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a b s t r a c t

Remote estimation of vital signs is an important and active area of research. The goal of this

work was to analyze the feasibility of estimating respiration parameters from video

sequences of faces recorded using a mobile thermal camera. Different estimators were

analyzed and experimentally verified. It was demonstrated that the respiration rate, peri-

odicity of respiration, and presence and length of apnea periods could be reliably estimated

from signals recorded using a portable thermal camera. The size of the camera and efficiency

of the methods allow the implementation of this method in smart glasses.
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1. Introduction

The three main vital signs often monitored by healthcare
professionals are body temperature, heart rate, and respira-
tion rate. Respiratory rate (RR) is defined as the number of
breaths per minute. A typical goal of respiratory rate
measurement is to evaluate whether the respirations are
normal, too fast (tachypnea), too slow (bradypnea), or
nonexistent (apnea). Apnea is defined by the cessation of
respiratory airflow and is especially dangerous during sleep.
The length of time necessary to qualify a true apneic event (i.e.,
considered clinically significant in sleep apnea syndromes) is
measured in seconds [1], e.g., >10 s for central sleep apnea
syndrome [2]. The threshold values for sleep apnea syndromes
are defined as a result of cumulative clinical experience and
are different for adults (e.g., >9 s [3] or >10 s [2]) and children
* Corresponding author at: Gdansk University of Technology, Narut
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http://dx.doi.org/10.1016/j.bbe.2016.07.006
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(>19 s [1]). In this paper, the term ‘‘apnea’’ is used in wide
sense, i.e., as a ‘‘cessation of respiration airflow’’.

Respiratory rate is an important physiological parameter
that is indicative of potential health risks. For example, a RR
value greater than 27 bpm is an important predictor of cardiac
arrest [4] and is also used in prediction of pneumonia [5] or
lower respiratory tract infection [6]. It has also been shown
that respiratory rate is more discriminatory between stable
and unstable patients than pulse rate [4]. In [7], the authors
specified many recommendations for measurement of RR in
hospitals and in admission to intensive care units, including
‘‘the respiratory rate should be measured and documented
accurately in all hospital patients at least once a day, and
should always be documented when other vital signs are
measured‘‘. In basic epidemiology, the WHO guidelines
recommend that pneumonia case detection can be based on
clinical signs alone, primarily respiratory rate [8].
owicza 11/12, 80-233, Gdansk, Poland.
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In clinical observations, the respiratory rate is often
determined by counting the number of times that the chest
rises or falls per minute [9]. More quantitative methods use
inductive plethysmographs or thoracic impedance systems
[10], oxygen masks [11], bioacoustic sensors [12], acceler-
ometers or gyroscope sensors [13], among others.

Respiration-related parameters are typically analyzed in
sleep studies. For example, the American Academy of Sleep
Medicine (AASM) recommends, ‘‘Sleep apnea must first be
diagnosed at a sleep center or lab during an overnight sleep
study, or 'polysomnogram’’' [14]. The International Classifica-
tion of Sleep Disorders [15] underlines that ‘‘Polysomnographic
monitoring of obstructive sleep apnea syndrome should consist
of monitoring of sleep by electroencephalography, electroocu-
lography, electromyography, airflow, and respiratory muscle
effort, and should also include measures of electrocardiograph-
ic rhythm and blood oxygen saturation’’. Other parameters are
also measured to analyze respiration-related context, e.g., body
position, snore acoustic signals, etc. [16,17].

Remote measurement of RR could be especially useful for
medical screening (e.g., severe acute respiratory syndrome
(SARS), pandemic influenza, etc.). Therefore, the use of near-
infrared and thermal imaging was found to be a useful method
for evaluation of chest respiration movements or nasal heat
flow. In [18], the authors used an active-stereo depth-sensing
system composed of a near-infrared (NIR) illuminator and a
camera. After calculation of the depth map, the region of
interest (ROI) containing the rib cage and the abdominal cavity
was detected. Finally, from the processed set of frames, a
temporal sequence of volumes was calculated that repre-
sented breathing signals, which could be further processed to
calculate the respiration rate and patterns. The disadvantage
of this method is that the patient must wear a tight elastic top
during measurement.

Extraction of signals from a series of thermal images has
been found valuable for specifying diagnostic parameters
[19,20]. In [21,22], thermal imaging was used to estimate
the human respiration rate from a sequence of facial images.
The side view of the subject to the camera was used to
visualize the breathing-jet dynamics. In [21], the CO2 content
of exhaled air was captured using a narrow band-pass filter in
the CO2 absorption band (4.3 mm). Experiments were per-
formed on 9 subjects at distances ranging from 6–8 ft. Ground-
truth measurements were obtained via a traditional contact
device (an abdominal transducer).

