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Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the
association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating
over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form.
In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random
intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two
associated response variables are combined using correlated random intercepts. The random intercept in the count outcome
submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution.
The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To
illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge
distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is
normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in
estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the
parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of
ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.

1. Introduction

Many longitudinal studies are designed so that more than
one response variable is recorded for the same subject.
Thanks to various statistical tools, different types of out-
comes such as count, nominal, and continuous can be ana-

lyzed jointly. For instance, patients after coronary artery
bypass graft surgery are monitored several times a day, and
their vital signs and bleeding condition are checked. In the
case of kidney transplant data which is well explained in
the following sections, the frequency of acute kidney trans-
plant rejection as the count variable and estimated
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glomerular filtration rate as an ordinal variable are followed
up for one year after the transplantation. In addition, the
impact of several predictive variables such as patients’ diabe-
tes condition, antithymocyte globulin, urinary tract infection,
and hypercalcemia on the response variables were assessed.

Univariate analysis of longitudinal outcomes has been
developed by many authors during the last decades. The
within-subject effect can be taken into account using several
approaches such as covariance pattern model in generalized
estimating equations or a random effect in subject-specific
models [1–3]. Copula-based approaches have been utilized
to account for the serial dependence of repeated observations
[4, 5]. Various methods have been developed for jointly
modeling longitudinal and survival data [6]. Kassahun et al.
used generalized linear mixed models to model two longitu-
dinal outcomes simultaneously. They considered weight
and days of illness as the continuous and overdispersed count
responses, respectively, [7]. Seyoum et al. considered the
determinants of CD4 cell count change and adherence to
highly active antiretroviral therapy among HIV adult
patients, and they utilized a generalized linear mixed model
to determine joint predictors of two longitudinal response
variables over time. The adherence and CD4 cell were con-
sidered as ordinal and count outcomes respectively [8]. Joint
modeling of discrete outcomes has been developed and dis-
cussed by Molenberghs and Verbeke. In addition to several
approaches for jointly modeling two longitudinal responses,
the association among the repeated measurements and
between the two longitudinal processes can be considered
via correlated random effects [9].

Copulas are widely used to integrate separate univariate
regression models into a joint regression analysis of response
variables [10, 11]. Copulas are very useful to combine two or
more response variables from different types such as contin-
uous, ordinal, and count [11, 12].

Several modeling approaches have been introduced to
model clustered and hierarchical settings of response variables
such as ordinal and overdispersed and/or zero inflated longitu-
dinal count outcomes [13–15]. For count data, a Poisson distri-
bution with a log-linear link function is commonly assumed. In
the case of inequality of mean and variance of count response
due to the extra heterogeneity, overdispersion would be consid-
ered in the modeling process. Negative binomial is a common
choice to address this issue [16]. One of the key points in neg-
ative binomial regression, compared to other methods for ana-
lyzing overdispersed data, is that the mean is a single
parameter. The negative binomial regression can be an exten-
sion of the Poisson-gamma model in which the mean in the
Poisson distribution follows a gamma distribution in order
to take the overdispersion into account [17, 18]. In the case
of inflated zeros in the data, zero-inflated models are used [1,
19]. Analyzing methods for binary data have been extended
to nominal and ordinal categorical outcomes [20].

Most commonly, a normally distributed random effect is
considered for the ordinal outcome. In the case of a binary
response, Wang and Louis showed that assuming a Bridge
distribution for the random intercept in a logistic mixed
model forces the fixed effects to have a marginal similar to
conditional interpretation (conditional on the random inter-

cepts) [21]. This idea was then applied by Lin et al. for eval-
uating the association between binary and continuous
clustered data [22]. Bridge distribution is a useful technique
for conditional assessment while allowing for meaningful
marginal regression effects, especially for logistic regression.
The key advantage of using Bridge distribution is that it
allows the marginal probability of the binary response, inte-
grated over the random intercept, to have a logistic structure
with an odds ratio interpretation of the marginal regression
effect. The regression parameters in the marginal logistic
regression model are proportional to the corresponding
regression parameters in the subject-specific conditional
logistic model.

In this study, we aim to combine an ordinal and a possi-
bly overdispersed count response variables by combining
their correlated random intercepts. We assume a Bridge dis-
tribution for the ordinal outcome random intercept which is
an extension of a hierarchical binary outcome. A Gaussian
copula is used to integrate the two random intercepts [12].
This model can be fitted using commercially available statis-
tical software, including the NLMIXED procedure of the Sta-
tistical Analysis System (SAS).

2. Materials and Methods

2.1. Notations and Distributions. For subject i at occasion j,
let y1ij represent the count response and y2ijis the ordinal
response variable which can take the values 1,⋯, c. The
count response variable follows a Poisson distribution. When
overdispersion is present, a negative binomial distribution
with overdispersion parameter (r) and success probability
(p) is used instead. The dispersion statistic can be determined
as the ratio of the Pearson χ2 to its degrees of freedom and is
a common method used to estimate overdispersion [23]. It
has been argued that overdispersion exists if the dispersion
statistic is over 1.2 and negative binomial outperforms simple
Poisson model [24]. A logarithmic function is used to link the
expected count response (log ðEðY1ijÞÞ = log ðμijÞ) to the sys-
tematic component (Xíjβ + wi

) where Xíj is the matrix of inde-

pendent variables and β is the vector of corresponding
coefficients. The random intercept of count response submo-
del (wi) follows a normal distribution (mean zero and
varianceσ2

w). The ordinal response variable is assumed to fol-
low multinomial distribution and pðY2ij ≤ cÞ is linked to a
linear function of covariates (θc − Xíjα − bi

) via a traditional

logit function. The random intercept of the ordinal response
submodel (bi) follows a Bridge or normal distribution (mean
zero and varianceσ2

b). In the case of two associated response
variables, a correlation parameter (ρ) takes the association
between the random intercepts into account. Details about
the notations have been prepared in the Appendix.

2.2. Model Specification and Estimation. The two associated
submodels are shown in equation (1) in which the mean
count and ordinal response variables are linked to their
systematic components through logarithm and logit func-
tions. Let pc = pðY2ij ≤ cÞ, then the model can be specified
as follows:
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Bridge and normal distributions are considered for the
random intercept of the ordinal and count outcome sub-
models. A copula approach is used in the case of different
distributions to combine the random intercepts. The
Bridge distribution proposed by Wang and Louis [21]
allows both the conditional and marginal probabilities of
the binary response to follow a logistic structure. Here,
we have extended this assumption to an ordinal response
variable. The Bridge distribution is well illustrated by
Wang and Louis [21].

2.3. Bridge Distribution. Let GτðbÞ be the cumulative Bridge
distribution for subject-specific random effect b with the
attenuation parameter τ and let Hð:Þ be an inverse link func-
tion with the characteristics of being monotone, increasing,
and twice differentiable.

