
Arch Virol (2007) 152: 2217–2224
DOI 10.1007/s00705-007-1061-7
Printed in The Netherlands

Inhibition of betanodavirus infection by inhibitors
of endosomal acidification

K. Adachi1, T. Ichinose1, N. Takizawa1;3, K. Watanabe1, K. Kitazato1, N. Kobayashi1;2

1 Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences,
Nagasaki University, Nagasaki, Japan
2 Central Research Center, AVSS Corporation, Nagasaki, Japan
3 Center for International Collaborative Research, Nagasaki University, Nagasaki, Japan

Received 14 March 2007; Accepted 27 August 2007; Published online 22 September 2007
# Springer-Verlag 2007

Summary

Betanodaviruses, members of the family Nodav-

iridae, have small positive-stranded bipartite RNA

genomes and are the causal agent of viral nervous

necrosis (VNN) in many species of marine farmed

fish. In the aquaculture industry, outbreaks of beta-

nodavirus infection and spread in larval and juve-

nile fish result in devastating damage and heavy

economic loss. Although an urgent need exists to

develop drugs that inhibit betanodavirus infection,

there have been no reports about anti-betanodavirus

drugs. Recently, it was reported that betanoda-

viruses were detected in the endosomes of infected

cells, suggesting that betanodaviruses enter fish

cells by endocytosis. This finding prompted us to

examine whether blocking this endosomal pathway

could provide a target for antiviral drug develop-

ment. In this study, we examined the inhibitory

effect of several lysosomotropic agents against be-

tanodavirus infection in fish E-11 cells. The pres-

ence of 1 mM NH4Cl or 1 mM chloroquine in the

medium inhibited the entry of betanodaviruses into

cells and inhibited viral infection. The lysosomo-

tropic agents bafilomycin A1 and monensin also

inhibited virus-induced cytopathology and virus

production. Our data demonstrate that inhibitors

of endosomal acidification are candidates as antivi-

ral agents against betanodavirus.

Introduction

The family Nodaviridae is comprised of the genera

Alphanodavirus and Betanodavirus, which predom-

inantly infect insects and fish, respectively. Viruses

belonging to the genus Betanodavirus are the caus-

ative agents of viral encephalopathy and retinopa-

thy, also known as viral nervous necrosis (VNN).

Nodaviruses are small (25–30 nm diameter), spher-

ical, non-enveloped viruses with a genome that is

composed of two single-stranded, positive-sense

RNA molecules [17]. The larger genomic segment,

RNA1 (3.1 Kb), encodes the RNA-dependent RNA

polymerase (RdRp) [10, 19, 31], and the smaller

genomic segment, RNA2 (1.4 Kb), encodes the coat

protein [20]. It has recently been determined that

a subgenomic RNA transcribed from the 30 end of
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RNA1, termed RNA3, encodes a protein, B2. This

protein is highly conserved among the betanoda-

viruses and is an RNAi antagonist [7, 8, 13].

VNN devastates many species of marine fish cul-

ture worldwide [12]. Betanodaviruses have been

isolated from more than 30 marine fish species

from 14 families and are classified into four geno-

types based on a phylogenetic analysis of the coat

protein sequences. The genotypes are: striped jack

nervous necrosis virus (SJNNV), barfin flounder

nervous necrosis virus (BFNNV), tiger puffer ner-

vous necrosis virus (TPNNV) and redspotted grou-

per nervous necrosis virus (RGNNV) [18, 20, 21].

Effective control of betanodavirus infection is ur-

gently needed to reduce the significant economic

loss caused by the virus in the fish industry. It is

widely accepted that a vaccine capable of prevent-

ing VNN would be a major improvement. Partial

immunity has been obtained using recombinant

betanodavirus coat protein expressed in E. coli

[11, 32]. Immunization with virus-like particles

(VLPs) of betanodavirus has been reported to in-

duce a protective immune response against VNN

[33]. However, in most cases, VNN occurs in larval

and juvenile fish that cannot be easily vaccinated

due to their small size. Therefore, the development

of drugs that inhibit betanodavirus infection is of

critical importance. The mechanism of betanodavi-

rus infection is still unclear. An electron-microscopic

study of betanodavirus-infected cells suggested that

the entry of the betanodavirus into a fish cell line

depends on the endocytic pathway [16].