The results showed a high correlation between the imaged
breath rate and the ground-truth breath rate. The measurement
methods presented in [23,24] used a thermal camera that was
positioned collinear to the subject's face. The methodology was
based on capture of the modulation of nasal tissue radiance
during inhalation and exhalation of air. In [24], the authors
described the method and lab validation with the participation
of 20 healthy volunteers. In [23], the authors reported applica-
tion of the method in a clinical study with the participation of
healthy subjects and pathological subjects (suffering from sleep
apnea). In the described studies, the respiration rate was
typically estimated using statistical methods or analysis of
dominant peaks in the frequency spectrum.

A similar method was proposed in [25] in which the
temperature gradient distribution throughout the nasal cavity
(temperature difference between the inspiration and expira-
tion phases) was used to extract the respiration waveforms.
The temperature difference is the product of radiative and
convective heat transfer components during the breathing
cycle. The authors estimated the values of respiration rate and
compared the results with manually registered values from
the reference bedside monitor. Validation performed on 5
subjects showed small differences between the estimated
values and reference values (mean = 1.18 bpm, std. dev. =0.80).
In [26], using a portable thermal camera, the authors presented
a preliminary study focused on evaluation of respiration rate
for subjects during silence or speech. The results showed
highly accurate RR estimation with respect to reference
measurements.

The measured thermo-physiological signal for respiration
analysis represents the modulated nasal tissue radiance, and
signal extraction requires location of the source of thermal
changes in the area of nostrils or mouth. The related source
points or a region of interest (ROI) can be specified manually or
obtained using automatic detection (in a frame) and tracking
(between frames). For example, in [27], the authors presented a
particle filter tracker driven by a probabilistic template
function, which is capable of adapting to abrupt positional
and physiological changes. First, the user manually inputs the
initial template (rectangular ROI) in the first frame (using the
computer mouse). For the following frames, the method
automatically performs the template updating process by first
extracting stable and unstable seeds and subsequently
computing the spatiotemporal fuzzy mask. The method was
tested on a dataset consisting of 25 thermal sequences for
various conditions (e.g., movements of subjects). The method
demonstrated robustness and accuracy in thermal facial
imaging. Other tracking methods have also been proposed
(e.g., [28,29]).

A single thermo-physiological signal is usually constructed
by calculating a mean temperature in the ROI of each video
frame. Such a methodology is simple and effective but does
not allow visualization and localization of subtle pathological
patterns, as proposed in [30].

The miniaturization of thermal imaging sensors (e.g.,
TAMARISK cameras, Flir Lepton sensors) allows embedding
of such sensors in mobile portable devices, e.g., in smart
glasses. In recent years, many smart glasses have been
proposed, including Google Glass, Epson Moverio BT-200,
and so on, and many applications of smart glasses in
healthcare have been presented. For example, Evena Medical
reported the use of smart glasses to improve visualization of
skin veins with IR illumination [31]. Under the eGlasses project
(www.eglasses.eu), our group is developing a smart glasses
platform that can use different sensors, including visible and
thermal cameras [32,33]. The user of these dedicated smart
glasses can identify a person (e.g., using graphical markers [34]
or facial features [33]), attempt to estimate vital sign
parameters (using a thermal camera, visual camera, etc.)
and store the information in a healthcare information system.
Therefore, it is important to analyze the reliability of the RR
estimation for short image sequences recorded using a mobile
thermal camera. Additionally, the goal of the work reported in
this paper is to analyze the types of respiration patterns that
can be accurately evaluated and described using such mobile

http://www.eglasses.eu/
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system. In particular, three parameters of respiration patterns
are evaluated: the respiration rate for normal and abnormal
breathing patterns, the presence of breathing pauses or apnea
events (cessation of respiration) and the relationship between
respiration effort and respiration activity (respiration depth).
A potential practical application is remote monitoring of
respiration rate and patterns during screening activities or
during classical interviews with patients.

2. Experimental design

The method proposed in this paper is based on the measure-
ment of frames (with a given frame rate) from the face region
using a thermal camera (Fig. 1a). It is assumed that the
temperature changes in the region of the nose or/and mouth
due to respiration activities. Therefore, a temperature gradient
should be observed if the body temperature and ambient
temperature are different.

Healthy volunteers were asked to participate in experiments
to collect video sequences for verification of the proposed
method. Two experiments were performed. A total of 16
healthy volunteers (avg. age = 34.75 y � 13.16) participated in
the first experiment, and 12 healthy volunteers participated in
the second experiment 12 (avg. age = 37.15 y � 9.16).

