the

geneticssociety

ARTICLE

www.nature.com/hdy

W) Check for updates

Physical geography, isolation by distance and environmental
variables shape genomic variation of wild barley (Hordeum
vulgare L. ssp. spontaneum) in the Southern Levant
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Determining the extent of genetic variation that reflects local adaptation in crop-wild relatives is of interest for the purpose of
identifying useful genetic diversity for plant breeding. We investigated the association of genomic variation with geographical and
environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum) populations of the Southern Levant using genotyping by
sequencing (GBS) of 244 accessions in the Barley 1K+ collection. The inference of population structure resulted in four genetic
clusters that corresponded to eco-geographical habitats and a significant association between lower gene flow rates and
geographical barriers, e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial
autocorrelation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5% of genomic
variation was solely attributed to environmental variation if the component confounded with spatial autocorrelation was excluded.
A synthetic environmental variable combining latitude, solar radiation, and accumulated precipitation explained the highest
proportion of genomic variation (3.9%). When conditioned on population structure, soil water capacity was the most important
environmental variable explaining 1.18% of genomic variation. Genome scans with outlier analysis and genome-environment
association studies were conducted to identify adaptation signatures. RDA and outlier methods jointly detected selection
signatures in the pericentromeric regions, which have reduced recombination, of the chromosomes 3H, 4H, and 5H. However,
selection signatures mostly disappeared after correction for population structure. In conclusion, adaptation to the highly diverse
environments of the Southern Levant over short geographical ranges had a limited effect on the genomic diversity of wild barley.
This highlighted the importance of nonselective forces in genetic differentiation.
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INTRODUCTION

Local adaptation is an essential survival strategy for plants in
stressful environments because they are sessile. Natural
selection in heterogeneous environments leads to increased
fitness of local genotypes. Gene flow can, however, offset
genetic differentiation resulting from local adaptation and
reduce fitness (Kawecki and Ebert 2004). In addition, genetic
drift and demographic history contribute to genetic differentia-
tion and confound adaptive variation with neutral variation
(Kawecki and Ebert 2004; Giinther and Coop 2013; Lépez-
Goldar and Agrawal 2021). Consequently, the combination of
selective and nonselective forces simultaneously shapes
genetic variation and leads to geographical patterns of
population divergence and allele frequency distribution.
Determining how different population genetic processes affect
the geographical distribution of genetic variation is a key
component in the study of plant adaptation. Investigating the
role of adaptive and non-adaptive processes in genomic
variation is of particular interest for wild relatives of crop
plants, as this may allow the discovery of useful genetic
variation for plant breeding (Turner-Hissong et al. 2020).

Wild barley (Hordeum vulgare L. ssp. spontaneum) is a highly
suitable model species for studying the local adaptation of crop-
wild relatives, as it occurs over a wide geographical range in the
Fertile Crescent and Central Asia (Harlan and Zohary 1966). Within
this range, genotypes originating in Central Asia are genetically
clustered with those from the eastern Fertile Crescent (Jakob et al.
2014; Russell et al. 2016; Pankin et al. 2018). There is a tendency of
increasing genetic diversity from the east toward the west (Jakob
et al. 2014). Wild barley in the western Fertile Crescent, i.e., the
Levant, has the highest genetic diversity of the Fertile Crescent
(Jakob et al. 2014; Russell et al. 2016; Pankin et al. 2018). It
occupies heterogeneous environments, including Mediterranean
and desert climates, within a short geographical distance (Hiibner
et al. 2009, Nevo et al. 1979, Volis et al. 2001). Wild barley
populations from the Southern Levant show a strong correlation
between genetic and environmental distances (Hubner et al,
2009). Population structure reflects eco-geographical habitats
(HGbner et al. 2009, 2012) and distinguishes between northern
and southern genetic clusters correlated with latitude and
precipitation gradients (Jakob et al. 2014; Russell et al. 2016).
Common garden experiments in previous studies revealed that
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eco-geography was correlated with morphological traits (Hiibner
et al. 2013), phenotypic plasticity (Galkin et al. 2018), and
rhizosphere microbiota (Terrazas et al. 2020). Moreover, trans-
plantation experiments showed a correlation between the
geographical origin of wild barley ecotypes and fitness in different
environments, suggesting local adaptation (Volis et al.
2002a, b, 2011). In addition to a broad geographical scale,
environmental differences on a fine geographical scale also
contribute to genetic diversification in wild barley (Nevo et al.
2005; Bedada et al. 2014; Wang et al. 2018). Overall, these results
suggest a strong relationship between environmental differences,
genetic divergence and phenotypic diversity of wild barley
populations. This supports the hypothesis of local adaptation of
wild barley in the Southern Levant. However, the relative
contributions of environmental and nonselective forces to genetic
variation and the genetic architecture of adaptive traits are still
mostly unclear due to the lack of appropriate statistical
approaches, fine-scale environmental data, and sufficient
genome-wide markers.