The use of inhibitors of endosomal acidification

such as NH4Cl and chloroquine has been applied

against many viruses [14, 26]. In this study, we

examined the inhibitory effect of lysosomotropic

agents (NH4Cl, chloroquine, bafilomycin A1, and

monensin) on betanodavirus infection. Our results

demonstrate that these agents inhibit the entry of

betanodavirus into cells.

Materials and methods

Cells, viruses and chemicals

E-11 cells were maintained in Leibovitz’s L-15 medium
(Invitrogen, Carlsbad, CA) supplemented with 5% fetal bo-
vine serum (FBS) at 25 �C. The fish nodavirus used in this

study was isolated in 2001 from a seven-band grouper in
Nagasaki, Japan. This virus belongs to the RGNNV geno-
type, determined by our own RNA2 nucleotide sequence
analysis. E-11 cells were inoculated with the betanodavirus
for propagation, and viruses were harvested when nearly all
of the cells in the monolayer showed a cytopathic effect
(CPE). NH4Cl, chloroquine, bafilomycin A1, and chlorprom-
azine were purchased from Sigma (St. Louis, Mo.), and
monensin was purchased from Wako (Osaka, Japan).

Virus infection and titration

E-11 cells were inoculated with virus, either in the presence
or absence of chemicals at 28 �C for 1 h. The cells were then
maintained in growth medium containing 2% FBS at 28 �C.
Unless otherwise described, cells were pretreated with an
agent for 1 h at 28 �C and inoculated with virus at a multi-
plicity of infection (M.O.I.) of 1. The virus titer was ex-
pressed as 50% tissue culture infectious dose (TCID50),
assayed using E-11 cells.

Detection of viral RNA by RT-PCR

Total RNA was prepared from RGNNV-infected cells
(5�105) using Trizol reagent (Invitrogen). To detect (þ)
RNA1, (�) RNA1, and 18S rRNA, the RNA samples were
reverse-transcribed with M-MLV reverse transcriptase
(Invitrogen) using RGRNA1-2490R (50-GTCAGTGTAGT
CTGCATACTG-30) (for (þ) RNA1), RGRNA1-1868F (50-
TGCGTGAGTTCGTCGAGTTT-30) (for (�) RNA1), and
18S rRNA-R (50-GCTGGAATTACCGCGGCT-30) (for 18S
rRNA). PCR amplification was performed with a primer pair
(RGRNA1-1868F and RGRNA1-2490R for RNA1 and 18S
rRNA-F [50-CGGCTACCACATCCAAGGAA-30] and 18S
rRNA-R for 18S rRNA). PCR products were analyzed by
agarose gel electrophoresis and visualized by ethidium bro-
mide staining. The band intensities were semi-quantitated
using the Image J software program (NIH).

Results

Effects of NH4Cl and chloroquine on the

development of betanodavirus-induced CPE

The effect of the lysosomotropic agents on beta-

nodavirus infection was initially examined by the

appearance of virus-induced CPE. NH4Cl and chlo-

roquine diffused into the endosome and served as a

proton sink, which inhibited endosome acidification

[22]. E-11 cells were inoculated with RGNNV at an

M.O.I. of 1 in the presence of different concentra-

tions of the agents (Fig. 1). The uninfected E-11
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cells showed a flat adherent shape (Fig. 1A), and

virus-infected cells showed a typical CPE shape

and detached from the dish by 6 days after inocu-

lation (Fig. 1B). In contrast, when E-11 cells were

infected with RGNNV in the presence of NH4Cl

(Fig. 1C–E) or chloroquine (Fig. 1F–H), the develop-

ment of CPE was suppressed in a dose-dependent

manner. CPE was completely suppressed at a con-

centration of 1 mM NH4Cl (Fig. 1E) and 1 mM chlo-

roquine (Fig. 1H), respectively. The effect of NH4Cl

and chloroquine on viral infection may result from

the cytotoxicity of these agents. Therefore, we in-

vestigated the cytotoxicity of these agents to E-11

cells by WST-1 assay. The degree of cell prolifer-

ation and morphologic change with NH4Cl and

chloroquine was not affected at a concentration

of up to 12.5 mM and 25 mM, respectively (data

not shown).

