crystallization
during the last 80 years we could surprisingly identify two
new crystal forms of human insulin. The major factor
behind the change of space group from C222, to C2 was
an increase in pH from ~6.5 to 7.0. A comparison of the
crystal contacts in the two space groups showed that the
interfaces are very similar. The most obvious difference
and the most remarkable contact interaction was the dou-
ble TyrA14-TyrAl4 interaction combined with a tight
GluA17-GluA17 interaction. When taking all symmetry-
related contacts into account it was found that this contact
type was more frequent in the C222, crystals when com-
pared to the C2 crystals. This crystal packing interaction
has not been observed in any of the previously known
insulin crystals. The addition of chaotropes such as urea
and thiocyanate to the crystallization buffer can have an
effect on the protein charge properties by charge screen-
ing. This could explain altered pK, values of the glutamic
acids involved in the crystal contacts and the higher frac-
tion of hydrophobic crystal contacts in the present crystal
forms compared to previously known insulin crystals. The
short carboxyl-carboxyl interaction indicates the presence
of a shared proton between the two groups and would be
a strong low barrier hydrogen bond which should contrib-
ute to the stability of the crystals.

In the case of insulin, much effort has been put into the
modification of the dimerization interactions [38,39] and
hexamer formations [40,41], but less focus has been on
the inter-hexamer interactions in solution or within crys-
tals. Modifications of surface residues can induce changes
in crystal packing due to breaking of existing interactions
and/or formation of new ones [42,43]. Engineering of the
protein surface to specifically induce a change in the crys-
tal form or improve stability in lattice contacts may pro-
duce a better diffracting crystal [44]. Since insulin is a
therapeutic protein administered also in crystalline form,
the discovery and analysis of new polymorphic forms has
implications beyond providing improved crystals for
structural studies. The inter-hexamer interaction found in
the present structures provides an interesting and novel
interface that is specific for these two crystal forms. A sin-
gle additional hydrophobic or several polar interactions
may increase the half-life of a protein by several orders of
magnitude [45]. Thus, additional inter-hexamer interac-
tions can increase the stability and thus the shelf life of
crystalline insulin formulations. The structures presented
here provide a framework for further site-directed muta-
genesis studies of the residues involved in inter-hexamer
interactions, aimed at providing improved formulations
useable within the rapidly advancing field of alternate
delivery routes of crystalline biopharmaceuticals [3].
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This study also demonstrates the usefulness of X-ray pow-
der diffraction (XRPD) on protein samples. The small size
of the initially obtained micro crystals made visual analy-
sis and single crystal X-ray diffraction difficult. However,
the combination of XRPD and principal component anal-
ysis (PCA) facilitated the identification of a new crystal
form [21]. Since the use of proteins as therapeutic agents
is a growing field, applications of protein XRPD, similar to
the present study, will have an important role during dis-
covery and development of therapeutic protein formula-
tions.

Methods

Crystallization

Human insulin was obtained from Novo Nordisk A/S
(Denmark). Crystals were grown by hanging-drop vapor
diffusion technique at 291 K. The crystals were obtained
in crystallization experiments with varying reservoir con-
centrations of NaCl and urea. A protein solution contain-
ing 6.9 mg/ml of human insulin, with zinc content
corresponding to two zinc ions per hexamer and 50 mM
resorcinol were mixed with equal volumes of reservoir
solution. The protein solution was filtered through a 0.22-
micrometer centrifugal filter (Ultrafree-MC, Millipore,
USA) prior to crystallization. The best diffracting crystals
were obtained from the following conditions. For the
C222, crystals: 2 M NaCl, 3 M urea, 100 mM phosphate
buffer pH 6.5; for the C2 crystals: 2.5 M NaCl, 4 M urea,
100 mM phosphate buffer pH 7.0. The same two crystal
forms were obtained when including 15 mM NaSCN in
the protein solution in absence of urea and using a reser-
voir solution containing 5% (v/v) ethanol and 200 mM
phosphate buffer at pH 6.5 and 7.0, respectively. Crystals
with dimensions of about 0.25 mm on one edge were
detected after two days. The two orthorhombic crystals in
space group C222, diffracted to a resolution of 2.0 A while
data from the crystals in space group C2 could be col-
lected to 1.7 A.

Data collection and refinement

Data sets were collected from a single crystal of each type
at 100 K using synchrotron radiation (Maxlab synchro-
tron, Lund, Sweden, beamline 911-2 and 911-3 [46]),
with a MarMosaic 225 CCD detector (MarResearch, Evan-
ston, USA). The urea containing crystals were soaked in a
cryo-solution containing 23% glycerol and 77% reservoir
prior to freezing in liquid nitrogen. For the NaSCN crys-
tals a cryo-solution containing 30% glycerol was needed.
All data sets were processed and scaled using the XDS
package [47].

