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Abstract: Background: Silicone breast implants (SBIs) has been shown to be associated with an
increased risk of autoimmune diseases. In the current study, we aimed to explore the potential
association between circulating autoantibodies against the autonomic nervous system and cognitive
impairment, memory deficit, and depressive symptoms reported by women with SBIs. Methods:
ELISA assays were used to quantify anti-adrenergic receptors (α1, α2, β1, β2), anti-muscarinic
receptors (M1-M5), anti-endothelin receptor type A, and anti-angiotensin II type 1 receptor titers in the
sera of 93 symptomatic female subjects with SBIs and 36 age-matched healthy female controls. Results:
A significant difference was detected in the level of autoantibodies against the autonomic nervous
system receptors in women with SBIs who reported memory impairment, cognitive impairment, and
sleep disturbance as compared with both women with SBIs who did not complain of these symptoms
or with healthy individuals without SBIs. Conclusions: Clinical symptoms such as depression,
cognitive impairment, and sleep disturbances were found to be associated with dysregulation
of the levels of circulating autoantibodies targeting the autonomous nervous system receptors in
women with SBIs. These autoantibodies may have diagnostic significance in diseases associated with
breast implants.

Keywords: silicone breast implants; α and β adrenergic receptors; muscarinic acetylcholine receptors;
endothelin receptor type A; type 1 angiotensin II receptor; autoantibodies

1. Introduction

Silicone breast implants (SBIs) are medically approved for use in either breast recon-
struction after breast cancer mastectomy or for augmentation purposes. SBIs are associated
with autoimmune phenomena, in both intact silicone implants as well as in ruptured im-
plants secondary to either local silicone seepage, or distant silicone gel migration; however,
causal evidence is still lacking [1–3]. In genetically predisposed individuals, silicone acts
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as an adjuvant and results in the hyperstimulation of the host immune system [4,5]. The
involvement of the adaptive immune system in the autoimmune/inflammatory syndrome
induced by adjuvants (ASIA) is well-established [6]. As a result, various autoimmune phe-
nomena have been identified such as fibromyalgia and undifferentiated connective tissue
diseases [7], and the hyperstimulated adaptive immunity could result in non-Hodgkin lym-
phomas [5]. Our group previously reported the presence of several autoantibodies includ-
ing serum amyloid A (SSA), serum amyloid B (SSB), histone ribosomal phosphate, Scl-70,
cardiolipin, phosphatidylserine, GM2-ganglioside, and NC-1 in symptomatic women with
SBIs, as well as a significant association between SBIs and Sjogren’s syndrome, systemic
sclerosis, and sarcoidosis in a large epidemiological study [8,9]. The immunopathogenesis
of entities such as Sjogren’s syndrome, sarcoidosis, and undifferentiated connective tissue
diseases are not well-understood; however, they are shown to share several of the common
pathogenic aspects of ASIA. Patients with Sjogren’s syndrome, sarcoidosis, and undiffer-
entiated connective tissue diseases have been shown to oftentimes fulfill the diagnostic
criteria of ASIA [10].

The discovery of functional autoantibodies resulted in a paradigm shift in our under-
standing of both the agnostic and antagonistic physiologic pathways in the autonomous cen-
tral nervous system [11]. Such autoantibodies target G-protein-coupled receptors (GPCRs),
the predominant integral cell membrane proteins in the immune and non-immune cells, and
interfere with intracellular signaling pathways, resulting in disturbance of body homeosta-
sis and the subsequent emergence of autoimmune conditions including Sjogren’s syndrome,
rheumatoid arthritis, systemic sclerosis, etc. [12–15].