In all experiments, a Tamarisk 320 long-wave thermal
camera module was used (resolution of 320 � 240, sensitivity
<50 mK, size of 3 cm � 2.6 cm � 4 cm). A portable thermal
camera (that can be easily connected to smart glasses frame;
see Fig. 2a) was fixed using a special handle mounted on a table
and positioned collinear to the subject's face. Each subject was
asked to sit in an armchair (fixed position) in front of the
camera. Using the camera preview mode, the position of each
subject was fixed to fulfill the following conditions: nostrils
Fig. 1 – (a) Measurement setup; (b) 

Fig. 2 – (a) TAMARISK thermal camera mounted on the smart glas
of raw signals (i.e., without any processing) from the nose ROI.
visible and nose within approximately 1/5 of the frame width.
This condition was one of the assumptions of this study.
Because the subjects were different, the distance between the
camera face and subject's face was in the range of 40–70 cm.
Such distances could be easily used in practice, e.g., at
the beginning of every routine medical examination when
the nurse takes the patient's vital signs. For each subject, the
session was divided into three phases: (1) subject sitting on the
armchair with position fixed as described above, (2) subject
asked to rest (calmly) for several seconds, and (3) subject asked
to performed breathing exercises, which were different for
both experiments, each for 1 min. During the last phase (3rd),
thermal video sequences were recorded together with the
reference measurements of respiration activities collected
using a pressure belt (Vernier RMB). The sampling frequency
for both devices (belt and thermal camera) was set to 25 Hz. To
synchronize both respiration signals, subjects were asked to
hold a breath and begin normal breathing after the acquisition
was started. Each data acquisition phase lasted 1 min (1-min
recordings; see Fig. 2b).

During the first experiment, subjects were asked to perform
a simple breathing exercise, i.e., to breath naturally, without
speaking or moving. Data from the first experiment were
analyzed to verify different RR estimators. After this step, the
second experiment was performed. In the second experiment,
a subset of subjects who participated in the first experiment
was available (12 out of 16). Each subject was asked to repeat
the respiration patterns [35] presented in Fig. 3. Each exercise
lasted 1 min with breaks (rest) between each exercise.

The patterns that appear in typical respiration problems
were chosen and additionally allowed for later quantitative
analysis of the thermal-based respiration waveforms for
possible detection of apnea events (or respiration pauses)
and evaluation of frequency (rate) changes and amplitude
signal composition procedure.

ses prototype frame; (b) Experimental software for extraction



Fig. 3 – Respiration patterns: P1 – amplitude variations with apnea (Cheyne-Stokes respirations), P2 – faster respiration rate with
apnea (Biot's breathing, a.k.a. cluster respiration), P3 – fast and intensive respirations (Kussmaul's respirations), P4 – normal
respiration rate with apnea (apneustic respirations), P5 – chaotic respiration (in rate and amplitudes, ataxia respirations).
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changes. The subjects were asked to follow the patterns but
could individually decide how (e.g., they could decide when to
hold the breath: during inhalation, exhalation, in the middle,
etc.). For the P5 pattern, participants were asked to generate
respiration actions chaotically with irregular apnea periods.
Informed consent was obtained for both experiments.

In total, 76 signals (16 + 60), each with a length of 1 min,
were extracted and used in further analysis.

In both experiments, a respiration belt (Vernier RMB) was
used to simultaneously measure the reference respiration
signals from the chest/abdomen region. Measurement of
thoracoabdominal movements was used in this study as a
reference method, as in many other similar studies. In this
study, it was also important to compare the respiratory effort
(measured by the respiratory belt) with the respiratory airflow
(measured by the thermal camera). This comparison was
made possible using signals obtained for the P1 pattern for
which modulation of amplitudes (respiration depths) should
be observed.

3. Methods

3.1. Extraction of respiration waveforms

The region of interest (ROI) was manually extracted (e.g., nose/
nostrils area) for each recorded video frame, and the
corresponding values were averaged (one value for a frame).
As a result, a digital, thermo-physiological signal was
extracted (Fig. 1b).

For the purposes of this study, the nose ROI was selected
manually on the first frame using software developed in the
Java programming language (Fig. 2b). The rectangular ROI was
drawn to cover the nostrils. The width of the ROI was equal to
the maximum width of the nose. The bottom portion of the ROI
was set as half the distance between the bottom of the nose
and the upper lip. The ROI indicated in the first frame was
subsequently copied to all successive frames, and its location
in reference to the nose location was visually verified by
reviewing all frames with the developed software. It is
important to underline that the experiments were performed
under controlled conditions, i.e., subjects were asked to
remain still, and an averaging operation performed on the
pixels in the ROI compensated for potential small movements.

For each ROI of each frame, the average value is calculated
as:

sðtiÞ ¼ 1
NROI

Xre
i¼rs

Xce
j¼cs

Cði; jÞ; (1)
where NROI is the number of pixels in the ROI, rs and cs are the
respective first (start) row and column of the ROI rectangle, re
and ce are the respective last (end) row and column of the ROI
rectangle, and C(i, j) is the pixel value of the data matrix.

After calculation of average values, the samples of the
digital signals were obtained (Fig. 1b):

sðtiÞ ¼ sðt1Þ; sðt2Þ; sðt3Þ; . . .; sðtKÞf g; (2)

where K is the number of frames in the processed video (image
sequence).

In the next step, the digital signals were normalized by
removing the mean value:

snðtiÞ ¼ sðtiÞ�mðsðtÞÞ: (3)

The extracted signals were presented using the developed
software and could be visually verified.

