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Purpose: Aneurysmal subarachnoid hemorrhage (SAH) is accompanied by cerebral

perfusion changes. We aimed to measure the parenchymal blood volume (PBV) maps

acquired by C-arm flat-panel detector CT (FDCT) to assess the cerebral blood volume

at an early stage in aneurysmal SAH and to explore the correlation with the outcomes

at discharge.

Methods: Data of 66 patients with aneurysmal SAH who underwent FDCT PBV

examination were retrospectively analyzed. The PBV of regions of interest, including the

cortices of the bilateral frontal lobe, the parietal lobe, the occipital lobe, and the cerebral

hemisphere, as well as the basal ganglia, were measured and quantitatively analyzed.

The clinical and imaging data of the patients were also collected, and logistic regression

analysis was performed to explore the correlation between the perfusion parameters and

outcomes at discharge.

Results: The favorable and poor outcomes at discharge were found in 37 (56.06%) and

29 (43.94%) patients, respectively. The whole-brain PBV was significantly correlated with

the Hunt-Hess grades (p < 0.005) and the WFNSS grades (p < 0.005). The whole-brain

PBV of the poor prognosis was significantly higher than that of the favorable prognosis

(35.17 ± 7.66 vs. 29.78 ± 5.54, p < 0.005). The logistic regression analysis showed

that the PBV of the parietal lobe at the bleeding side (OR = 1.10, 95%CI: 1.00–1.20,

p = 0.04) was an independent risk factor predicting the short-term prognosis.

Conclusions: Parenchymal blood volume (PBV) maps could reflect the cerebral blood

volume throughout the brain to characterize its perfusion status at an early stage

in aneurysmal SAH. It enables a one-stop imaging evaluation and treatment in the

same angio-suite and may serve as a reliable technique in clinical assessment of

aneurysmal SAH.
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INTRODUCTION

Aneurysmal SAH is a life-threatening disease with high mortality
and disability rates (1–4). Increasing fundamental and clinical
research has suggested that early brain injury (EBI) is the most
critical cause of the subsequent delayed cerebral vasospasm,
delayed neurological dysfunction, and mortality and disability in
patients (5–10). EBI, which involves a series of microcirculation
dysfunctions that occur within 72 h after SAH, was correlated
with early cerebral hypoperfusion, which was responsible for the
subsequent delayed cerebral infarct (DCI) and poor prognosis of
patients (11, 12).

Several investigators have found that about 60% of patients
showed abnormal perfusion on MR perfusion (MRP) at an early
stage of aneurysmal SAH, which was correlated with the Hunt-
Hess grade and neurological prognosis (13, 14). Also, several
studies reported that, after aneurysmal SAH, CT perfusion (CTP)
can reflect the severity of brain injury and predict the occurrence
of delayed cerebral ischemia (DCI) (15–22), in which decreased
CBF and prolonged mean transit time (MTT) in the early stage
of aneurysmal SAH were found to be related to the DCI and
the poor outcome (18, 21). Given the fact that the reversal of
vasospasm does not appear to improve patient outcomes, it could
be argued that the earlier diagnosis and treatment of EBI may
attenuate some of the devastating secondary injuries and improve
the outcome of patients with SAH (5).

However, bothMRP and CTP involve a relatively long waiting
time before the examination and require the patients to be
transferred to the special examination room, which are both
challenging for patients with aneurysmal SAH (especially high-
grade patients) when they are in a serious condition and need
emergent surgery. Therefore, clinical applications of MRP and
CTP are still limited. An alternative to MRP or CTP that is
easily accessible, effective, and accurate is of great importance in
clinical practice.

The C-arm flat-panel detector CT (FDCT) syngo DynaPBV
Neuro is a 3D imaging application that provides the cerebral
blood volume parameter intraoperatively for perfusion status
assessment developed with the advancement of computer and
imaging technology in recent years (23–28). The application
visualizes the contrast-enhanced blood volume distribution of
the whole brain in 3D color-coded cross-sectional images based
on a steady-state contrast injection. It also allows measurements
of PBV to quantitatively assess the perfusion changes caused by
treatment or the biological processes. The PBV measurement
can be performed in the same angio suite together with the
interventional surgery in a one-stop fashion, which is safe
and convenient for patients. Several authors reported that the
cerebral blood volume calculated by PBV software compared
favorably with that measured with CTP, and PBV’s ability in
cerebral perfusion evaluations is similar to CTP (26, 29). PBV

Abbreviations: EBI, early brain injury; DCI, delayed cerebral infarct; PBV,

parenchymal blood volume; FDCT: flat-panel detector CT; CBF, cerebral blood

flow; MTT, mean transit time; AIS, acute ischemic stroke; WFNSS, world

federation of neurological societies scale; mFisher, modified Fisher; mRS, modified

rankin score.

has been found useful in evaluating perfusion in patients with
acute ischemic stroke (AIS) (24–26, 28), yet its application in
aneurysmal SAH is still in its infancy (23, 30).