Several functional immunoglobulin G (IgG) autoantibodies targeting GPCRs are asso-
ciated with autoimmune diseases, including anti-adrenergic receptors (α1AR, α2AR, β1AR,
and β2AR), anti-muscarinic acetylcholine receptors (M1R–M5R), anti-endothelin receptor
type A (ETAR), and anti-type 1 angiotensin II receptor (AT1R) [16]. An association between
those autoantibodies and cardiovascular diseases (hypertension, cardiomyopathies, con-
gestive heart failure) [17], respiratory diseases (asthma, no smoking lung emphysema) [18],
autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic scle-
rosis) [16], and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) was previ-
ously reported [19]. Despite the high titers of adrenergic β1AR and β2AR and muscarinic
M3R and M4R autoantibodies detected in the cerebrospinal fluid in patients with ME/CFS,
the functional activity of such autoantibodies remains unaddressed [20]. Interestingly,
anti-neuronal antibodies targeting the central and enteric nervous system were found to
contribute to the extraintestinal neurological manifestations of coeliac disease, an immune-
mediated gastrointestinal condition with female preponderance [21].

Accumulating lines of evidence highlight the role of GPCR-mediated noradrenergic
secretion on cognition. The α2AR receptor has a major role in the noradrenergic transmis-
sion cascade in depressive disorders [17,22], memory impairment [23,24], and Alzheimer’s
disease [25,26]. Moreover, cholinergic neurotransmission via the muscarinic receptors
located in the hippocampus and amygdala has been associated with memory impairment
and Alzheimer’s disease [27,28].

In a recent publication, our group demonstrated dysregulation of the level of circulat-
ing autoantibodies against autonomic nervous system GPCRs in symptomatic women with
SBIs suffering from subjective and autonomic-related manifestations such as palpitations,
extensive pain, depression, hearing loss, and dry eyes and mouth [29].

In the current study, we set to investigate the association between circulating autoan-
tibodies to adrenergic, muscarinic, endothelin receptor type A (ETA), and AT1 receptors
and specific clinical manifestations of depression, cognitive impairment including memory
disorders, and sleep disturbances in symptomatic women with SBIs.
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2. Material and Methods
2.1. Study Design

We conducted a cross-sectional, single-center study. The study was approved by the
institutional review board of the Sheba Medical Center, according to the Declaration of
Helsinki (approval no: 6619-19-MSC; approval date: 4 March 2020). The patients signed a
written, informed consent form. The manuscript was written according to the Strengthening
the reporting of observational studies in epidemiology (STROBE) statement [30].

2.2. Patient Recruitment

Subjects attended the Zabludowicz Center for Autoimmune Diseases, Sheba Medical
Center, Israel, due to diverse ill-defined symptoms and clinical manifestations that were
believed to be related to SBIs. Inclusion criteria entailed the subject’s reported symptoms
and SBI primary indication (augmentation or reconstruction). Exclusion criteria included
the history of SBI removal. The study included 93 symptomatic female subjects with
SBIs. The median age was 41 years, interquartile range (IQR) of 35–49. The median
time from silicone breast implantation to the onset of symptoms was 11.0 years (6.0–14.0).
Among the 93 women with SBIs, 19 underwent implant for reconstruction purposes (20.4%)
while 74 underwent breast implantation for cosmetic purposes (79.6%). An extensive,
structured interview conducted by a rheumatologist/immunologist was used to collect
clinical data such as a past medical history of autoimmune diseases, familial history of
autoimmune diseases, and the time period between SBI implantation and symptoms onset.
The demographics of the enrolled participants were presented in our previous published
study [12]. The control group included 36 age-matched healthy females that were chosen
from the Magen David Adom, Israel’s National Emergency Pre-Hospital Medical and Blood
Services Organization. The median age of healthy donors was 41 years, with an IQR of
35–49.