The normalized signals were optionally filtered using the
moving average operation in the time domain. Two lengths of
windows size were considered, i.e., L = 5 and L = 7, for which
the �3 dB cut-off frequencies (low-pass filters) are approxi-
mately fc = 2.26 Hz and fc = 1.598 Hz (for fs = 25). We tested both
window lengths, and the results of the respiration rate
estimates were practically the same. We chose N = 5 because
it introduces fewer changes to the original signal.

3.2. Post-processing

Baseline removal was performed using a 4th-order high-pass
digital Butterworth filter with the cutoff frequency set to
0.1 Hz. The filter was dynamically designed using the butter
function from the Octave signal processing toolkit.

The respiration waveforms were analyzed to extract
different descriptors that represent properties of the respira-
tion patterns recorded using thermal imaging. The goal of the
analysis was to answer the question of whether it is possible to
reliably estimate the respiratory rate, periodicity of respiration
patterns, presence and properties of apnea events, and relative
change in respiration waveform amplitudes using a mobile
thermal camera.

First, the respiration rate estimation was investigated. The
most popular estimator is based on detection of the highest
peak in the frequency spectrum (the method is later
referenced as eRR_sp). This approach assumes that the
respiration frequency fSP is the frequency value for the highest
peak in the frequency spectrum (e.g., amplitude spectrum) and
also assumes (as in other methods) that the respiration signal
is dominant in the analyzed signal. This method has two
disadvantages. First, for short signals, this method has a low



b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 3 6 ( 2 0 1 6 ) 7 3 1 – 7 4 1 735
frequency resolution (e.g., for T = 30 s, N = 750, fs = 25 Hz, the
spectral resolution is (25/750) � 60, i.e., approximately 2 bpm).
Second, this method almost always returns a result, even for
noise signals, and thus ‘‘false’’ respiration rate values could be
returned for the filtered signals. Therefore, additional respira-
tion rate estimators were investigated, i.e., eRR_ac is an
estimator based on periodicity of peak locations for the
autocorrelation function in the time domain, eRR_zc is the
estimator based on the number of zero-crossings, and eRR_pk
is the estimator based on the number of detected peaks.

Because the autocorrelation sequence of a periodic signal
has the same cyclic characteristics as the signal itself, for the
eRR_ac estimator, the autocorrelation for different time lags is
calculated, and the period is determined by calculating an
average time differences between the detected peaks. The
xcorr Octave function was used. As a peak detector, we used a
method that searches for a local minimum and a local
maximum for which the difference is greater than the
threshold value T:

dj ¼ sfnðtjþlÞ�sfnðtjÞ; dj > T (4)

where sfnðtjÞ is the filtered signal value of the local minimum at
j, and sfnðtjþlÞ is the filtered signal value of the local maximum
at j + l.

The threshold value T was calculated in two phases. In the
first phase (T= T1):

T1 ¼ TK1�ðmaxðsfnðtÞÞ�minðsfnðtÞÞÞ; (5)

where TK1 is the scaling value set to 0.33.

The median of the peak-to-peak gradient values was
calculated and used to obtain the T = T2 threshold value. This
scaled threshold (TK1 = 0.25) was applied in the second pass of
the algorithm to detect the final peaks of each signal. The
respiration frequency fAC was estimated as the inverse of
the average time period between the peaks of the xcorr for fs
time lags.

The third respiratory rate estimator was based on the total
number of zero-crossings (nZC) of the filtered signal and
estimates the frequency as:

f ZC ¼ nZCðsfnðtÞÞ�1
2

� f s
N
: (6)

The last respiratory rate estimator is based on the peaks
detected using (4) and (5), calculates the number of inspiration
peaks in the filtered signal and estimates the frequency as:

f PK ¼ ðnPKiðsfnðtÞÞ�1Þ� f s
Ni

: (7)

where nPKi is the number of inspiration peaks, and Ni is the
total number of samples between the start of the first detected
inspiration event and the last one.

The calculated frequencies were multiplied by 60 to obtain
the results in units of beats per minute (bpm).

Additionally, the reference signals measured using the belt
were visually inspected to manually calculate the respiration
rate using the standard definition (number of events in time).
The time period of one respiration event was assumed as the
time between two successive inspiration starts. The number of
respiration events was counted (N_RE), and the total time of all
respiration events was calculated (T_RE). Finally, the respira-
tion rate was calculated as (N_RE*60)/T_RE and used as
a reference.

The second goal of the data analysis was to evaluate the
periodicity of the respiration waveforms extracted using
thermal imaging. Additional signal descriptors were investi-
gated to analyze the differences between the true respiratory
signals and other signals (possibly not periodical) that can be
extracted from thermal sequences (e.g., from other face
regions). Based on prior knowledge, it can be assumed that
the filtered (smoothed) regular respiratory signal resembles a
sine function, i.e., the result of periodical inhalation/exhala-
tion activities. Based on the previous results obtained for pulse
rate analysis in videoplethysmography, two signal parameters
defined using spectral moments have been found to be
valuable: the ‘‘complexity’’ measure (Hijorth parameter) and
the ‘‘spectral purity index’’. Both of these signal parameters
can be efficiently calculated in the time domain. If the signal is
more similar to the sine signal, the ‘‘complexity’’ parameter
has lower values (≥0), whereas the SPI parameter has higher
values (≥1). Theoretically, the sine-like periodicity of the signal
can be represented by simple parameters.