In this study, we used the C-arm FDCT syngo DynaPBV
Neuro application to measure the cerebral PBV and evaluate the
association between the cerebral perfusion status at an early stage
in aneurysmal SAH and the clinical manifestations in patients,
as well as the functional outcomes at discharge. We hypothesized
that PBV would serve as a reliable technique for the evaluation of
hemorrhage severity and prediction of short-term prognosis in
patients with aneurysmal SAH.

MATERIALS AND METHODS

Patients
The study was approved by the institutional research ethics
committee of Jinling Hospital, Nanjing University, Nanjing,
China. Written informed consent was obtained from a legally
authorized representative of all patients. Data of patients
diagnosed with aneurysmal SAH who underwent C-arm FDCT
PBV examination in the early stage (<48 h) in the Jinling
Hospital between 1 January 2016 and 31 December 2018
were retrospectively analyzed. The exclusion criteria were the
following: DSA or CTA suggested the presence of intracranial
hematoma with local mass effect, cerebrovascular malformation,
moyamoya disease, moderate or higher degree cerebral artery
stenosis, or other cerebrovascular diseases and patients who
had already received external ventricular drain. Clinical records
related to functional outcomes including age, gender, Hunt-
Hess grade, World Federation of Neurological Societies Scale
(WFNSS) grade, modified Fisher (mFisher) grade, as well as the
location of the aneurysm, were collected for analysis.

Methods
All patients received a whole-brain perfusion examination on
the C-arm FDCT (Artis Zee Biplane, Siemens Healthineers,
Forchheim, Germany) through the transfemoral artery approach
within 48 h after hemorrhage. C-arm FDCT PBV was acquired
after general anesthesia in the angio-suite. As previously
described (25, 31), PBV acquisition includes two 3D rotations:
mask and fill runs. For both runs, the C-arm rotated 200◦ in 6 s,
with an angle increment of 0.5◦.

The first 3D mask run was acquired with no contrast filling.
When the C-arm returned to the initial position after the mask
run, 80ml of 1:1 diluted contrast media (iodixanol, Visipaque
320mg I/ml, GE Healthcare, Ireland) was injected through a
5F pigtail catheter placed at the aorta root at 8 ml/s, 600
psi for 10 s. To ensure the contrast filling in the brain tissue
has reached the steady-state, the second 3D fill run was not
triggered until superior sagittal sinus filling was observed during
“bolus watching” (32).

Post-processing of the 3D data to generate color-coded
PBV maps was performed using the syngo DynaPBV Neuro
software (Siemens Healthineers, Forchheim, Germany) on the
clinical workstation (syngo X workplace, Siemens Healthineers,
Forchheim, Germany). In brief, PBV map reconstruction
includes a subtraction of the mask image (1st run) from the fill
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image (2nd run) and detection of the arterial input (33). The
PBV values were measured in units of ml/1,000ml of cerebral
tissue and viewed with a thickness of 10mm using MPR. Then,
five symmetrical regions of interest (ROIs), excluding hematoma,
were drawn on the perfusion maps on the bilateral cerebral
hemispheres for each patient: (1) Third ventricle level: the
bilateral frontal pole cortex, the occipital cortex, and the basal
ganglia (Figure 1A); (2) 4.5 cm above third ventricle level: the
bilateral frontal cortex and the parietal cortex (Figure 1B).

PBVhemisphere = 0.2∗(PBVfontal pole + PBVfrontal lobe

+ PBVparietal lobe + PBVoccipital lobe + PBVBasal ganglia),
PBVwhole brain = 0.5∗(PBVleft hemisphere+ PBVright hemisphere). The
whole cerebrum was divided into the bleeding side hemisphere
and the non-bleeding side hemisphere according to the location
of the aneurysm. If the aneurysm was located in the basilar
artery, the hemisphere with more hemorrhage was determined
as the bleeding side hemisphere.