Lysosomotropic agents do not affect

the attachment of betanodavirus to cells

To investigate the mechanism of the inhibitory ef-

fect on betanodavirus infection by agents, we next

examined the effect of inhibitors on the attachment

of betanodavirus to E-11 cells. As shown in Fig. 2A

and B, the genomic (þ) RNA1 band was detected

in cells that were inoculated with RGNNV in a

dose-dependent manner. When E-11 cells were in-

oculated with virus in the presence of 1 mM NH4Cl

or 1 mM chloroquine, the viral (þ) RNA1 was still

detected in the cells (Fig. 2C). The intensity of

(þ) RNA1 detected in the presence of drugs was

comparable to that of the control cells (Fig. 2D).

This result suggested that neither of the agents

inhibited the attachment of betanodavirus to the

cells.

Fig. 1. Inhibition of CPE in beta-
nodavirus-infected cells by NH4Cl
or chloroquine. Cells were inocu-
lated with RGNNV in the presence
of the indicated concentrations of
NH4Cl (C–E) or chloroquine (F–
H). The morphology of the cells
was photographed 6 days after in-
fection. Control cells were infected
at the indicated M.O.I. and incu-
bated without an agent (A, B)
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NH4Cl inhibits the entry of betanodavirus into cells

To further determine the detailed mechanism of the

inhibitory effect of NH4Cl and chloroquine, we

next analyzed the viral genomic (þ) RNA1 and

template (�) RNA1 accumulation in infected cells.

E-11 cells were inoculated with virus in the pres-

ence or absence of these agents, and the infected

cells were incubated for specific periods of time,

and the total RNA was subsequently prepared from

the cells. (�) RNA1 was synthesized from (þ)

RNA1 as the replication template; thus the presence

of (�) RNA1 in the cells indicated that the replica-

tion of viral genomes had occurred. As shown in

Fig. 3A and B, the detection of (þ) RNA1 bands in

the control cells gradually increased and reached a

maximum level at 18 h post-inoculation. No signif-

icant (�) RNA1 bands were detected in the cells at

1 h post-inoculation, but their intensity gradually

increased until 9 h post-inoculation and significant-

ly increased from 9 to 12 h post-inoculation. These

data imply that, after attaching to the cell mem-

brane, the betanodavirus enters the cell, and the

synthesis of the (�) RNA1 begins immediately

thereafter. No significant (�) RNA1 bands were

detected in cells that were inoculated and cultured

in the presence of 1 mM NH4Cl or 1 mM chloro-

quine. In addition, the band intensity of (þ) RNA1

was steady over the sampling period.

Fig. 2. No influence on the attachment of betanodavirus to E-11 cells by NH4Cl and chloroquine. (A) Cells (3 to 4�105)
were inoculated with RGNNV at the indicated M.O.I., and the cells were washed four times to remove unbound virus. The
total RNA was prepared, and (þ) RNA1 and 18S rRNA were detected by RT-PCR and then subjected to agarose gel
electrophoresis. (B) The band intensity of (þ) RNA1 and 18S rRNA were calculated and normalized to cellular 18S rRNA
and expressed as the ratio of (þ) RNA1 compared to that of the cells at an M.O.I. of 1. The data represent the means and
standard deviations from three independent experiments. (C) Cells were inoculated with virus in the presence of 1 mM
NH4Cl or 1mM chloroquine and the cells were washed with a medium containing the same concentration of inhibitor. The
total RNA was subsequently prepared and subjected to RT-PCR. Control cells were inoculated at an M.O.I. of 0.1 or 1
without an agent. (D) The band intensity of (þ) RNA1 was normalized as indicated in panel B and calculated as the ratio
of (þ) RNA1 compared to that of the control at an M.O.I. of 1. The data represent the means and standard deviations from
three independent experiments
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NH4Cl was next added to virus-infected E-11 cells

at various times after infection (Fig. 3C). With the

continuous presence of 1 mM NH4Cl during the as-

say, no (þ) RNA1 accumulation was detected in

comparison to the control, as shown in panel B. How-

ever, a significant accumulation of (þ) RNA1 was

detected when NH4Cl was added to the cells 1 h after

inoculation. When NH4Cl was added at 3 h post-in-

oculation, the amount of (þ) RNA1 that accumulated

in the cells was almost equal to the level of (þ)

RNA1 in the untreated cells. Taking these results

into consideration, NH4Cl inhibits an early step of

betanodavirus entry into cells and has no effect on

viral replication once the virus has entered the cells.