The spectral moments can be defined with reference to the
mean power of a continuous time signal s(t) and its derivatives
[36]:

m0 ¼ 2pE½s2ðtÞ�; m2 ¼ 2pT2
SE

dsðtÞ
dt

� �2
" #

; m4

¼ 2pT4
SE

d2sðtÞ
dt2

  !2
2
4

3
5; (8)

where E[] is the expectation value.

Considering the sampled, filtered and normalized signal
sfnðtiÞ of the continuous time signal s(t) (sampling period
Ts, ti = i � Ts), the two derivatives can be approximated as

sð1Þfn ðtiÞ ¼ sfnðtiÞ�sfnðti�1Þ; (9)

sð2Þfn ðtiÞ ¼ sfnðtiþ1Þ�2sfnðtiÞ þ sfnðti�1Þ; (10)

And the spectral moments can be estimated as

mo�2p
K

XK
i¼1

sðo=2Þfn ðtiÞ
� �2

; for o ¼ 0; 2; 4: (11)

The ‘‘complexity’’ and the spectral purity measure (SPI) can
be defined as:

complexity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

m2
�m2

m0

s
; SPI ¼ m2

2

m0m4
: (12)

During post-processing, signals for 4 additional ROIs were
extracted (cheek and forehead and left and right side of the
face) to investigate the differences of both descriptors for
thermal-based respiration waveforms and other signals.

The third goal of the data analysis was to investigate
whether it is possible to reliably detect apnea events from
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respiration waveforms recorded using a portable thermal
camera. During the experiments, volunteers were asked to
hold their breath to simulate apnea periods in the P1, P2, P4,
and P5 patterns. However, the volunteers could decide when to
hold the breath (e.g., at the beginning of next inspiration event
or expiration event or in the middle) and how long the apnea
event should last. The problem is that for thermal recordings
of apnea periods, the temperature inside the analyzed ROI
slowly changes due to many internal (e.g., blood flow) and
external (heat flow due to ambient temperature changes)
thermal conditions. This change can be positive (trend with
positive slope), negative (trend with negative slope) or neutral
(without a slope, normalized mean near 0). However, the rate
of change is typically smaller than that of the respiration rate.
Additionally, the observed temperature gradient is also
significantly smaller than that of respiration activity. There-
fore, the apnea event detection algorithm (Algorithm 1) was
proposed based on the first derivative of the filtered signal. The
absolute values of the first derivative signal are normalized in
reference to the maximum signal value. The algorithm counts
all successive samples for which the values are smaller than
the threshold value. The threshold value is calculated as the
weighted (K) value of the interquartile range (IQR) for the
processed signal. An apnea event is detected if the number of
samples (or time after scaling using the sampling frequency
value fs) is greater than the assumed parameter value Tapnea
(e.g., >10 s).

Algorithm 1 (DetectApneaEvents(filteredSignal, Fs, K, Tapnea)).

sDiff = FirstDerivative(filteredSignal);
absSDiff = abs(sDiff);
nAbsSDiff = 1/max(absSDiff) * absSDiff;
IQR = CalculateInterQuartileRange(nAbsSDiff);
T = K*IQR;
i = 0, tStart = 0;
for j = 1:length(nAbsSDiff)
if (nAbsSDiff (j) <T) if (counter = =0) tStart = j; else counter + +;

endif;
else if(counter > 0){
Table 1 – Estimated respiratory rates.

RR [bpm] Thermal-based 

Subject eRR_sp eRR_ac eRR_zc eRR_pk 

S01 17.54 19.15 15.35 18.29 

S02 9 10.27 9 10.56 

S03 8.57 8.43 9.64 8.52 

S04 19.29 19.48 19.29 19.54 

S05 10.71 10.87 10.71 10.93 

S06 16.88 16.3 15 16.33 

S07 10.71 11.54 10.71 11.21 

S08 15 15 13.93 14.68 

S09 8.57 9.09 7.5 8.84 

S10 12.86 12.15 12.86 11.88 

S11 12.86 12 10.71 12.17 

S12 15 15.62 15 15.72 

S13 19.29 19.4 18.21 19.52 

S14 15 15.79 16.07 16.43 

S15 21.43 22.06 19.29 21.7 

S16 12.86 12.71 11.79 12.47 
if((counter/Fs) > Tapnea)
apneaStart[i] = tStart; apneaStop[i] = j; apneaPeriods[i]

= counter/Fs; endif;
endif;
tStart = 0; counter = 0;
endif;

endfor;
return [apneaStart apneaStop apneaPeriods]

Finally, the relative amplitude values of respiration signals
were analyzed. The change in amplitudes for the respiration
waveforms recorded with the reference belt and the thermal
camera was investigated. The amplitudes were compared
using a qualitative method with comparison of the signal plots
in the time domain.