ð
H Xij′α + bi
� �

dGτ bð Þ =H τXij′α + k
� �

: ð2Þ

In equation (2), k is an unknown constant parameter and
is equal to zero when the link unction is symmetric. To find
the Bridge function, we need to use Fourier transformation
ðFÞ and convolution operation. After differentiating and
applying the convolution operation and Fourier transforma-
tion ðFÞ to equation (2), one can determine the general den-
sity function of Bridge distribution for any link function as
shown in [3] whereH ′ = h.

gτ bð Þ =
ð 1
2π exp i k

τ
− b

� �
u

� �
Fh u/τð Þ
Fh uð Þ du: ð3Þ

In the case of logit link function, the density function of
Bridge distribution is as [4]:

gτ bð Þ = 1
2π × sin τπð Þ

cos πτð Þ + cos h τbð Þ , 0 < τ < 1, −∞ < b <∞:

ð4Þ

Themean and variance of the Bridge distribution are zero
and ðπ2ðð1/τ2Þ − 1ÞÞ/3, respectively. The intraclass correla-
tion (ICC) can be determined by 1- τ.

The bridge density is symmetric with heavier tails and
higher kurtosis than the normal density. The conditional Pð
Y2ij ≤ c ∣ Xíj, biÞ and marginal PðY2ij ≤ c ∣ XíjÞ probabilities

have the same logistic form. The parameter τ of the bridge
distribution is the same for each subject which assures the
exchangeability of subject random effects on the binary
responses. More details about the Bridge distribution for
binary response variables is well discussed in more details
elsewhere [21, 22].

2.4. Gaussian Copula. Among many of copula families,
Gaussian copula provides a convenient way to describe a
complex relationship [25]. The Gaussian copula function is

C X:Y ; ρð Þ = ϕ ϕ−1 xð Þ:ϕ−1 yð Þ ; ρ� �
=
ð∅−1 xð Þ

−∞

ð∅−1 yð Þ

−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
� − s2 − 2ρst + t2

� �
2 1 − ρ2ð Þ

	 

dsdt,

ð5Þ

where ϕ standard normal cumulative distribution function.
Let z1 and z2 follow a standard bivariate normal distribution
so that z2 = ϕ−1: ðGðbÞÞ, and z1 = ϕ−1: ðϕðwÞÞ. Therefore, the
bivariate distribution function of the random intercepts is

The variance matrix of two response variables can easily
be seen to be given by

Var yið Þ ~ θiziGz ı́θı + γ1/2i A1/2
i Ri ρð ÞA1/2

i γ1/2i

=

r2 1 − pð Þ
p2

1 − pð Þ
p

σ2w + 1
� �

r 1 − pð Þ
p2

ρσbσw:pc 1 − pcð Þ

r 1 − pð Þ
p2

ρσbσw:pc 1 − pcð Þ pc 1 − pcð Þ σ2bpc 1 − pcð Þ + 1

 �

0
BBBB@

1
CCCCA,

ð7Þ

where γiis the diagonal overdispersion matrix, Ai is the diag-
onal variance matrix of response variables assuming zero
random effects, and RiðρÞ (here an identity matrix) is the
matrix denoting the correlation among residual errors.

θi =
δμi
δηi

� �����
b=0

= Ai =
r 1 − pð Þ

p
0

0 pc 1 − pcð Þ

0
B@

1
CA,

Zi =
1 0
0 1

" #
,

f bi:wið Þ = 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p e− 1/ 2 1−ρ2ð Þð Þð Þ ϕ−1∅ 1− 1/πτð Þ π/2ð Þ−arctan eτb+cos πτð Þð Þ/ sin πτð Þð Þf g½ �ð Þf g2+w2−2ρwϕ−1∅ 1− 1/πτð Þ π/2ð Þ−arctan eτb+cos πτð Þð Þ/ sin πτð Þð Þf g½ �ð Þ
� �

:

ð6Þ
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2.5. Likelihood and Estimation. The likelihood function can
be written as below where ∅ is the standard normal density
function:

2.6. Real Data Application. We applied the proposed model
to two read datasets in which associated count and ordinal
response variables are assessed using several independent
variables longitudinally.

2.7. Migraine Data. As a first example, we consider a prospec-
tive, two-arm, randomized, triple-blind, placebo-controlled
trial in the neurology clinic of Shohadaye-Tajrish hospital,
Tehran, Iran [26]. The patients were randomly divided into
two equal groups, coriander fruit syrup and control (33
patients in each group). In addition to 500mg of sodium
valproate per day, the patients received either 15mL of corian-
der fruit syrup or 15mL of placebo syrup, three times a day,
for a month, according to the code provided by the depart-
ment of traditional pharmacy in Tehran University of Medical
Sciences, Tehran, Iran. The subjects were measured at weeks 1,
2, 3, and 4. Each time, the mean severity of pain was evaluated,
on a ten-point visual analog scale (VAS). Severity was catego-
rized into three levels (0-0.30, 0.30-0.60, and 0.60-1) as the
ordinal response. Moreover, the frequency of migraine attacks
were recorded and used as the count response variable. The
severity and frequency of migraine attacks were significantly
associated at four time points, and hence, the joint modeling
approach was utilized. At the end of each week, patients were
referring to the neurology clinic to report the requested items.
Time, intervention, and their interaction were considered as
the predictive variables.

2.8. Kidney Transplant Data. In this historical cohort study,
patients referred to the kidney transplant center of Urmia
University of Medical Sciences from 2003 to 2014 were inves-
tigated [27]. Two main longitudinal response variables, the
frequency of acute kidney transplant rejection as the count
variable and estimated glomerular filtration rate as an ordinal
variable in 5 levels, were assessed. These variables were

recorded every 4 months after the transplantation, during
one year. Glomerular filtration rate was estimated from
abbreviated prediction equation provided by the Modifica-
tion of Diet in Renal Disease study (MDRD). The stages were
determined using the National Kidney Foundation (NKF)
criteria as stage 1 with normal or high eGFR (eGFR > 90mL/
min), stage 2 mild chronic kidney disease (eGFR = 60 − 89
mL/min), stage 3 moderate chronic kidney disease (eGFR =
30 − 59mL/min), stage 4 Severe chronic kidney disease
(eGFR = 15 − 29mL/min), and stage 5 end stage chronic kid-
ney disease (eGFR < 15mL/min) [28]. The independent and
predictor variables were the type of kidney donor (relative/non-
relative), recipient’s age and sex, anemia (yes/no), type of med-
ication (Azathioprine/Cellcept/both/none), diabetes (yes/no),
and antithymocyte globulin (yes/no), as well as complications
after transplantation, such as proteinuria (yes/no), hyperkale-
mia (yes/no), hyperuricemia (yes/no), leukopenia (yes/no),
myocardial infarction(yes/no), delayed graft function (yes/no),
acute tubular necrosis (yes/no), urinary tract infection (yes/no),
chronic allograft necrosis (yes/no), dyslipidemia (TG/CHOL),
liver dysfunction (BIL-T/BIL-D), and hypercalcemia (yes/no).