Fig. 3. NH4Cl and chloroquine inhibit an early step of betanodavirus entry. (A) Cells were inoculated with RGNNV in the
presence of 1 mM NH4Cl (middle panel) or 1mM chloroquine (lower panel). Control cells were inoculated and incubated
without an agent throughout the experiment (upper panel). At the indicated times after inoculation, total RNA was extracted,
and the (þ) RNA1, (�) RNA1 and 18S rRNA were detected by RT-PCR. (B) The band intensity of RNA1s was normalized
and calculated as the relative value of (þ) RNA1 (closed circle) and (�) RNA1 (open circle) to that of (þ) RNA1 which was
seen at 1 h post-inoculation. The data represent the means from two independent experiments. (C) Cells were inoculated with
virus and incubated in the presence (gray bar) or absence (open bar) of 1 mM NH4Cl throughout the experiment. NH4Cl was
added to virus-infected cells to a final concentration of 1 mM at the indicated time post-inoculation (black bar). At 12 h post-
inoculation, total RNA was extracted and subjected to RT-PCR. The band intensity of (þ) RNA1 were normalized and
expressed as the ratio of (þ) RNA1 compared to that of the cells that were only infected with virus (only adsorption). The
data represent the means and standard deviations from three independent experiments
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Inhibitory effect on viral replication

by lysosomotropic agents

We examined the amount of infective virus released

into the culture supernatant after betanodavirus in-

fection in the presence of lysosomotropic agents.

As shown in Fig. 4A, incubation of the cells with

increasing concentrations of NH4Cl resulted in a

reduction in infectious virus. At a concentration

of 160 mM NH4Cl, the number of infectious viruses

decreased to about 90% of the control. An almost

complete inhibition of virus production was ob-

served when cells were treated with 630mM NH4Cl.

Chloroquine had an effect identical to NH4Cl on

the reduction of virus production (Fig. 4B). The

amount of infectious virus was reduced to less than

5% of the control in the presence of 200 nM chlo-

roquine. Treatment with bafilomycin A1, a lysoso-

motropic agent that is a specific inhibitor of the

vacuolar Hþ-ATPase [24], also showed an inhibito-

ry effect against viral production in a dose-depen-

dent manner (Fig. 4C). No virus-induced CPE was

observed with cells that were treated with 1 nM bafi-

lomycin A1 for 6 days after inoculation (Table 1). In

addition, monensin, another lysosomotropic agent,

and chlorpromazine also inhibited the development

of virus-induced CPE at the concentrations listed in

Table 1. These results strongly suggested that the

various lysosomotropic agents could be utilized as

inhibitors against betanodavirus infection.

Discussion

We have identified lysosomotropic agents as effec-

tive antiviral agents against betanodavirus infection

in fish cell cultures. We utilized these agents because

the electron microscopic study by Liu et al. [16]

suggested that the entry of betanodavirus into cells

depends on the endocytic pathway. We initially used

NH4Cl and chloroquine to examine whether they can

inhibit the development of CPE after betanodavirus

infection. Both agents completely inhibited virus-in-

duced CPE at non-cytotoxic concentrations (Fig. 1).