4. Results

Table 1 presents the results obtained from all investigated
respiration rate estimators for thermal-based respiration
signals and for the reference signals recorded using the
pressure belt.

Table 2 presents the mean square error (MSE), the mean
and standard deviation of the absolute differences between
the respiration rate estimated using the given estimator for
thermal-based respiratory signals and the manually calculat-
ed respiration rate (for belt-based signals). The last 4 columns
of Table 2 present the results for belt-based signals.

The charts in Fig. 4 present the correlation of RR between
values calculated using the reference method (manually for
belt-based signals) and for two estimators for thermal-based
signals.

The values of the two signal descriptors (i.e., ‘‘complexity’’
and SPI) were calculated for thermal-based signals (experi-
ment 1, no apnea events) from the nose ROI and from the
forehead and cheeks ROIs. For the nose ROI, the mean values
and standard deviations were ‘‘complexity’’ = 0.12 � 0.01
(max value = 0.14; min value = 0.09) and SPI = 0.30 � 0.09
Belt-based

eRR_sp eRR_ac eRR_zc eRR_pk Manually

17.54 19.15 15.35 18.63 19.23
9 10.27 9 10.56 10.47
8.57 8.52 7.5 8.5 8.53
19.29 19.48 18.21 19.52 19.61
8.57 9.87 8.57 10.47 9.92
16.88 16.39 15 16.36 16.52
10.71 11.54 10.71 11.93 11.64
15 14.93 13.93 15.27 15.81
8.57 9.38 11.79 9.15 9.69
12.86 12.24 12.86 12.22 12.28
10.71 11.72 10.71 11.54 11.46
15 15.54 15 15.53 14.11
19.29 19.4 17.14 19.52 19.56
15 15.79 15 15.96 16.13
21.43 21.95 19.29 21.7 21.51
12.86 12.66 10.71 12.55 12.50



Fig. 4 – Correlation of respiration rates between values calculated using the manual method for the belt-based signal
(reference) and for (a) the eRR_ac estimator – best result; (b) the eRR_zc estimator – worst result. Other results: for eRR_pk,
R2 = 0.97035; for eRR_sp, R2 = 0.95078.

Table 2 – Aggregated measures of differences between respiratory rate estimators for thermal signals (first 4 columns)
and for belt signals (last 4 columns) versus manually calculated RR values.

eRR_sp eRR_ac eRR_zc eRR_pk eRR_sp eRR_ac eRR_zc eRR_pk

Mean 0.764 0.415 1.291 0.500 0.759 0.295 1.584 0.306
Std. dev. 0.508 0.398 0.930 0.484 0.504 0.368 0.816 0.362
MSE 0.881 0.342 2.642 0.502 0.868 0.229 3.343 0.231

Fig. 5 – Aligned thermal-based (black) and belt-based (green) respiration signals measured from the subject S01 for: (a) P1
pattern, (b) P2 pattern, (c) P3 pattern, (d) P4 pattern, and (e) P5 pattern. (For interpretation of the references to color in the text,
the reader is referred to the web version of this article).
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(max = 0.46; min = 0.15). The same averaged values for the
cheek and forehead ROIs were ‘‘complexity’’ = 0.24 � 0.03
(max = 0.29; min = 0.20) and SPI = 0.18 � 0.03 (max = 0.23;
min = 0.15).

In Fig. 5, the aligned, thermal-based (black) and belt-based
(green) respiration signals measured for the subject S01 are
presented for all patterns used in experiment 2.
Table 3 – Results of the apnea detection algorithm for P2 patte

Weight value K = 0.6 

Mean Std. dev. 

Thermal-based 0.44 0.389 

Belt-based 0.569 0.365 
The 60 recorded pattern signals were analyzed using the
methods described in Section 2. Selected results are presented.
Table 3 lists the results of the apnea event detection algorithm
for the P2pattern signals (apnea time period to detect >

Tapnea = 4 s). The mean, standard deviation and values for the
coefficient of determination for the linear regression model
were calculated and are shown in Table 3.
rn signals.

K = 0.7

R2 Mean Std. dev. R2

0.953 0.668 0.521 0.912
0.968 0.915 0.527 0.944



Fig. 6 – Examples of results for the apnea event detection algorithm. Left chart: Slow respiration rate and increasing
temperature values during apnea (subject S04). Right chart: Fast respiration rate and decreasing temperature values during
apnea (subject S05, right chart). The upper charts present the original preprocessed signals recorded using the thermal
camera.
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Fig. 6 illustrates selected examples of the apnea event
detection results for two special cases: slow respiration rate
and increasing temperature values during apnea (subject
S04, left chart) and fast respiration rate and decreasing
temperature values during apnea (subject S05, right chart).