2.9. Simulation Settings. A simulation study is conducted to
assess the impact of different magnitudes of overdispersion,
sample size, and the correlation between the random inter-
cepts, in joint modelling of hierarchical ordinal and count
outcome. Moreover, we assessed the difference in perfor-
mance of the joint model regarding the distribution of (nor-
mal vs. Bridge) random intercept in the ordinal logistic
regression submodel.

Bivariate normal distribution was used to generate asso-
ciated normally distributed random intercept with (ρ) as
the correlation coefficient. Gaussian copula was utilized to
generate associated random intercepts where the associated

YN
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random intercepts in the count and ordinal submodels fol-
low normal and Bridge distributions, respectively. The cor-
relations between the random intercepts (ρ) were chosen in
three levels as zero (no correlation between the random
intercepts), 0.4 (medium correlation between the random
intercepts), and 0.8 (high correlation between the random
intercepts). A continuous independent variable (time) was
generated from uniform distribution (between 1 and 5) in
5 different points (5 occasions) so that the occasions differ
for each subject, and time intervals are not equal. A binary

independent variable (group) was generated from binomial
distribution with 0.5 as the probability. The count response
variable was generated from a negative binomial distribu-
tion with the probability equal to the exponential of its sys-
tematic component and three different negative binomial
parameter values (1 as high, 5 as medium, and 150 as low
overdispersion). The ordinal response variable with three
levels (θ1: threshold 1, θ2: threshold 2) was generated from
a multinomial distribution using the probabilities associated
with logit link function. The model was fitted on three

Table 1: The results of longitudinal joint modeling of severity and frequency of migraine attacks.

Variable Estimate Standard error p value 95% CI OR

Ordinal process (severity)

Threshold 1 -6.293 0.957 <.0001 -8.169 -4.417 0.002

Threshold 2 -0.611 0.631 0.337 -1.848 0.626 0.543

Intervention 3.744 1.106 0.001 1.576 5.912 42.267

Week -1.459 0.226 <0.001 -1.902 -1.016 0.232

Week∗intervention -4.449 0.658 <0.001 -5.739 -3.159 0.012

Random effect standard deviation 0.967 0.170

Count process (frequency)

Intercept 0.854 0.106 <.001 0.646 1.062 2.349

Intervention 0.166 0.148 0.266 -0.124 0.456 1.181

Week -0.196 0.043 <.001 -0.280 -0.112 0.822

Week∗intervention -0.331 0.071 <.001 -0.470 -0.192 0.718

Random effect standard deviation 0.289 0.066

Correlation between the random effects 0.392 0.203 0.058 -0.006 0.790 1.480

OR: odds ratio; CI: confidence interval.

Table 2: The results of longitudinal joint modeling of eGFR and the frequency of acute kidney transplant rejection.

Variable Estimate Standard error p value 95% CI OR

Ordinal process (estimated glomerular filtration rate)

Age 0.047 0.010 <0.001 0.028 0.066 1.05

Sex (female) 0.884 0.278 0.002 0.335 1.434 2.42

Diabetes (no) -0.195 0.288 0.499 -0.765 0.375 0.82

ATN (no) 0.346 0.696 0.620 -1.031 1.723 1.41

DGF (no) 2.140 1.231 0.084 -0.295 4.575 8.50

CAN (no) -0.814 0.248 0.001 -1.305 -0.324 0.44

Time -0.005 0.030 0.879 -0.064 0.055 0.99

Random effect standard deviation 0.322 0.041

Count process (acute kidney transplant rejection)

Sex (female) -0.447 0.380 0.242 -1.200 0.306 0.640

ATG (no) 0.967 0.540 0.076 -0.102 2.035 2.630

Hypercalcemia (no) 0.964 0.536 0.075 -0.097 2.025 2.622

Proteinuria (no) -0.641 0.393 0.105 -1.418 0.136 0.527

Hypertension (no) -0.450 0.426 0.293 -1.294 0.393 0.638

Time -0.046 0.054 0.389 -0.152 0.060 0.955

Random effect standard deviation 0.004 0.280

Negative binomial parameter 0.172 0.045 <0.001 0.083 0.261

Correlation between the random intercepts 0.765 0.101 <0.001 0.563 0.967

ATG: antithymocyte globulin; DGF: delayed graft function; ATN: acute tubular necrosis; CAN: chronic allograft necrosis; OR: odds ratio; CI: confidence
interval.
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different sample sizes 50, 200, and 500. The models were
specified as

Log μij

� �
Logit pcð Þ
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β0 + β1groupı́ + β2timeı́j+wi

θc − α1groupı́ − α2timeı́j − bi

 !
,

β = β0:β1:β2ð Þ = 2:6:−0:6:−0:4ð Þ,
α = α1:α2:θ1:θ2ð Þ = 0:6:0:1:−1:1ð Þ,

wi:bið Þ ~ Normal2 or Gaussian Copula

� 0:0ð Þ:
0:01 ρ0:13

ρ0:13 1:7

 ! !
:

ð10Þ

Moreover, and using the same generated datasets as
explained above, the simulation results from the joint models
were compared with separate univariate models to demon-
strate the outperformance of joint modeling approach. The
comparisons were made using the sets of data in which the
sample sizes were 50 and 200 and the correlations between
the random intercepts were chosen as zero, 0.4, and 0.8. Abso-
lute value of bias (AVB = jθ − θj) and mean square error
(MSE) were used to compare the estimated coefficients with
their true values.

2.10. Computational Support. The R software version 3.3.1
was used to generate the datasets using several packages

Table 3: Simulation study results with zero correlation between the random intercepts and normal distribution for the random intercept of
the ordinal outcome.