2.3. Quantification of Circulating Autoantibody Levels

Whole-blood samples were withdrawn in order to quantify circulating autoantibodies
titers for the anti-adrenergic receptors (α1, α2, β1, β2), anti-muscarinic receptors (M1-M5),
anti-endothelin receptor type A (ETAR), and anti-angiotensin II type 1 receptor (AT1R).
The median time of blood withdrawal in symptomatic SBI subjects was 11 years post-
implantation. Blood was clotted at room temperature and then centrifuged at 2000× g for
15 min in a refrigerated centrifuge. Sera were purified and stored at −35 ◦C. The circulating
autoantibody titers were measured in the serum samples using a sandwich ELISA kit
(CellTrend GmbH Luckenwalde, Germany). The microtiter 96-well polystyrene plates were
coated with GPCR. To maintain the conformational epitopes of the receptor, 1 mM calcium
chloride was added to every buffer. Duplicated samples of a 1:100 serum dilution were
stored at 4 ◦C for 2 h. After washing steps, plates were kept for 60 min with a 1:20,000
dilution of horseradish-peroxidase-labeled goat anti-human IgG used for detection. In
order to obtain a standard curve, plates were subjected to test serum from an anti-GPCR
autoantibody-positive index patient. The ELISAs were validated according to the FDA’s
“Guidance for industry: Bioanalytical method validation”. The optimal cut-off level for
each anti-GPCR autoantibody test was analyzed using the receiver operating characteristic
(ROC) analysis, as described previously.

2.4. Statistical Analysis

Continuous variables were presented as median (IQR) and compared using Mann–
Whitney U test. p-values were adjusted for multiple comparisons, and p < 0.05 was
considered statistically significant. Data analysis was performed using R version 4.0.4 (R
Core Team, Vienna, Austria).
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3. Results

Recruited subjects were classified into one of three groups—namely, healthy controls
without SBIs; symptomatic subjects with SBIs who reported memory disorders, sleep
disturbances, cognitive impairment, and/or depression; and subjects with SBIs who did
not report such symptoms.

Within the studied group of 93 women with SBIs, 53 patients (57%) experienced
memory disorders, 52 patients (56%) complained of sleep disturbances, 42 patients (45%)
endured cognitive impairment, and 37 patients (40%) had depression. Notably, the rest of
the women with SBIs did not suffer from such symptoms (memory impairment, cognitive
impairment, sleep disturbance) but possibly suffered from other symptoms, as previously
described by us (29).

First, we examined the potential association between the circulating level of autoanti-
bodies against the autonomic nervous system receptors with memory disorders in women
with SBIs. It was found that SBI patients who reported memory disorders had significantly
lower median titers of anti-M2R (3 vs. 4, p = 0.046) and anti-M4R (6 vs. 9, p = 0.006) in
comparison to SBI patients who did not report memory disorders (Figure 1 and Table 1).
Notably, SBI patients who reported memory disorders had significantly lower median
titers of anti-M2R (3 vs. 5, p = 0.002) and anti-M4R (6 vs. 9, p = 0.001) in comparison to
the healthy control group. Moreover, no statistically significant difference was detected
in the median titers of anti-M2R (p = 0.37) and anti-M4R (p = 0.76) autoantibodies when
comparing the healthy control group without SBIs to SBI subjects who did not suffer from
memory disorders (Figure 1 and Table 1).
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Figure 1. Autoantibodies against autonomic nervous system receptors are correlated with memory
impairment in symptomatic women with SBIs. Individual measurements are shown as dots, summary
data as box plots, and the distributions as violin plots. Green dots: healthy controls; Blue dots: silicone-
breast-implant patients without clinical manifestations; red dots: silicone-breast-implant patients
with clinical manifestations.
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Table 1. Memory impairment.

Characteristic Controls, N = 36 1 Without Symptom, N = 40 1 With Symptom, N = 53 1

A1AR 15 (11, 20) 14 (11, 20) 13 (9, 17)
A2AR 12.2 (9.1, 14.5) 13.8 (9.7, 16.9) 11.5 (9.9, 14.8)
B1AR 23 (17, 44) 11 (8, 19) 9 (7, 13)
B2AR 6.9 (5.1, 11.5) 7.0 (4.3, 10.8) 6.8 (4.5, 10.0)
M1R 3.04 (2.28, 3.92) 3.09 (2.16, 4.38) 2.38 (1.83, 3.83)
M2R 5 (3, 8) 4 (3, 9) 3 (3, 5)
M3R 7.9 (6.4, 10.1) 6.8 (5.2, 9.7) 7.0 (5.3, 8.6)
M4R 9 (7, 12) 9 (6, 12) 6 (4, 9)
M5R 6.8 (5.3, 9.3) 7.7 (5.4, 10.8) 6.7 (5.4, 8.6)
AT1R 16 (12, 23) 11 (9, 17) 10 (8, 12)
ETAR 11.3 (9.4, 14.2) 9.3 (7.5, 12.3) 8.4 (6.9, 10.2)