The respiration rate was also estimated for signals from
experiment 2 (60 signals, P1–P5 patterns). The previously used
RR estimators were used. In the absence of apnea events (P3),
the results were practically the same as those for the data in
experiment 1 (i.e., accurate RR estimation, especially using the
eRR_ac estimator). In the presence of apnea events (P1, P2, P4,
and P5), differences were observed due to the different
definitions of the estimators. The eRR_sp and eRR_ac estimate
the dominated signal's frequency such that apnea periods did
not highly influence the result. Table 4 lists the estimated
respiration rate values for signals with apnea events (P2
pattern). The reference values were calculated for the belt
signals using manual indication of points in time for
inspiration starts and counting the number of breath events
(between beginning of inspirations). Two sets of reference
values were calculated: RV1 = values calculated including
Table 4 – Results of respiration rate estimation for signals with

RR [bpm] Thermal-based Belt-based 

Subject eRR_sp eRR_ac eRR_sp eRR_ac 

S01 23 25.04 23 24.06 

S02 15 18.65 15 12.86 

S03 33.02 32.5 34.02 34.37 

S04 10.01 10.54 9.01 10.73 

S05 34 34.09 34 34.2 

S06 40.03 38.46 30.02 33.05 

S07 37.65 37.5 38.67 40.4 

S08 17.21 22.58 22.27 20.17 

S09 32.35 32.66 32.35 32.72 

S10 32 35.12 32 35.12 

S11 19 19.06 19 19.06 

S12 21.38 21.16 21.38 21.39 
apnea periods ((no. of events * 60)/(total time)) and RV2 = va-
lues calculated excluding apnea periods ((no. of events * 60)/
(sum of all periods of breath events)). The values of respiration
rates for RV1 are smaller than those for RV2. The results
presented in Table 4 for the eRR_sp and eRR_ac estimators were
calculated with reference to the RV2 values, whereas the
results for eRR_pk were calculated using the RV1 values
(i.e., with apnea periods, according to the definition of the
respiration rate). Table 5 displays the mean values and
standard deviations of the respiration rate differences be-
tween estimated values and reference values. Additionally,
values for the coefficient of determination for the linear
regression model were calculated.

For example, comparing the respiration rates obtained for
the eRR_sp and eRR_ac estimators and using RV1 as a reference
leads to much higher (than for RV2) differences between the
estimated and reference respiration rates (mean and std. dev.),
i.e., 4.677 � 3.99 for eRR_sp and 5.611 � 3.214 for eRR_ac.

The ‘‘complexity’’ and SPI descriptors were also calculated
for the pattern signals. The highest mean complexity value
(lowest similarity to sine signal) was found for the P5 patterns,
 apnea events (for RV1 and RV2 sets).

Thermal-based Belt-based

Manually eRR_pk eRR_sp Manually

25.29 19.62 19.58 19.70
15.53 12.43 12.7 13.54
36.31 24.33 26.5 26.61
9.91 7.74 9.15 8.09
34.18 24.29 28.91 29.04
31.98 21.81 23.28 23.88
39.72 26.57 30.19 32.69
20.52 18.82 17.7 17.96
33.91 29.11 27.57 28.93
33.80 24.85 24.87 26.57
18.91 15.83 15.81 15.98
21.61 11.30 16.62 17.03



Table 5 – Results of respiration rate estimation for signals with apnea events.

Thermal Belt

eRR_sp eRR_ac eRR_pk eRR_sp eRR_ac eRR_pk

Mean 1.959 1.820 2.119 1.218 0.973 0.776
Std. dev 2.260 1.900 2.210 0.825 0.781 0.759
R2 0.907 0.922 0.899 0.986 0.984 0.991

Fig. 7 – Examples of respiratory signals recorded simultaneously (subject S01) for: (a) the belt and (b) the thermal camera.
Related spectrograms are presented below.
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i.e., 0.163 � 0.023, whereas the smallest mean value was found
for the P3 patterns, i.e., 0.128 � 0.050. Similarly, for the SPI
descriptor, the highest mean value (more spectrally ‘‘pure’’
signal) was found for the P3 patterns, i.e., 0.489 � 0.191, and the
smallest mean value was noted for the P5 patterns, i.e., 0.308
� 0.095.

The recorded signals for the P1 and P5 patterns (irregular
amplitudes) were also analyzed to verify whether the relative
change of amplitudes observed for thermal recordings
corresponds to the similar change observed for belt recordings.
No such correlation was observed. Amplitude modulation for
thermal recordings was not related to belt-based signals.
Therefore, no quantitative analysis was performed. Fig. 7
shows examples of respiratory signals recorded simultaneous-
ly for the belt and the thermal camera (subject S01). The
spectrogram is additionally presented (short time Fourier
transform, window size = 250).

5. Discussion and conclusions

The goal of this paper was to investigate the reliability of
estimation of the respiration rate from short thermal image
sequences obtained using a mobile thermal camera and to
determine which types of respiration patterns can be described.