NBP = 1 NBP = 5 NBP = 150
Mean AVB MSE Mean AVB MSE Mean AVB MSE

Count process

β0 = 2:6
50 2.6404 0.0404 0.0025 2.6398 0.0398 0.0025 2.5711 0.0289 0.0018

200 2.6699 0.0699 0.0053 2.6120 0.0120 0.0006 2.5958 0.0042 0.0005

500 2.6676 0.0676 0.0050 2.6105 0.0105 0.0005 2.6066 0.0066 0.0005

β1 = −0:6
50 -0.5734 0.0266 0.0007 -0.5750 0.0250 0.0006 -0.5936 0.0064 <0.0001
200 -0.6200 0.0200 0.0004 -0.5838 0.0162 0.0003 -0.6057 0.0057 <0.0001
500 -0.5948 0.0052 <0.0001 -0.5992 0.0008 <0.0001 -0.6060 0.0060 <0.0001

β2 = −0:4
50 -0.4382 0.0382 0.0016 -0.3689 0.0311 0.0010 -0.4213 0.0213 0.0005

200 -0.4258 0.0258 0.0007 -0.4379 0.0379 0.0014 -0.3831 0.0169 0.0003

500 -0.4234 0.0234 0.0006 -0.3847 0.0153 0.0002 -0.3908 0.0092 0.0001

NBP

50 1.0265 0.0265 0.0007 5.5933 0.5933 0.3520 150.7136 0.7136 0.5093

200 1.0747 0.0747 0.0176 5.2590 0.2590 0.0672 150.7340 0.7340 0.5389

500 1.0180 0.0180 0.0004 5.0060 0.0060 <0.0001 150.7735 0.7735 0.5983

σw = 0:1
50 0.0734 0.0266 0.0007 0.0780 0.0220 0.0005 0.0752 0.0248 0.0006

200 0.0868 0.0132 0.0003 0.0786 0.0214 0.0005 0.0795 0.0205 0.0004

500 0.0981 0.0019 0.0001 0.0912 0.0088 0.0001 0.0893 0.0107 0.0002

Ordinal process

α1 = 0:6
50 0.6346 0.0346 0.0017 0.626 0.0260 0.0007 0.6378 0.0378 0.0014

200 0.6318 0.0318 0.0012 0.6277 0.0277 0.0008 0.6216 0.0216 0.0005

500 0.6214 0.0214 0.0005 0.6223 0.0223 0.0005 0.6195 0.0195 0.0004

α2 = 0:1
50 0.1532 0.0532 0.0028 0.1318 0.0318 0.0010 0.1214 0.0214 0.0005

200 0.1376 0.0376 0.0014 0.1156 0.0156 0.0002 0.1135 0.0135 0.0002

500 0.1222 0.0222 0.0008 0.1158 0.0158 0.0005 0.1102 0.0102 0.0003

θ1 = −1
50 -0.896 0.1040 0.0111 -0.8816 0.1184 0.0140 -0.8804 0.1196 0.0143

200 -0.8047 0.1953 0.0384 -0.8862 0.1138 0.0130 -0.8973 0.1027 0.0106

500 -1.0318 0.0318 0.0010 -0.9325 0.0675 0.0046 -0.9311 0.0689 0.0047

θ2 = 1
50 1.0616 0.0616 0.0038 1.2476 0.2476 0.0613 1.1486 0.1486 0.0221

200 1.1979 0.1979 0.0392 1.1629 0.1629 0.0265 1.1186 0.1186 0.0141

500 0.9176 0.0824 0.0068 1.0201 0.0201 0.0004 1.0106 0.0106 0.0001

σb = 1:3
50 1.1629 0.1371 0.0188 1.1645 0.1355 0.0184 1.1639 0.1361 0.0185

200 1.1924 0.1076 0.0116 1.1945 0.1055 0.0112 1.1915 0.1085 0.0118

500 1.2423 0.0577 0.0033 1.2745 0.0255 0.0007 1.2525 0.0475 0.0023

ρ = 0
50 0.0542 0.0542 0.0029 0.0666 0.0666 0.0045 0.0346 0.0346 0.0012

200 0.0028 0.0028 <0.0001 0.0257 0.0257 0.0007 0.0169 0.0169 0.0003

500 0.0017 0.0017 <0.0001 0.0023 0.0023 <0.0001 0.0009 0.0009 <0.0001
NBP: negative binomial parameter; AVB: the absolute value of biases; MSE: mean square error.
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including “copula,” “bridgedist,” “MASS,” and “mnormt.” In
addition, the NLMIXED procedure in SAS program version
9.2 was utilized to fit the proposed joint models.

3. Results

3.1. Migraine Data. Descriptive statistics of continuous and
categorical characteristics of the two groups are described
in details elsewhere [26]. The frequency of migraine attacks
followed a Poisson distribution without any evidence of
overdispersion and zero inflation. The longitudinal joint
model was used to combine the frequency and severity of

migraine attacks, and the results are shown in Table 1.
However, the intensity of migraine attacks has reduced sig-
nificantly over time; the coriander fruit syrup reduced the
odds of higher stages of severity compared to the control
group over time. Likelihood ratio test confirmed the use
of random intercepts in the model. A significant association
was found between the random effects (correlation = 0:392,
p = 0:036) which confirms the use of a joint modeling
approach. Based on the results, the odds of higher catego-
ries of migraine attack severity in the intervention group
was 0.012 times than that of control group after each
week. Moreover, the mean number of migraine attacks

Table 4: Simulation study results with zero correlation between the random intercepts and Bridge distribution for the random intercept of the
ordinal outcome.

NBP = 1 NBP = 5 NBP = 150
Mean AVB MSE Mean AVB MSE Mean AVB MSE

Count process

β0 = 2:6
50 2.7689 0.1689 0.0295 2.6292 0.0292 0.0018 2.5784 0.0216 0.0014

200 2.6464 0.0464 0.0026 2.6114 0.0114 0.0006 2.6120 0.0120 0.0006

500 2.6242 0.0242 0.0010 2.6107 0.0107 0.0005 2.6006 0.0006 0.0004

β1 = −0:6
50 -0.5870 0.0130 0.0002 -0.6024 0.0024 <0.0001 -0.6015 0.0015 <0.0001
200 -0.6054 0.0054 <0.0001 -0.6023 0.0023 <0.0001 -0.6045 0.0045 <0.0001
500 -0.5996 0.0004 <0.0001 -0.5986 0.0014 <0.0001 -0.5968 0.0032 <0.0001

β2 = −0:4
50 -0.3789 0.0211 0.0005 -0.3757 0.0243 0.0006 -0.3804 0.0196 0.0004

200 -0.4297 0.0297 0.0009 -0.4285 0.0285 0.0008 -0.4055 0.0055 <0.0001
500 -0.4231 0.0231 0.0005 -0.4116 0.0116 0.0001 -0.4034 0.0034 <0.0001

NBP

50 1.0230 0.0230 0.0006 5.3854 0.3854 0.1486 150.6349 0.6349 0.4031

200 1.0060 0.0060 0.0002 5.0512 0.0512 0.0027 150.7227 0.7227 0.5224

500 1.0010 0.0010 <0.0001 5.0036 0.0036 <0.0001 150.5830 0.5830 0.3399

σw = 0:1
50 0.1318 0.0318 0.0010 0.1304 0.0304 0.0009 0.0754 0.0246 0.0006

200 0.1188 0.0188 0.0004 0.1255 0.0255 0.0007 0.0859 0.0141 0.0002

500 0.1088 0.0088 0.0001 0.1106 0.0106 0.0002 0.0971 0.0029 <0.0001
Ordinal process