1 Data presented as median (IQR) for the circulating titer of each antibody.

Exploring the potential association between circulating level of autoantibodies against
the autonomic nervous system receptors with sleep disturbance in women with SBIs, it was
found that SBI patients who suffered from sleep disturbance had significantly lower median
titers of anti-α1AR (12 vs. 14, p = 0.028), anti-α2AR (10.9 vs. 14.1, p = 0.014), anti-AT1R
(10 vs. 11, p = 0.006), anti-β1AR (9 vs. 11, p = 0.003), anti-β2AR (5.8 vs. 8.1, p = 0.006),
anti-M1R (2.31 vs. 3.12, p = 0.013), anti-M2R (3 vs. 5, p = 0.005), and anti-M4R (5 vs. 8,
p = 0.001) in comparison to SBI patients who did not suffer from sleep disturbance (Figure 2
and Table 2). Notably, SBI patients who reported memory disorders had significantly lower
median titers of anti-M2R (3 vs. 5, p = 0.002) and anti-M4R (5 vs. 9, p = 0.001) in comparison
to the healthy control group. Moreover, there was no significant difference in the level of
anti-α1AR (p = 0.69), anti-β2AR (p = 0.61), anti-M1R (p = 0.99), anti-M2R (p = 0.46), and
anti-M4R (p = 0.64) autoantibodies when comparing the healthy control group without
SBIs to subjects with SBI subjects who did not suffer from sleep disturbance (Figure 2
and Table 2). Interestingly, only anti-AT1R and anti-β1AR antibodies were found to be
significantly different amongst all three studied groups (Figure 2 and Table 2).

When analyzing the association between circulating level of autoantibodies with cog-
nitive impairment, SBI patients who reported cognitive impairment had significantly lower
median titers of anti-α1AR (12 vs. 15, p = 0.013), anti-β1AR (9 vs. 11, p = 0.05), and anti-M4R
(5 vs. 8, p = 0.005) in comparison to SBI patients who did not report cognitive impairment
(Figure 3 and Table 3). Notably, SBI patients who reported cognitive impairment had
significantly lower median titers of anti-α1AR (12 vs. 15, p = 0.036), anti-β1AR (9 vs. 23,
p < 0.001), and anti-M4R (5 vs. 9, p = 0.001) in comparison to healthy controls without SBIs.
Moreover, there was no significant difference in the median titers of anti-α1AR (p = 0.77)
and anti-M4R (p = 0.47) autoantibodies when comparing healthy controls without SBIs to
subjects with SBIs who did not report cognitive impairment (Figure 3 and Table 3). Further,
only anti-β1AR antibodies were found to be significantly different between all three groups
(Figure 3 and Table 3).

Table 2. Sleep disturbances.

Characteristic Controls, N = 36 1 Without Symptom, N = 41 1 With Symptom, N = 52 1

A1AR 15 (11, 20) 14 (11, 20) 12 (8, 16)
A2AR 12.2 (9.1, 14.5) 14.1 (11.5, 16.7) 10.9 (8.7, 15.5)
B1AR 23 (17, 44) 11 (9, 20) 9 (6, 12)
B2AR 6.9 (5.1, 11.5) 8.1 (5.3, 14.1) 5.8 (3.6, 9.3)
M1R 3.04 (2.28, 3.92) 3.12 (2.19, 4.34) 2.31 (1.49, 3.70)
M2R 5 (3, 8) 5 (3, 7) 3 (2, 4)
M3R 7.9 (6.4, 10.1) 7.7 (5.8, 8.9) 6.7 (4.9, 9.3)
M4R 9 (7, 12) 8 (7, 11) 5 (4, 10)
M5R 6.8 (5.3, 9.3) 7.5 (5.8, 11.2) 6.7 (5.1, 8.9)
AT1R 16 (12, 23) 11 (10, 14) 10 (8, 14)
ETAR 11.3 (9.4, 14.2) 9.3 (7.9, 11.8) 8.2 (6.3, 11.2)

1 Data presented as median (IQR) for the circulating titer of each antibody.
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Figure 2. Autoantibodies against autonomic nervous system receptors are correlated with sleep
disturbance in symptomatic women with SBIs. Individual measurements are shown as dots, summary
data as box plots, and the distributions as violin plots. Green dots: healthy controls; Blue dots: silicone-
breast-implant patients without clinical manifestations; red dots: silicone-breast-implant patients
with clinical manifestations.