Clinical Outcomes
Themodified Rankin score (mRS) of the patients at discharge was
used for the evaluation of functional outcomes. The mRS of 0–
2 points indicated favorable outcomes and 3–6 points indicated
poor outcomes.

Statistical Analysis
Continuous variables in this study (PBV values) are presented
as mean with standard deviation (SD). Comparisons between
groups were performed with analysis of t-tests or the Mann-
Whitney-U-test for continuous parameters and the χ2 test for

categorical parameters. Significant univariate factors with a p-
value ≤ 0.1 were entered into multivariable logistic regression
(forward). Odds ratios (OR) and associated 95% confidence
intervals (CI) are reported for regression analysis. Statistical
analysis was performed using IBM SPSS Statistics software
Version 19.0 (IBM, Armonk, New York, USA). A p-value < 0.05
was considered statistically significant.

RESULTS

A total of 66 patients (24 men [36.4%] and 42 women [63.6%]
with the mean age of 55.98 ± 9.99 years) were included in
this study. Fifty-five patients (83.33%) were diagnosed with an
anterior circulation aneurysm and 11 patients (16.67%) with
a posterior circulation aneurysm. Favorable outcomes were
achieved in 37 patients (56.06%) at discharge, while 29 patients
(43.94%) were discharged with poor outcomes (Table 1).

Blood volumes of the parietal lobe and the cerebral
hemisphere on the bleeding side were significantly higher than
those on the non-bleeding side, with 35.14 ± 9.71 vs. 33.17 ±

94, p = 0.01 for the parietal lobe and 32.59 ± 7.36 vs. 31.70 ±

04, p= 0.02 for the cerebral hemisphere. Although blood volume
at the frontal lobe, the occipital lobe, and the basal ganglia on
the bleeding side was higher than those on the non-bleeding side,
statistical significance was not found (Table 2).

Whole-brain PBV values increased significantly as the Hunt-
Hess grades (p < 0.005) and the WFNSS grades (p < 0.005)
increased. The whole-brain PBV of the poor outcome group was
significantly higher than that of the favorable outcome group
(35.17± 7.66 vs. 29.78± 5.54, p < 0.005) (Table 3).

FIGURE 1 | Selection of five symmetrical ROIs in color-coded parenchymal blood volume maps. (A) ROIs of the frontal pole cortex, the occipital cortex, and the basal

ganglia in the third ventricle level. (B) ROIs of the frontal cortex and the parietal cortex at 4.5 cm above the third ventricle level.
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TABLE 1 | Demographics and clinical features of patients with aSAH.

Characteristics All patients Favorable Poor outcomeP-value

(N = 66) outcome (n = 37) (n = 29)

Age (years), mean ±

SD

55.98 ± 9.99 52.95 ± 9.33 59.85 ± 9.58 <0.005

Gender, n (%) 0.61

Men 24 (36.36%) 12 (32.43%) 12 (41.38%)

Women 42 (63.64) 25 (67.57%) 17 (58.62%)

Hunt-Hess, n (%) <0.005

I 1 (1.5%) 1 (2.70%) 0 (0%)

II 25 (37.9%) 22 (59.46%) 3 (10.34%)

III 11 (16.7%) 7 (18.92%) 4 (13.79%)

IV 20 (30.3%) 4 (10.81%) 16 (55.17%)

V 9 (13.6%) 3 (8.10%) 6 (20.67%)

WFNSS, n (%) <0.005

I 25 (37.9%) 23 (62.16%) 2 (6.90%)

II 9 (13.6%) 5 (13.51%) 4 (13.79%)

III 3 (94.5%) 2 (5.41%) 1 (3.45%)

IV 12 (18.2%) 2 (5.41%) 10 (34.48%)

V 17 (25.8%) 5 (13.51%) 12 (41.38%)

mFisher, n (%) 0.25

0 3 (4.5%) 3 (8.11%) 0 (0%)

I 2 (3.0%) 2 (5.41%) 0 (0%)

II 13 (19.7%) 11 (29.73%) 2 (6.90%)

III 18 (27.3%) 8 (21.62%) 10 (34.48%)

IV 30 (45.5%) 13 (35.14%) 17 (58.62%)