Four RR estimators were investigated. The best results were
obtained for the estimator based on the periodicity of the
autocorrelation as a function of time lags (eRR_ac). A slightly
worse accuracy was obtained for the eRR_pk and eRR_sp
estimators. The mean differences between the estimated
values and reference values were small even for the estimator
based on zero-crossing counting. It can be concluded that it is
possible to reliably estimate the respiration rate from short-
time thermal sequences acquired for faces. Similar studies
were previously presented for an estimator based on frequen-
cy detection for the maximum peak in the amplitude or PSD
spectrum after FFT transform [21] or with classification of
frames [22]. However, it was proved in this study that other
estimators might produce notably good or even better results.
It was also shown that the introduction of signal descriptors
that represent the ‘‘periodicity’’ of the signal could aid in
differentiation between highly periodical signals (potential
respiration waveforms) and other signals (background sig-
nals). This approach could be important in automatic evalua-
tion of source ROIs that contain respiration-related
information during data acquisition using a thermal camera
mounted on smart glasses. In such cases, the face in the
thermal image should be automatically detected (e.g., [37,38])
as well as the nose or mouth ROIs. The dominant frequency of
the signal can be detected for almost all signals and also for
signals that are not respiration waveforms. Therefore, addi-
tional measures such as ‘‘complexity’’ or SPI can be used to aid
in differentiation between less or more probable respiration
signals or to describe the periodicity of the respiration
waveforms.

The analysis performed for signals that represent different
respiration patterns showed rather interesting results. First, it
was demonstrated that it is possible to reliably detect apnea
periods from thermal-based signals using a relatively simple
and fast algorithm. It is also possible to reliably estimate the
respiration rate for signals that contain apnea periods. For
example, the spectrograms presented in Fig. 6 show highly
similar time-frequency characteristics between thermal-
based signals and reference signals. However, in the presence
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of apnea events, the investigated RR estimators produce
different results, which is highly related to the definitions of
the estimators. The respiration rate is defined as the number of
respiration events in a given time window. Therefore, in
the presence of apnea events, the estimated respiration rate
values should be and were observed to be higher (in reference
to the RR definition) for the estimators based on dominant
frequencies (eRR_ac, eRR_sp). The methods based on signal
changes in the time domain, such as eRR_pk, produced more
reliable results. However, different values of the respiration
rates estimated using either the dominant frequency or the
number of respiration events in the time domain could be used
as an additional measure for discrimination between respira-
tion patterns with apnea periods or without apnea. In the
absence of apnea events, such estimators should produce
similar values (e.g., eRR_ac and eRR_pk). If the values of both
estimators are significantly different, the algorithm for
detection of apnea periods could be used to verify the presence
of cessation of respiratory airflow.

With the performed qualitative analysis, we verified that it
is not possible to directly correlate the amplitude values
between thermal-based signals and signals obtained from the
reference pressure belt (P1 and P5 patterns). Therefore, it
would be difficult to directly differentiate between, e.g.,
Cheyne-Stokes respirations (P1) and Biot's breathing (P2).
However, it can be observed that deeper breaths in the series of
respiration events are typically longer due to the physiological
mechanisms of breathing. This topic requires further research.

In conclusion, it was proven that using thermal-based
signals captured by mobile thermal camera, it is possible to
reliably extract many important respiration parameters,
including the RR, periodicity of respiration, presence and
length of apnea periods. The results obtained from thermal-
based signals are quite similar to and highly correlate with the
results obtained for reference measurements (belt).

In this study, selected assumptions were applied to focus
on a comparison of different RR estimators and extraction of
selected parameters of respiration waveforms. It was assumed
that subjects do not move (controlled experiment), and thus,
the averaging operation in the manually specified ROI should
represent the local temperature change due to breathing
activity. In real applications, automatic detection and tracking
of the source would be much more practical, e.g., using methods
described in the introduction. The fixed ROI size was also
assumed as being defined in reference to the nose size. Further
studies should be performed to analyze the role of the ROI size in
reference to the visibility of nasal cavities, especially to
eliminate possible amplitude modulation. This last point is
especially important when the visibility of nasal cavities
changes due to larger head movements.

The proposed methodology can be used in practice for
unobtrusive respiratory monitoring during routine interviews
with patients or for screening purposes (e.g., at airports). For
example, it is possible to detect tachypnea (RR > 20 bpm) that
might indicate hypoxemia, hypercapnia, or anxiety [39]. It is
also possible to detect bradypnea (RR < 12 bpm) that might
indicate head injuries, drug overdoses or other problems
related to the central nervous system. The thermal-based
method has theoretical limits related to the required thermal
gradient between the human body and the environment.
In this study, measurements were performed indoors for two
different ambient temperatures: 22 8C and 27 8C. No significant
differences were observed in the dynamics of the recorded
signals. However, the influence of ambient environment and
other measurement limits should be further investigated.
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