Table 3. Cognitive impairment.

Characteristic Controls, N = 36 1 Without Symptom,
N = 51 1

With Symptom,
N = 42 1

A1AR 15 (11, 20) 15 (11, 21) 12 (8, 15)
A2AR 12.2 (9.1, 14.5) 12.7 (10.5, 16.6) 11.5 (9.6, 15.9)
B1AR 23 (17, 44) 11 (8, 17) 9 (6, 11)
B2AR 6.9 (5.1, 11.5) 6.7 (4.4, 10.5) 7.0 (4.2, 10.3)
M1R 3.04 (2.28, 3.92) 2.58 (1.97, 4.22) 2.54 (1.81, 3.87)
M2R 5 (3, 8) 4 (3, 7) 3 (2, 5)
M3R 7.9 (6.4, 10.1) 7.1 (5.3, 9.6) 6.8 (5.0, 8.7)
M4R 9 (7, 12) 8 (6, 12) 5 (4, 8)
M5R 6.8 (5.3, 9.3) 7.6 (5.6, 11.6) 6.7 (4.9, 8.3)
AT1R 16 (12, 23) 11 (9, 16) 10 (8, 13)
ETAR 11.3 (9.4, 14.2) 9.2 (7.8, 12.0) 8.1 (6.6, 10.6)

1 Data presented as median (IQR) for the circulating titer of each antibody.
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Lastly, SBI patients who reported depression had significantly lower median titers of
anti-α2AR (10.3 vs. 14.2, p < 0.001), anti-AT1R (10 vs. 11, p = 0.012), anti-β1AR (8 vs. 11,
p = 0.003), anti-β2AR (5.1 vs. 7.5, p = 0.047), anti-ETAR (7.7 vs. 9.3, p = 0.017), anti-M1R
(2.13 vs. 3.05, p = 0.021), anti-M2R (3 vs. 4, p < 0.001), anti-M3R (5.9 vs. 7.7, p = 0.026), anti-
M4R (5 vs. 9, p < 0.001), and anti-M5R (6.3 vs. 7.6, p = 0.023) in comparison to SBI patients
who did not report depression (Figure 4 and Table 4). SBI patients who reported depression
had significantly lower median titers of anti-AT1R (10 vs. 16, p < 0.001), anti-β1AR (8 vs. 23,
p < 0.001), anti-β2AR (5.1 vs. 6.9, p = 0.04), anti-ETAR (7.7 vs. 11.3, p < 0.001), anti-M1R
(2.13 vs. 3.04, p = 0.008), anti-M2R (3 vs. 5, p < 0.001), anti-M3R (5.9 vs. 7.9, p = 0.011)
and anti-M4R (5 vs. 9, p < 0.001) in comparison to healthy controls without SBIs. No
significant differences were detected in the median titers of anti-β2AR (p = 0.88), anti-M1R
(p = 0.72), anti-M2R (p = 0.48), anti-M3R (p = 0.52), anti-M4R (p = 0.56) and anti-M5R
(p = 0.16) autoantibodies between healthy controls without SBIs and subjects with SBIs
who did not report depression (Figure 4 and Table 4). Interestingly, anti-AT1R, anti-β1AR,
and anti-ETAR antibodies were found to be significantly different between all three groups
(Figure 4 and Table 4).

Table 4. Depression.