Aneurysm site, n (%) 0.48

Anterior circulation

ICA 22 (33.3%) 14 (37.84%) 8 (27.59%)

ACA 3 (4.5%) 1 (2.70%) 2 (6.90%)

AcomA 25 (37.9%) 12 (32.43%) 13 (44.83%)

MCA 5 (7.6%) 3 (8.11%) 2 (6.90%)

Posterior circulation

PCA 2 (3.0%) 1 (2.70%) 1 (3.45%)

BA 4 (6.1%) 4 (10.81%) 0 (0%)

VA 5 (7.6%) 2 (5.41%) 3 (10.34%)

WFNSS, World Federation of Neurological Societies Scale; mFisher, modified Fisher; ICA,

internal carotid artery; ACA, anterior cerebral artery; AcomA, anterior communicating

artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; BA, basilar artery;

VA, vertebral artery.

Multivariate logistic regression results showed that only the
blood volume of the parietal lobe on the bleeding side resulted
as the independent risk factor predicting the functional outcome
in patients at discharge (OR = 1.10, 95%CI: 1.00–1.20, p = 0.04)
(Table 4).

DISCUSSION

As aforementioned, EBI plays a critical role in brain dysfunction,
leading to the subsequent vasospasm, delayed neurological
dysfunction, andmortality and disability. Research on early brain
injury involves endothelial damage, changes in vascular smooth
muscle contractility, vascular reactivity, and neuroinflammation,

TABLE 2 | Comparison of PBV on the bleeding side hemisphere and the

non-bleeding side hemisphere.

PBV* on bleeding PBV* on non-bleeding P-value

side, (x̄ ± SD) side, (x̄ ± SD)

Frontal lobe 30.70 ± 8.13 30.68 ± 6.89 0.98

Parietal lobe 35.14 ± 9.71 33.17 ± 8.94 0.01

Occipital lobe 34.12 ± 7.92 32.82 ± 8.53 0.16

Basal ganglia 30.42 ± 7.67 30.08 ± 7.85 0.54

Cerebral hemisphere 32.59 ± 7.36 31.70 ± 7.04 0.02

*, PBV values were expressed in units of ml/1,000 ml.

PBV, parenchymal blood volume.

TABLE 3 | Comparison of whole-brain PBV with clinical features and outcomes.

Whole brain PBV * (x̄± SD) P-value

Hunt-Hess <0.005

I-II 28.07 ± 5.33

III 33.74 ± 5.07

IV-V 35.20 ± 7.37

WFNSS <0.005

I-II 28.07 ± 5.33

III 33.74 ± 5.07

IV-V 35.20 ± 7.37

mFisher 0.60

0 28.25 ± 7.49

I 29.31 ± 2.39

II 30.69 ± 5.19

III 33.82 ± 6.82

IV 32.35 ± 7.98

Aneurysm site 0.82

Anterior circulation 32.24 ± 7.25

Posterior circulation 31.69 ± 6.12

Outcome <0.005

Favorable 29.78 ± 5.54

Poor 35.17 ± 7.66

* PBV values were expressed in units of ml/1,000 ml.

WFNSS, World Federation of Neurological Societies Scale; mFisher, modified Fisher. PBV,

parenchymal blood volume.

such as interleukin 6 (IL-6); a key component in the development
of vasospasm, is related to the blood-brain barrier destruction.
The aforementioned pathophysiological changes may lead
to damage to the integrity of the neurovascular unit and
result in impaired vascular autoregulation (34). To prevent
further deterioration in patients with aneurysmal SAH, in
addition to the general clinical evaluation, such as frequent
neurological assessment and monitoring approaches, including
cerebral microdialysis (CMD), cerebral EEG, and transcranial
Doppler (TCD), to detect suspicious signs, prompt outcome
prediction will better facilitate follow-up treatment and care
delivery planning and balance medical resources to patients in
greater need.
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TABLE 4 | Multivariate logistic regression analysis (forward) of factors associated

with outcome at discharge.