α1 = 0:6
50 0.582 0.0180 0.0003 0.6082 0.0082 0.0001 0.6254 0.0254 0.0007

200 0.5911 0.0089 0.0001 0.5823 0.0177 0.0003 0.6116 0.0116 0.0001

500 0.5942 0.0058 <0.0001 0.6134 0.0134 0.0002 0.5925 0.0075 0.0001

α2 = 0:1
50 0.1428 0.0428 0.0018 0.0885 0.0115 0.0001 0.1243 0.0243 0.0006

200 0.1466 0.0466 0.0022 0.0906 0.0094 0.0001 0.1181 0.0181 0.0003

500 0.1158 0.0158 0.0005 0.0967 0.0033 0.0002 0.1088 0.0088 0.0003

θ1 = −1
50 -0.8847 0.1153 0.0133 -0.8949 0.1051 0.0111 -0.8568 0.1432 0.0205

200 -0.8906 0.1094 0.0120 -0.8994 0.1006 0.0101 -0.9176 0.0824 0.0068

500 -0.9401 0.0599 0.0036 -0.9301 0.0699 0.0049 -0.9395 0.0605 0.0037

θ2 = 1
50 1.1429 0.1429 0.0204 0.7435 0.2565 0.0658 0.8873 0.1127 0.0127

200 1.0309 0.0309 0.0010 1.1412 0.1412 0.0199 1.1031 0.1031 0.0106

500 1.0697 0.0697 0.0049 0.9123 0.0877 0.0077 0.9001 0.0999 0.0100

σb = 1:3
50 1.4381 0.1381 0.0191 1.4146 0.1146 0.0132 1.4271 0.1271 0.0162

200 1.3915 0.0915 0.0084 1.3219 0.0219 0.0005 1.3616 0.0616 0.0038

500 1.3734 0.0734 0.0054 1.3127 0.0127 0.0002 1.3212 0.0212 0.0005

ρ = 0
50 0.0476 0.0476 0.0023 0.0716 0.0716 0.0052 0.0419 0.0419 0.0018

200 0.0134 0.0134 0.0002 0.0407 0.0407 0.0017 0.0181 0.0181 0.0003

500 0.0059 0.0059 <0.0001 0.0007 0.0007 <0.0001 0.0009 0.0009 <0.0001
NBP: negative binomial parameter; AVB: the absolute value of biases; MSE: mean square error.
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after each week in the intervention group was 0.28 less
than that of control.

3.2. Kidney Transplant Data. The longitudinal joint model
was used to combine the eGFR and frequency of rejections
and the results are shown in Table 2. The frequency of rejec-
tions was overdispersed. The odds ratio of being in a higher
stage of eGFR for one-year-older patient is 1.05 (p < 0:001).
Females were less prone to experience a lower stage of eGFR
compared to males. Being in a higher stage of eGFR for
females was 2.42 times more than men. Patients without
chronic allograft necrosis experienced higher stages of eGFR

with the odds ratio of 0.44. The results exposes that time,
DGF, ATN, and being diabetic did not affect eGFR. The acute
rejection of kidney transplantation was assessed by ATG,
DGF, UTI, CAN, liver dysfunction, and time. The expected
number of rejections for a patient without ATG is 2.63 times
the expected number of rejections for a patient with ATG
(p = 0:048). In patients without hypercalcemia, the expected
number of rejections would increase by a factor of 2.622. A
positive correlation between eGFR stages and the frequency
of acute kidney transplant rejection was observed. Moreover,
the negative binomial parameter was significant. The results
are shown in Table 2.

Table 5: Simulation study results with 0.4 correlation between the random intercepts and normal distribution for the random intercept of the
ordinal outcome.