NH4Cl and chloroquine had no affect on virus attach-

ment to the cells (Fig. 2C and D). We also showed

Fig. 4. Lysosomotropic agents inhibit the multiplication of betanodavirus. E-11 cells were inoculated with RGNNV in the
presence of increasing concentrations of NH4Cl (A), chloroquine (B), and bafilomycin A1 (C). The culture supernatant was
harvested at 4 days post-infection and the infectivity titer was determined by a TCID50 assay. The relative amount of virus
production was calculated as the percentage of viral titer to that of the supernatant of the cells infected in the absence of
agent. The data represent the means from two independent experiments performed in duplicate

Table 1. Effect of reagents that target the endocytic pathway in betanodavirus infection

Drug Effect CPE inhibitiona

Ammonium chloride inhibits acidification of endosomes 1 mM
Chloroquine inhibits acidification of endosomes 1mM
Bafilomycin A1 inhibits vacuolar Hþ-ATPase, inhibits acidification of endosomes 1 nM
Monensin carboxylic ionophore, inhibits acidification of endosomes 1mM
Chlorpromazine prevents assembly and disassembly of clathrin lattices at cell surface

and on endosomes and inhibits clathrin-mediated endocytosis
10mM

a The drug concentration that completely inhibited the CPE after 6 days of infection.
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that NH4Cl inhibited a very early step of infection

rather than blocking polymerase activity, since the

level of (þ) RNA1 accumulation was not affected

when NH4Cl was added to the culture medium at

1 h post-inoculation (Fig. 3C). The effective doses

of NH4Cl (1 mM) and chloroquine (1mM) in this

experiment were more than 10-fold lower than those

used for other viruses [1, 2, 15, 29]. The infection of

betanodavirus was also inhibited by bafilomycin A1

and monensin (Fig. 4 and Table 1), thus confirming

that lysosomotropic agents can be useful for the pre-

vention of betanodavirus infection.

Chloroquine, first synthesized as an anti-malarial

drug, has been shown to have an antiviral effect on a

wide range of viruses, including human immu-

nodeficiency virus (HIV) [25, 27], influenza virus

[23], and the SARS coronavirus (SARS-CoV) [4].

As for the enveloped viruses, chloroquine and NH4Cl

inhibit the glycosylation of viral envelope proteins

[34], the transportation of glycoprotein to the plasma

membrane [6, 9], and the envelopment of viral

nucleocapsids [14]. It has also been suggested that

the terminal glycosylation of angiotensin-converting

enzyme-2 (ACE-2), a functional receptor of SARS-

CoV, is inhibited by chloroquine and NH4Cl [34].

Recently, in betanodavirus, sialic acid on the fish

SSN-1 cell line has been demonstrated to be in-

volved in binding of virus to the cell [16], although

the specific functional cellular receptors for the vi-

rus have not yet been identified. Our data suggested

that the inhibitory effect against an early step of

betanodavirus infection (binding to the cell surface)

was not affected by the agents (Fig. 2C and D).

Feline calicivirus (FCV), a member of the family

Caliciviridae and a non-enveloped virus, also re-

quires the acidification in endosomes for its entry

pathway [29]. The a2,6-linked sialic acid present

on an N-linked glycoprotein acts as a receptor for

FCV infection [30], and it has been suggested that

the inhibitory mechanism of chloroquine against

FCV entry into the cells is not due to a defect of

the functional cellular receptor [29].

Treatment of E-11 cells with chlorpromazine in-

hibited the development of betanodavirus-induced

CPE (Table 1), which suggested clathrin-mediated

endocytosis as an entry pathway of betanodavirus

into cells. This agent is a cationic, amphiphilic

molecule that inhibits viral infection by shifting

clathrin and the AP-2 complex to the late endo-

somal compartment [28, 36]. Many non-enveloped

viruses have been shown to use the clathrin-medi-

ated endocytic route to infect cells [3, 5, 35], and

this pathway requires an acidic environment in the

endosomes. Further detailed experiments are need-

ed to clarify the mechanism of the endocytic path-

way utilized in betanodavirus infection.

At present, to prevent the spread of betanodavirus,

the selection of putative virus-free spawners and

disinfection procedures are used, however these pro-

cedures are not enough to prevent re-emergence of

betanodavirus infection on the same farms.

In conclusion, we have demonstrated for the first

time that lysosomotropic agents can inhibit the in-

fection of betanodavirus in vitro. These agents can

be considered candidate anti-betanodavirus drugs.

However, the agents discussed in this paper have

not yet been approved for application in fish cul-

ture. Further studies are thus called for to explore

this question.
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