Characteristics Mono-variate Multi-variate

regression regression

OR (95% CI) P-value OR (95% CI) P-value

Age 1.08 (1.02–1.14) 0.01 1.11 (1.03–1.19) 0.01

Hunt-Hess 3.33 (1.85–2.99) 0.00 − 0.74

WFNSS 2.27 (1.55–3.31) 0.00 2.17 (1.38–3.43) <0.005

mFisher 2.44 (1.31–4.54) 0.005 − 0.13

Site 0.69 (0.18–2.61) 0.58 − −

Bleeding side PBVparietal lobe 1.13 (1.05–1.22) 0.00 1.10 (1.00–1.20) 0.04

Bleeding side PBVhemisphere 1.15 (1.05–1.27) 0.00 − 0.97

PBVwhoe brain 0.00 − 0.52

WFNSS, World Federation of Neurological Societies Scale; mFisher, modified Fisher;

PBV, parenchymal blood volume.

In brain imaging after aneurysmal SAH, MRP has high
sensitivity in depicting brain abnormalities, which makes it
a good candidate for identifying early signs of vasospasm
and ischemia in patients with aneurysmal SAH; yet, it is less
commonly used than CTP in clinical practice due to the technical
difficulty and examination accessibility (35). CTP was found
to be reliable in vasospasm and DCI prediction and detection
after aneurysmal SAH, and the CBF and MTT obtained were
analyzed and suggested to be diagnostic thresholds (36–39).
The measurements of MTT and TTP obtained from early CT
perfusion were also demonstrated to be correlated with early
clinical outcomes (40). Neuro PBV maps obtained from CBCT
are a technique to measure cerebral blood volume throughout
the brain to characterize its perfusion status (23). The reliability
of PBV maps was demonstrated by the good correlation between
PBV and conventional CT perfusion through both qualitative
and quantitative comparative studies (29, 33, 41). By extending
the imaging capabilities of the angio-suite, the PBV technique
has been used in the assessment of ischemic cerebrovascular
diseases and brain tumors in the brain during the procedure in
the angio-suite for better patient management, and has gained
significant value in clinical practice in recent years (24–28, 42)
but not much value in SAH yet. Our study demonstrated PBV’s
feasibility in assessing the perfusion status in aneurysmal SAH,
as well as the convenience of one-stop imaging evaluation. The
major finding of our study was that the cerebral blood volume
given by PBV maps in the early stage of aneurysmal SAH was
significantly correlated with the initial severity of hemorrhage
and the short-term prognosis of patients, whichmay predict early
clinical outcome and aid in treatment planning.

All patients in this study received a PBV examination within
48 h after hemorrhage, during which time the incidence of ultra-
early vasospasmwas low (43), to explore the relationship between
PBV and severity of EBI. Cerebral angiography performed after
the PBV examination excluded the patients who had acute
cerebral vasospasm or moderate to severe stenosis. Both the
FDCT-derived PBV and conventional CTP are acquired based on

the bolus detection of contrast agent under x-ray; it is challenging
to distinguish between the contrast extravasation and the
hematoma (44). Therefore, patients with a large local hematoma
were excluded from our study. In addition, we selected ROIs that
did not include hematoma to avoid large bias and only reflect the
cerebral parenchymal blood volume. Our study showed that the
blood volume of the selected areas on the bleeding side was higher
than those on the non-bleeding side, especially in the parietal
lobe and the cerebral hemisphere where significant differences
were observed. These results are in concordance with the cerebral
pathological changes after aneurysmal SAH. CBF could maintain
stability in patients with intact autonomic regulation (45–47),
but increased intracranial pressure (ICP) and decreased CBF
after aneurysmal SAH lead to congestive changes in brain tissue
manifested by dilated cerebral arterioles and increased CBV in
patients with impaired autonomic regulation (11, 48, 49). The
blood supply of the parietal ROIs that we selected was covered by
the middle cerebral artery, which responded immediately after
hemorrhage and manifested as cerebral congestion, resulting in
increased PBV in the parietal ROIs. The association between
CTP and aneurysmal SAH has been investigated previously,
and our findings about PBV in this study show similar trends.
PBV map and CTP-CBV/MRP-CBV have good consistency in
terms of both visual comparison of perfusion pseudo-color maps
and the quantitative analysis of ROI (26, 29, 30, 50, 51). In
addition to PBV’s application in AIS evaluation (24–26, 28) and
initial practice in the prediction of DCI after aneurysmal SAH
(23, 30), our study broadens the clinical application of PBV in
stroke management.