NBP = 1 NBP = 5 NBP = 150
Mean AVB MSE Mean AVB MSE Mean AVB MSE

Count process

β0 = 2:6
50 2.5794 0.0206 0.0004 2.5807 0.0193 0.0013 2.5703 0.0297 0.0018

200 2.6111 0.0111 0.0001 2.5926 0.0074 0.0005 2.5811 0.0189 0.0008

500 2.6012 0.0012 <0.0001 2.6095 0.0095 0.0005 2.5976 0.0024 0.0004

β1 = −0:6
50 -0.5750 0.0250 0.0006 -0.5942 0.0058 <0.0001 -0.5816 0.0184 0.0003

200 -0.5865 0.0135 0.0002 -0.5935 0.0065 <0.0001 -0.5894 0.0106 0.0001

500 -0.6001 0.0001 <0.0001 -0.6007 0.0007 <0.0001 -0.6105 0.0105 0.0001

β2 = −0:4
50 -0.3998 0.0002 <0.0001 -0.3949 0.0051 0.0001 -0.3908 0.0092 0.0001

200 -0.4098 0.0098 0.0001 -0.4010 0.0010 <0.0001 -0.3918 0.0082 0.0001

500 -0.4058 0.0058 <0.0001 -0.3992 0.0008 <0.0001 -0.3927 0.0073 0.0001

NBP

50 1.1084 0.1084 0.0118 5.6202 0.6202 0.3847 151.6914 1.6914 2.8609

200 1.0643 0.0643 0.0041 5.2325 0.2325 0.0542 151.6560 1.6560 2.7425

500 1.0030 0.0030 <0.0001 5.1730 0.1730 0.0299 150.2080 0.2080 0.0433

σw = 0:1
50 0.0857 0.0143 0.0002 0.0877 0.0123 0.0002 0.0843 0.0157 0.0003

200 0.0864 0.0136 0.0002 0.0820 0.0180 0.0003 0.0813 0.0187 0.0004

500 0.0935 0.0065 <0.0001 0.0973 0.0027 <0.0001 0.0915 0.0085 0.0001

Ordinal process

α1 = 0:6
50 0.6383 0.0383 0.0015 0.6499 0.0499 0.0025 0.6227 0.0227 0.0005

200 0.6136 0.0136 0.0002 0.6351 0.0351 0.0012 0.6148 0.0148 0.0002

500 0.6011 0.0011 <0.0001 0.6123 0.0123 0.0002 0.6003 0.0003 <0.0001

α2 = 0:1
50 0.1731 0.0731 0.0053 0.1318 0.0318 0.0010 0.1371 0.0371 0.0014

200 0.1318 0.0318 0.0010 0.1573 0.0573 0.0033 0.1212 0.0212 0.0005

500 0.1204 0.0204 0.0004 0.1397 0.0397 0.0018 0.1173 0.0173 0.0005

θ1 = −1
50 -0.8459 0.1541 0.0237 -0.8126 0.1874 0.0351 -0.8878 0.1122 0.0126

200 -0.9202 0.0798 0.0064 -0.8358 0.1642 0.0270 -0.8997 0.1003 0.0101

500 -0.9638 0.0362 0.0013 -0.9253 0.0747 0.0056 -0.9427 0.0573 0.0033

θ2 = 1
50 1.3781 0.3781 0.1430 1.2285 0.2285 0.0522 1.2613 0.2613 0.0683

200 1.1699 0.1699 0.0289 1.0716 0.0716 0.0051 1.0512 0.0512 0.0026

500 1.0852 0.0852 0.0073 1.0378 0.0378 0.0015 1.0626 0.0626 0.0039

σb = 1:3
50 1.1989 0.1011 0.0102 1.3293 0.0293 0.0009 1.2741 0.0259 0.0007

200 1.2128 0.0872 0.0076 1.3199 0.0199 0.0004 1.2883 0.0117 0.0002

500 1.2315 0.0685 0.0047 1.3114 0.0114 0.0001 1.2914 0.0086 0.0001

ρ = 0:4
50 0.4337 0.0337 0.0011 0.4108 0.0108 0.0001 0.4112 0.0112 0.0001

200 0.4061 0.0061 <0.0001 0.4400 0.0400 0.0016 0.4165 0.0165 0.0003

500 0.4622 0.0622 0.0039 0.4621 0.0621 0.0039 0.4479 0.0479 0.0023

NBP: negative binomial parameter; AVB: the absolute value of biases; MSE: mean square error.
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3.3. Simulation Results. Tables 3–8 show the simulation
results. Regarding different sample sizes, different magnitude
of overdispersion, and different amount of correlation
between the random intercepts, the estimated values were
almost close to the true values in various settings. Regarding
AVB and MSE, the performance of the proposed joint model
with the assumption of Bridge distribution for the random
intercept of the ordinal outcome did not differ whether the
random effect follows normal or Bridge distributions. The
simulation results can be discussed in different aspects. We
assumed three different scenarios for sample size, and the
simulation results exposed that a sample size of 50 yields to

considerable less accurate estimations than those of 200 and
500 subjects. In other words, considering 5 occasions for each
subject, a total number of 250 observations was less efficient
than that of 1000 and 2500.We considered three levels of dis-
persion as high, low, and medium. The higher the amount of
negative binomial parameter, the bigger the estimated MSE
and AVB. However, the large sample size decreases the
amount of MSE and AVB in high value (low overdispersion).
Generally and considering different scenarios, the magnitude
of overdispersion did not affect the accuracy of the estima-
tions after our proposed joint model. The standard deviation
of the random intercepts and the estimated correlation

Table 6: Simulation study results with 0.4 correlation between the random intercepts and Bridge distribution for the random intercept of the
ordinal outcome.

NBP = 1
MSE

NBP = 5
MSE

NBP = 150
MSE

Mean AVB Mean AVB Mean AVB

Count process

β0 = 2:6
50 2.6665 0.0665 0.0054 2.5899 0.0101 0.0010 2.5623 0.0377 0.0024

200 2.6104 0.0104 0.0006 2.5942 0.0058 0.0005 2.5819 0.0181 0.0008

500 2.6010 0.0010 0.0004 2.6027 0.0027 0.0004 2.5968 0.0032 0.0004

β1 = −0:6
50 -0.5838 0.0162 0.0003 -0.6040 0.0040 <0.0001 -0.6140 0.0140 0.0002

200 -0.5929 0.0071 0.0001 -0.5980 0.0020 <0.0001 -0.6082 0.0082 0.0001

500 -0.6048 0.0048 <0.0001 -0.6012 0.0012 <0.0001 -0.6032 0.0032 <0.0001

β2 = −0:4
50 -0.4115 0.0115 0.0002 -0.4047 0.0047 0.0001 -0.4113 0.0113 0.0002

200 -0.4014 0.0014 <0.0001 -0.4015 0.0015 <0.0001 -0.3911 0.0089 0.0001

500 -0.3994 0.0006 <0.0001 -0.4051 0.0051 <0.0001 -0.4027 0.0027 <0.0001

NBP

50 1.0445 0.0445 0.0020 5.3994 0.3994 0.1596 151.3485 1.3485 1.8185

200 1.0127 0.0127 0.0003 4.9996 0.0004 0.0001 149.2178 0.7822 0.6120

500 0.9992 0.0008 <0.0001 5.0914 0.0914 0.0084 150.2360 0.2360 0.0557

σw = 0:1
50 0.1491 0.0491 0.0024 0.1234 0.0234 0.0006 0.0994 0.0006 <0.0001
200 0.1429 0.0429 0.0018 0.1162 0.0162 0.0003 0.0942 0.0058 <0.0001
500 0.1157 0.0157 0.0003 0.1066 0.0066 0.0001 0.0970 0.0030 <0.0001

Ordinal process

α1 = 0:6
50 0.6287 0.0287 0.0008 0.6343 0.0343 0.0012 0.5890 0.0110 0.0001

200 0.6183 0.0183 0.0003 0.6325 0.0325 0.0011 0.5883 0.0117 0.0001

500 0.6004 0.0004 <0.0001 0.6128 0.0128 0.0002 0.5972 0.0028 <0.0001

α2 = 0:1
50 0.1291 0.0291 0.0008 0.0854 0.0146 0.0002 0.0887 0.0113 0.0001

200 0.1393 0.0393 0.0015 0.1248 0.0248 0.0006 0.0987 0.0013 <0.0001
500 0.1112 0.0112 0.0003 0.1001 0.0001 0.0002 0.0922 0.0078 0.0003

θ1 = −1
50 -0.8001 0.1999 0.0400 -0.9252 0.0748 0.0056 -0.9035 0.0965 0.0093

200 -0.8649 0.1351 0.0183 -0.9148 0.0852 0.0073 -0.9072 0.0928 0.0086

500 -0.9451 0.0549 0.0030 -0.9989 0.0011 <0.0001 -0.9704 0.0296 0.0009

θ2 = 1
50 0.8383 0.1617 0.0261 0.8427 0.1573 0.0247 0.8608 0.1392 0.0194

200 1.1821 0.1821 0.0332 0.8955 0.1045 0.0109 0.8312 0.1688 0.0285

500 0.9985 0.0015 <0.0001 0.9424 0.0576 0.0033 0.9822 0.0178 0.0003

σb = 1:3
50 1.3552 0.0552 0.0031 1.3816 0.0816 0.0067 1.3911 0.0911 0.0083

200 1.3940 0.0940 0.0089 1.3935 0.0935 0.0088 1.3925 0.0925 0.0086

500 1.2904 0.0096 0.0001 1.3595 0.0595 0.0035 1.3013 0.0013 <0.0001

ρ = 0:4
50 0.4383 0.0383 0.0015 0.4171 0.0171 0.0003 0.4276 0.0276 0.0008

200 0.4135 0.0135 0.0002 0.4253 0.0253 0.0007 0.4327 0.0327 0.0011

500 0.4283 0.0283 0.0008 0.4218 0.0218 0.0005 0.4165 0.0165 0.0003

NBP: negative binomial parameter; AVB: the absolute value of biases; MSE: mean square error.
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coefficients between the random intercepts are very close to
their true values with a relatively low MSE and AVB whether
the random intercepts followed bivariate normal or Gaussian
copula distributions. Moreover, the results were robust in dif-
ferent amount of correlation scenarios.