Characteristic Controls, N = 36 1 Without Symptom, N = 56 1 With Symptom, N = 37 1

A1AR 15 (11, 20) 14 (11, 19) 11 (8, 16)
A2AR 12.2 (9.1, 14.5) 14.2 (10.9, 16.9) 10.3 (8.4, 12.4)
B1AR 23 (17, 44) 11 (8, 21) 8 (6, 11)
B2AR 6.9 (5.1, 11.5) 7.5 (4.9, 10.8) 5.1 (3.5, 8.4)
M1R 3.04 (2.28, 3.92) 3.05 (2.21, 4.37) 2.13 (1.51, 3.67)
M2R 5 (3, 8) 4 (3, 8) 3 (2, 4)
M3R 7.9 (6.4, 10.1) 7.7 (5.7, 9.7) 5.9 (4.9, 8.1)
M4R 9 (7, 12) 9 (6, 11) 5 (4, 7)
M5R 6.8 (5.3, 9.3) 7.6 (5.8, 11.7) 6.3 (4.9, 8.2)
AT1R 16 (12, 23) 11 (9, 16) 10 (8, 11)
ETAR 11.3 (9.4, 14.2) 9.3 (8.0, 12.1) 7.7 (6.2, 9.7)

1 Data presented as median (IQR) for the circulating titer of each antibody.
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4. Discussion

Based on our reported results, we propose that depression, cognitive impairment
including memory deficits, and sleep disturbances in symptomatic women with SBIs are
associated with dysregulation of the circulating levels of functional autoantibodies targeting
the autonomic nervous system receptors such as α and β adrenergic receptors, muscarinic
acetylcholine receptors, endothelin receptor type A, and type 1 angiotensin II receptors.

It is suggested that autoantibodies targeting neuronal surface antigens such as neu-
ronal ion channels or neurotransmitter receptors result in severe functional disorders such
as schizophrenia, bipolar disorders, depression, and dementia [31,32]. Earlier reports on
autonomic central nervous system receptor autoantibodies including N-methyl-d-aspartate-
receptor subunit NR1 (NMDAR1), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPAR), GABAB receptor (GABABR) and dipeptidyl aminopeptidase-like pro-
tein 6 (DPPX), were described in autoimmune encephalitis [33,34]. Cognitive and memory
dysfunction in neurodegenerative diseases such as Alzheimer’s disease is postulated to be
attributed to increasing titers of serum autoantibodies against 5-hydroxytryptamine recep-
tors (5-HT2AR, 5-HT2CR, and 5-HT7R), vascular endothelial growth receptor 1 (VEGFR1),
Stabilin-1 (Stab1), NMDAR, and endothelin type A receptors (ETAR). The existence of
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the mentioned receptors is also associated with a high mortality rate in patients with
Alzheimer’s [31,35].

Muscarinic and adrenergic receptors play crucial roles in learning and memory, most
prominently M1R [27,28,36] and β1AR [37]. It was suggested that autoantibodies to adrener-
gic receptor β1AR and muscarinic receptors M1-M3R were associated with mood disorders
in patients with Alzheimer’s disease [35]. To date, increasing evidence points toward the
role of autoantibodies to the adrenergic receptors α1AR and β1AR in the pathogenesis of
vascular dementia and Alzheimer’s disease [38,39] with autoantibodies detected in at least
59% of patients [40]. Other reports demonstrated a causal relationship between α1AR and
β1AR autoantibodies dementia; however, no correlation with severity was established [41].

In this report, we report cognitive impairment and memory dysfunction in women
with SBIs, which was associated with measured serum titers of receptor autoantibodies
to α1AR, β1AR, M2R, and M4R. Interestingly, our findings indicate a reduction in levels
of these autoantibodies in patients suffering from cognitive impairment and memory
disorders as opposed to increased levels reported in previous studies [38–41]. The reason
for this discrepancy is not fully understood; however, recent studies showed a reduction
in the level of specific anti-GPCRs autoantibodies, including anti-β1AR and anti-ETAR
autoantibodies, in the sera of patients with autoimmune diseases, and acute coronary
syndrome, compared with healthy donors [13,42], potentially attributed to autoantibody
adherence to its respective receptor and subsequently decreased serum availability [42].

Depression has a complex etiology, and its pathogenesis is not well-understood, but
it has been proposed that immune dysregulation, due to autoantibody formation, could
potentially play a role [43]. Studies on depression remain a challenge due to the lack
of compatible animal models; however, strides have been made using autoantibodies to
induce depression-like manifestations in murine models [44,45].