In this study, significant differences were found between the
PBV of different Hunt-Hess grades and WFNSS grades, which
implies that the more severe the brain tissue congestion in the
early stage of aneurysmal SAH, the higher the Hunt-Hess grade
and the WFNSS grade. The PBV of the poor outcome group was
significantly higher than that of the favorable outcome group,
and the logistic regression model revealed that the PBV was
an independent risk factor that could predict a patient’s short-
term outcome. The Hunt-Hess grade, the WFNSS grade, and
the mFisher grade are routinely used as the basis for patient
triage and outcome predictors but are given based on subjective
judgment. On the contrary, cerebral PBV is a numeric value
obtained by standard procedures. Our results may indicate that
PBV has the potential to act as an objective screening method to
predict outcomes in aneurysmal SAH. Patients with elevated PBV
may indicate impaired autonomic regulation of the brain and
subsequent treatment (e.g., optimal- cerebral perfusion pressure
(CPP) targeted therapy guided by intracranial pressure (ICP)
monitoring) can be applied immediately tomaintain a reasonable
CPP and a stable CBF to avoid cerebral congestion or ischemia.
Future studies with a larger patient population and long-term
outcomes will be conducted to explore the diagnostic threshold
for PBV so as to make more objective and accurate predictions,
and guide clinical interventions in a timely manner (52). During
the COVID-19 pandemic, not only was the coronavirus likely
to worsen hypertension and make aneurysms more prone to
rupture, but intensive care unit (ICU) resources were more
strained, leaving patients more vulnerable (53). PBV may help in
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the future to early identify SAH patients with severe brain injury
and a possible poor prognosis to better allocate medical resources
to those most in need.

Compared with CTP and MRP, PBV has the following
advantages: (1) PBV can be performed in the angio-suite when
there is an endovascular surgery for ruptured aneurysms. The
patients are exempted from additional waiting time. More
importantly, a comprehensive analysis of cerebral perfusion
and angiography could provide more clues for identifying
abnormal cerebral perfusion caused by acute vasospasm and
vascular abnormalities such as vascular stenosis; (2) The whole-
brain volume reconstruction of PBV maps could visualize any
slice of cerebral blood volume imaging on transversal, sagittal,
and coronary views; (3) PBV realizes the imaging evaluation
of patients with aneurysmal SAH together with other DSA
techniques, such as 2-D angiography and color-coding blood flow
analysis in the same angio-suite, which is the so-called one-stop
imaging service in the angio-suite (54).

However, PBV only provides cerebral blood volume values
at present but lacks perfusion parameters of CBF, MTT, and
TTP. The evaluation of patients who have no obvious CBV
abnormalities in the early stage, with only prolonged MTT
and slightly decreased CBF, may be inaccurate (48). Improved
PBV technology that can calculate more perfusion parameters
in the future may help in a more comprehensive and accurate
evaluation of the brain perfusion status (55). PBV acquisition
currently still requires manual triggering in the fill run. The
ideal time point for data collection is when the contrast agent
reaches a steady-state filling in the brain capillary bed, that
is, the concentration of the contrast agent in the artery =

the concentration of the contrast agent in the tissue = the
concentration of the contrast agent in the vein. However,
manual triggering requires skilled operation and may result in
inappropriate acquisition time, i.e., too early or too late when the
contrast agent is not maintained in a steady-state equilibrium in
the brain tissue. The PBV value component contains a part of
CBF weight in this condition (23, 56, 57).

This study has several limitations: (1) This was a preliminary
study with a relatively small sample size; (2) for ethical reasons,
PBV examination was lacking in normal patients, which meant
that the control group was not available; and (3) there was
no discrimination between anterior and posterior circulation
aneurysms. The accuracy of PBVmeasurement of the cerebellum
and the brainstem may be affected due to the imaging limitations

caused by the posterior fossa (58, 59). This study mainly focused
on the feasibility of using PBV for cerebral perfusion status
evaluation after aneurysmal subarachnoid hemorrhage. More
systematic comparative studies of aneurysms in the anterior and
posterior circulations need to be carried out.

CONCLUSIONS

Our results demonstrated that the cerebral blood volume
measured by PBV maps at an early stage in aneurysmal SAH
is significantly correlated with the initial severity of hemorrhage
and the short-term prognosis of patients. The C-arm FDCT PBV
technique enables a one-stop imaging evaluation and may be a
reliable alternative to CTP andMRP in clinical assessment and in
predicting aneurysmal SAH outcomes.
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