The results of comparing the joint and univariate models
are presented in the Appendix. When the association
between the random intercepts is high, the estimated coeffi-
cients in the joint modeling approach is significantly more
robust than that of univariate approaches. The results when
the sample is 50 is less accurate than that of 200. In the
absence of correlation between the random intercepts, the

estimations are almost the same for joint and univariate
methods. For both of the joint and univariate approaches,
our proposed model outputs reliable and accurate estima-
tions whether the random intercept of the ordinal outcome
was generated from normal or Bridge distributions.

4. Discussion

Longitudinal approaches consider the variation caused by the
repeated measurements over the time. Two or more longitu-
dinal response variables are frequently recorded in medical
and clinical area. To combine the associated response

Table 7: Simulation study results with 0.8 correlation between the random intercepts and normal distribution for the random intercept of the
ordinal outcome.

NBP = 1
MSE

NBP = 5
MSE

NBP = 150
MSE

Mean AVB Mean AVB Mean AVB

Count process

β0 = 2:6
50 2.6422 0.0422 0.0027 2.6220 0.0220 0.0014 2.6250 0.0250 0.0016

200 2.5805 0.0195 0.0008 2.6140 0.0140 0.0006 2.6076 0.0076 0.0005

500 2.6019 0.0019 0.0004 2.6024 0.0024 0.0004 2.6038 0.0038 0.0004

β1 = −0:6
50 -0.5816 0.0184 0.0003 -0.6113 0.0113 0.0001 -0.5882 0.0118 0.0001

200 -0.5841 0.0159 0.0003 -0.6058 0.0058 <0.0001 -0.5930 0.0070 <0.0001
500 -0.6006 0.0006 <0.0001 -0.6016 0.0016 <0.0001 -0.5998 0.0002 <0.0001

β2 = −0:4
50 -0.4181 0.0181 0.0004 -0.3991 0.0009 <0.0001 -0.4105 0.0105 0.0001

200 -0.3950 0.0050 <0.0001 -0.4099 0.0099 0.0001 -0.4220 0.0220 0.0005

500 -0.3840 0.0160 0.0003 -0.4070 0.0070 <0.0001 -0.4050 0.0050 <0.0001

NBP

50 1.0810 0.0810 0.0066 5.5362 0.5362 0.2875 148.4848 1.5152 2.2959

200 1.0517 0.0517 0.0028 5.4830 0.4830 0.2334 151.0433 1.0433 1.0886

500 1.0040 0.0040 <0.0001 5.5855 0.5855 0.3428 150.8672 0.8672 0.7520

σw = 0:1
50 0.0863 0.0137 0.0002 0.0871 0.0129 0.0002 0.0830 0.0170 0.0003

200 0.0892 0.0108 0.0001 0.0831 0.0169 0.0003 0.0861 0.0139 0.0002

500 0.0987 0.0013 <0.0001 0.0967 0.0033 0.0001 0.0918 0.0082 0.0001

Ordinal process

α1 = 0:6
50 0.6606 0.0606 0.0037 0.6255 0.0255 0.0007 0.6603 0.0603 0.0036

200 0.6290 0.0290 0.0008 0.6231 0.0231 0.0005 0.6624 0.0624 0.0039

500 0.6055 0.0055 <0.0001 0.6020 0.0020 <0.0001 0.6294 0.0294 0.0009

α2 = 0:1
50 0.1803 0.0803 0.0064 0.1657 0.0657 0.0043 0.1645 0.0645 0.0042

200 0.1720 0.0720 0.0052 0.1615 0.0615 0.0038 0.1682 0.0682 0.0047

500 0.1693 0.0693 0.0050 0.1401 0.0401 0.0018 0.1512 0.0512 0.0028

θ1 = −1
50 -0.8495 0.1505 0.0227 -0.8917 0.1083 0.0117 -0.9167 0.0833 0.0070

200 -0.9289 0.0711 0.0051 -0.8916 0.1084 0.0118 -0.9195 0.0805 0.0065

500 -0.9529 0.0471 0.0022 -0.9676 0.0324 0.0011 -0.9785 0.0215 0.0005

θ2 = 1
50 1.3728 0.3728 0.1390 1.3594 0.3594 0.1292 1.2142 0.2142 0.0459

200 1.1717 0.1717 0.0295 1.1962 0.1962 0.0385 1.0980 0.0980 0.0096

500 1.1056 0.1056 0.0112 1.0246 0.0246 0.0006 1.0090 0.0090 0.0001

σb = 1:3
50 1.1966 0.1034 0.0107 1.2818 0.0182 0.0004 1.2796 0.0204 0.0004

200 1.2019 0.0981 0.0097 1.2015 0.0985 0.0097 1.2908 0.0092 0.0001

500 1.2260 0.0740 0.0055 1.2222 0.0778 0.0061 1.2923 0.0077 0.0001

ρ = 0:8
50 0.7068 0.0932 0.0087 0.7193 0.0807 0.0065 0.8492 0.0492 0.0024

200 0.7167 0.0833 0.0070 0.8135 0.0135 0.0002 0.7834 0.0166 0.0003

500 0.7297 0.0703 0.0049 0.7711 0.0289 0.0008 0.8293 0.0293 0.0009

NBP: negative binomial parameter; AVB: the absolute value of biases; MSE: mean square error.
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variables, several approaches have been introduced and
applied such as correlated random effects in a generalized lin-
ear mixed-effect model [1, 29, 30]. Primary studies were per-
formed by Tate, and consequent researches have well
discussed the conditional models as a major approach toward
joint methods [31, 32]. Other approaches combine the
responses directly [33]. In addition to GLMMs, the extension
of Placket-Dale model to other mixed responses is straight-
forward and is well described elsewhere [29]. Besides, the
generalizability of GLMM makes the extensions possible to
other settings of combined discrete and continuous out-
comes [1]. This article combined the ordinal and count out-

comes through a bivariate distribution of their random
intercepts. We assumed that the random intercept of the
ordinal logistic regression follows Bridge distribution. Later,
the normally distributed random intercept of the Poisson
(negative binomial in case of overdispersion) was combined
with the random intercept from the ordinal logistic submodel
to take the association between the outcomes into account.
Moreover, most of the studies assume that the random effects
in a mixed model follow normal distribution, and we let the
random intercepts follow Bridge and normal distributions.
We compared the results of Bridge distribution with the fre-
quently used assumption of normal. However, many of other

Table 8: Simulation study results with 0.8 correlation between the random intercepts and Bridge distribution for the random intercept of the
ordinal outcome.