For the C222, crystals with urea, an additional low-resolu-
tion data set was collected from the same crystal and
merged with the high-resolution data. An in house struc-
ture of a hexamer with R, conformation, excluding all
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non-protein atoms except zinc, was used as search model
for molecular replacement in Molrep [48]. Three hexam-
ers were found in the asymmetric unit, corresponding to a
solvent content of 64%. During refinement in Refmac
[49], 5% of the data was excluded and used for calculation
of the R-free value. The initial 2F -F_map clearly indicated
positions of chloride ions and resorcinol molecules (six in
each hexamer). After several rounds of refinement using
the maximum likelihood option in Refmac and manual
adjustments of main-chain and side-chain atoms in Coot
[50], TLS refinement [51] was employed, with each mon-
omer defined as a separate TLS group. Subsequently,
water was added by the find-water function in Coot. At the
end of the refinement, urea molecules were modeled into
the electron density using positive F-F_peaks, where the
shape of the 2F -F_density was flat and reminiscent of the
triangular shape of a urea molecule. 14 such positions
were found with an average B-factor of 53.1 A 2. The final
number of water molecules was 634 with an average B-fac-
torof41.7 A2,

The C2 structure obtained with urea was solved with the
same search model as the C222, data set and the proce-
dure for structure solving and refinement followed the
same route. In the beginning of the refinement, there was
a clear 2F -F. density for an extra resorcinol binding site,
and at later stages of refinement, a second additional posi-
tion showed density resembling a resorcinol molecule.
Seven urea molecules (average B-factor = 39.3 A 2) and
257 water molecules were built into the density at the end
of refinement.

For the two structures co-crystallized with NaSCN, one
high and one low resolution data set were collected and
subsequently merged. The structures were solved using
the urea containing structures as search models in molec-
ular replacement rounds (excluding non-protein atoms
except zinc). Based on the experience of flexible residues
in the B-chain terminals, the search models were trun-
cated at both ends to reduce bias (PheB1, ValB2, LysB29
and ThrB30). Refinement followed the same scheme as
for the urea crystals. In total, six resorcinol molecules were
modeled into the C2 structure and 18 in the C222, struc-
ture (six in each hexamer). 313 water molecules were fit-
ted into the C2 structure and 755 into the C222,. Based
on the shape of the electron density, each zinc atom was
found to interact with one thiocyanate molecule. Data
collection details and refinement statistics for all four
structures are summarized in Table 1. In this paper, the
crystals obtained in presence of urea will be referred to as
C222,urea and C2urea whilst the two forms obtained
with thiocyanate are referred to as C222;scn and C2scn.
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Analysis of crystal packing

Symmetry-related molecules were generated in Pymol
[52] for analysis of crystal contacts. A rather strict criterion
for identification of symmetry contacts was used by
searching for symmetry-related atoms within 4 A from the
reference protein. In order to limit the analysis to protein-
protein interactions, non-protein atoms such as water and
urea molecules were removed prior to searches. Residues
with missing side-chain atoms were reconstructed in
Swiss-PdbViewer [53] using the 'auto reconstruct residues
with missing atom' function. When dual conformations
of residue side chains were present, the one with highest
occupancy, or when equal, the conformation denoted
with an 'A' in the pdb file was chosen. The contact area
(Aon) between the reference molecule and neighboring
symmetry-related molecules was defined as the solvent
accessible area buried by symmetry-related molecules.
The solvent accessible surface area (SASA) was calculated
in arealmol (within the CCP4 program package [54]) that
utilizes the algorithm of Lee & Richards [55]. A water
probe of 1.4 A was used. A_, for each atom was obtained
by taking the SASA for the reference molecule alone,
minus the SASA when contact atoms were present. All
atoms with reduced SASA were assumed to be involved in
contacts with a symmetry molecule. Basic physicochemi-
cal properties related to hydrophobic surface area were
calculated for the atoms of the reference molecule
involved in contacts. Contact areas were split into hydro-
phobic (carbons) and hydrophilic (nitrogen and oxy-
gens), aliphatic-, aromatic carbons and positive-, negative
charged area. For the sake of simplicity and ease of com-
parison, crystals without a full hexamer in the asymmetric
unit were complemented with the required symmetry
molecules by applying appropriate symmetry operations
to generate a hexamer prior to calculations. A hexamer
was considered as one molecule.

Coordinates with structure factors have been deposited to
the Protein Data Bank (PDB) [56] with the accession
codes 20LY, 2017, 20M0 and 20M1.
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