Several studies suggested that autoantibodies to NMDAR found in the hippocampus
and the cortex neurons potentially increase the risk for depression [31,44,46]. A positive
correlation between depressive disorders and serum autoantibodies to NMDAR, partic-
ularly to the NR2 subunit, exists in systemic lupus erythematosus (SLE) [47]. Moreover,
neuropsychiatric manifestations in SLE patients are associated with ribosomal P proteins
and endothelial-cell autoantibodies [48].

Endothelin-1 (ET1) and ET1 B-type receptors (ETBRs) signaling pathways in the
amygdala have been shown to contribute to the attenuation of anxiety and depression [49]
raising the possibility that receptor interference, through the presence of autoantibodies,
would result in enhanced anxiety and depression. A recent study compared the clinical
manifestations of fibromyalgia, depression, and ME/CFS in patients with SBIs and patients
with SLE and scleroderma and concluded that fibromyalgia and ME/CFS is more common
in patients with SBIs, compared with scleroderma controls [50].

Our current study highlights a cause–effect relationship between SBIs and diverse
functional manifestations and also demonstrates the presence of certain autoantibodies to
support such a relationship.

Our group recently showed that anti-β1AR might play a role in the development of
autoimmune dysautonomia in symptomatic women with SBIs. Anti-β1AR was found to
be significantly associated with autonomic-related nervous system manifestations such as
sleep disturbances and depression [29]. The findings of this study support previous results
and shows that circulating levels of anti-β1AR are significantly dysregulated in women
with SBIs who suffered from sleep disturbance and depression (Figures 2 and 4).

It is worth mentioning that our group and others found that SBI removal could
improve functional symptoms such as cognitive impairment and depression, though it was
not proven to benefit all SBI patients [51].

Preliminary data from in vitro studies conducted at our lab show that while total IgG
secreted from lipopolysaccharide (LPS)-activated human monocytes derived from healthy
subjects results in a reduction in pro-inflammatory cytokine (TNFα and IL-6) secretion,
IgG derived from the blood of symptomatic SBI women increase the production of such
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cytokines. It remains to be tested whether the passive transfer of IgG autoantibodies
derived from symptomatic SBI women into the brain of naïve mice will result in the
appearance of these symptoms in murine models, thus proving a direct pathogenic effect
of these autoantibodies.

Silicone implants serve as a classic example of how foreign material could act as an
adjuvant in genetically predisposed individuals [52]. The seepage and migration of silicone
into lymph nodes [10], and the engulfment of silicone microparticles by immune cells could
result in hyperactivation of both innate and adaptive arms of the immune system. Such
effects could explain the development of rare cases of T-cell lymphomas (BIA-ALCL) in
women with SBIs and the production of classical and non-classical autoantibodies as a
result of B-cell activation in other instances [5].

5. Limitations

Our study has a few limitations. The circulating levels of anti-GPPCRs autoantibodies
were measured only once in symptomatic women with SBIs, preventing the detection
of any fluctuations over time that could have correlated with the severity of symptoms.
Medication history of symptomatic women with SBIs was not sought, which could have
potentially influenced the circulating levels of anti-GPCRs antibodies. Symptoms were
self-reported, and moving forward objective tests such as brain MRI/CT scans and routine
cognitive screening tests are needed to validate, follow up, and explain the observed
symptoms in affected patients.

Lastly, our study included a small sample size of women with SBIs, and therefore,
further larger-scale studies are needed in order to further support our conclusions.

6. Conclusions

Female patients with SBIs have diverse clinical symptoms such as depression, cognitive
impairment, and sleep disturbances. Such symptoms were found to be associated with
dysregulated circulating levels of adrenergic, muscarinic, endothelin receptor type A, and
type 1 angiotensin II receptor autoantibodies of the autonomous central nervous system.
Autoantibodies against GPCRs of the autonomic nervous system might play significant
roles in the development of suspected autoimmune dysautonomia-related disorders and
might help explain some of the enigmatic, subjective CNS-related manifestations reported
by patients.
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