NBP = 1
MSE

NBP = 5
MSE

NBP = 150
MSE

Mean AVB Mean AVB Mean AVB

Count process

β0 = 2:6
50 2.5839 0.0161 0.0012 2.5893 0.0107 0.0011 2.5819 0.0181 0.0013

200 2.6180 0.0180 0.0008 2.5957 0.0043 0.0005 2.6011 0.0011 0.0004

500 2.6078 0.0078 0.0005 2.6011 0.0011 0.0004 2.6008 0.0008 0.0004

β1 = −0:6
50 -0.5976 0.0024 <0.0001 -0.5974 0.0026 <0.0001 -0.5949 0.0051 <0.0001
200 -0.6018 0.0018 <0.0001 -0.5971 0.0029 <0.0001 -0.6031 0.0031 <0.0001
500 -0.5979 0.0021 <0.0001 -0.5997 0.0003 <0.0001 -0.5991 0.0009 <0.0001

β2 = −0:4
50 -0.3636 0.0364 0.0014 -0.3810 0.0190 0.0004 -0.3952 0.0048 0.0001

200 -0.4123 0.0123 0.0002 -0.3844 0.0156 0.0002 -0.4105 0.0105 0.0001

500 -0.3466 0.0534 0.0029 -0.3863 0.0137 0.0002 -0.3981 0.0019 <0.0001

NBP

50 1.0100 0.0100 0.0001 5.5579 0.5579 0.3113 152.8764 2.8764 8.2737

200 0.9912 0.0088 0.0002 5.0522 0.0522 0.0028 151.9130 1.9130 3.6597

500 1.0010 0.0010 <0.0001 4.9405 0.0595 0.0035 150.9005 0.9005 0.8109

σw = 0:1
50 0.1291 0.0291 0.0009 0.1240 0.0240 0.0006 0.0852 0.0148 0.0002

200 0.1210 0.0210 0.0004 0.1273 0.0273 0.0008 0.0892 0.0108 0.0001

500 0.1033 0.0033 0.0001 0.1088 0.0088 0.0001 0.0945 0.0055 0.0001

Ordinal process

α1 = 0:6
50 0.6450 0.0450 0.0020 0.6208 0.0208 0.0004 0.6439 0.0439 0.0019

200 0.5931 0.0069 <0.0001 0.5853 0.0147 0.0002 0.5861 0.0139 0.0002

500 0.5989 0.0011 <0.0001 0.6098 0.0098 0.0001 0.6001 0.0001 <0.0001

α2 = 0:1
50 0.0982 0.0018 <0.0001 0.1657 0.0657 0.0043 0.1239 0.0239 0.0006

200 0.1429 0.0429 0.0018 0.1528 0.0528 0.0028 0.1117 0.0117 0.0001

500 0.1207 0.0207 0.0006 0.1178 0.0178 0.0005 0.1036 0.0036 0.0002

θ1 = −1
50 -0.8440 0.1560 0.0243 -0.8705 0.1295 0.0168 -0.8993 0.1007 0.0102

200 -0.9305 0.0695 0.0048 -0.9355 0.0645 0.0042 -0.9409 0.0591 0.0035

500 -0.9266 0.0734 0.0054 -0.9940 0.0060 <0.0001 -0.9885 0.0115 0.0001

θ2 = 1
50 0.8827 0.1173 0.0138 0.8660 0.1340 0.0180 0.8386 0.1614 0.0261

200 0.9797 0.0203 0.0004 0.8951 0.1049 0.0110 0.8671 0.1329 0.0177

500 1.0117 0.0117 0.0002 0.9452 0.0548 0.0030 1.0256 0.0256 0.0007

σb = 1:3
50 1.3427 0.0427 0.0018 1.3512 0.0512 0.0026 1.2490 0.0510 0.0026

200 1.3840 0.0840 0.0071 1.3740 0.0740 0.0055 1.2982 0.0018 <0.0001
500 1.3820 0.0820 0.0067 1.3769 0.0769 0.0059 1.2994 0.0006 <0.0001

ρ = 0:8
50 0.7599 0.0401 0.0016 0.7888 0.0112 0.0001 0.8147 0.0147 0.0002

200 0.8051 0.0051 <0.0001 0.8197 0.0197 0.0004 0.8189 0.0189 0.0004

500 0.8195 0.0195 0.0004 0.7749 0.0251 0.0006 0.7997 0.0003 <0.0001
NBP: negative binomial parameter; AVB: the absolute value of biases; MSE: mean square error.
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distributions can be assumed based on the aim of research.
The idea of using Bridge distribution for the random inter-
cept of a longitudinal ordinal outcome can be used for both
univariate and multivariate purposes.

In the case of a binary response variable, it had been shown
that integrating over a normally distributed random intercept
in a logistic model does not result in a closed form [22]. To
make similar subject-specific and population average interpre-
tations in terms of odds ratio, Bridge distribution was intro-
duced [21]. In this paper, we have extended the use of
Bridge distribution for the random intercept of binary logistic
model to an ordinal proportional-odds cumulative logit
model. Extra thresholds are estimated in the ordinal logistic
model compared to the case of binary. The ordinal logistic
regression requires some attentions due to its multiple catego-
ries in comparison to the case of binary. In the current study,
the coefficients are interpreted in terms of proportional-odds
cumulative logit model which is popular due to its relation
to the concept of a continuous latent response variable [34].

The modeling of overdispersed count response was built
upon several previous studies such as those of Molenberghs
et al. in which normal and gamma random effects were used
to take the subject-specific effect and overdispersion into
account [35, 36]. Regarding the overdispersion, we assumed
the count response to follow a negative binomial distribution
which can be defined as a Poisson distribution with a
gamma-distributed rate [17].

The simulation results showed that even if the random
intercepts follow a bivariate normal distribution, assuming a
Bridge distribution for the random intercept of the ordinal
logistic submodel leads to estimations with lower standard
error. Moreover, ignoring the association between the
response variables resulted in estimations with higher MSE.
It has been shown a rational association between the response
variables.

In this study, we longitudinally combined ordinal and
overdispersed count response variables in which the random
intercepts follow Bridge and normal distributions, respec-
tively. The random intercepts followed a bivariate normal
copula. A maximum likelihood estimation approach was
used to estimate the coefficients. The integration over the
two random intercepts can be carried out via combination
of analytical and numerical techniques. The SAS procedure
NLMIXED is available for the estimation and integration
processes.

5. Conclusion

Considering a Bridge distribution for the random intercept of
ordinal logistic regression yields to accurate estimation even
if the random intercept follows normal distribution. In the
presence of any association between longitudinal count and
ordinal responses, the estimations have lower standard error
in comparison to univariate analysis.
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