Wild barley is a valuable genetic resource for barley breeding
because domestication and modern breeding have greatly
reduced the genetic diversity of cultivated barley (H. vulgare L.
ssp. vulgare; Caldwell et al. 2006, Kilian et al. 2006). Since wild
barley has no reproductive barrier to cultivated barley (Nevo et al.
1979), the genetic diversity of cultivated barley can be enhanced
by introducing alleles from wild populations (Dawson et al. 2015).
Numerous studies have shown evidence for local adaptation of
wild barley to different environments (Nevo et al. 1979, Hibner
et al. 2013, Galkin et al. 2018, Volis et al. 2002a, b, Bedada et al.
2014; Volis et al. 2004, 2011; Wang et al. 2018). Wild barley is,
therefore, expected to possess considerable genetic variation that
contributes to adaptation to various abiotic stresses (Dawson et al.
2015). Correspondingly, wild barley has been used as a source of
novel alleles to improve stress tolerance in barley breeding (Baum
et al. 2003; Pham et al. 2019). However, widespread use of wild
barley has been limited due to its large genome size (~5.3 Gb) and
undesirable traits (Schmid et al. 2018). To facilitate the utilization
of favorable alleles in wild barley, it is important to take advantage
of novel genomic technologies and eco-geographical information.
Insight into the association between genetic variation and
environments provides information that can help to guide the
identification of valuable germplasms and the selection of core
accessions for generating introgression lines and carrying out
further genome-trait association studies (Bohra et al. 2021).

Genotyping by sequencing (GBS; Elshire et al. 2011; Poland et al.
2012) and a high-quality barley genome assembly (Mascher et al.
2017; Jayakodi et al. 2020) permit the exploration of genomic
variation under environmental selection and the search for useful
genetic variation in wild barley. In this study, we investigated
genetic variation with high-density genome-wide markers that had
not been used in earlier studies of wild barley in the Levant. We
aimed to (1) describe the population structure of wild barley from
the Southern Levant and place it in the context of a worldwide
sample (Milner et al. 2019), (2) examine geographical patterns of
gene flow in the Southern Levant, (3) characterize the relative
contributions of environmental gradients and space to genomic
variation and population structure, and (4) identify putative adaptive
loci. Overall, our results indicated that geography and spatial
autocorrelation were more important than selection for local
adaptation in shaping genomic variation in wild barley in the
Southern Levant. However, diverse environments, particularly water
availability, show significant associations with genetic differentiation.

MATERIALS AND METHODS

Plant material and genotyping by sequencing

We genotyped 244 wild barley accessions collected in the Southern Levant
region (Fig. TA). These accessions, hereafter referred to as B1K+ accessions,
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included 191 accessions from Barley 1K (B1K) collection (Hubner et al. 2009)
and 53 accessions from an unpublished collection referred to as HOH,
collected in 2005, 2009, and 2011 by K.S. (Fig. S1; File S1). The GBS library
was constructed using genomic DNA digested with the restriction enzyme
Pstl and Mspl as in Milner et al. (2019). In addition, published GBS data of
1121 wild barley accessions from the IPK genebank (Milner et al. 2019) were
included (Fig. 1A). Because the IPK genebank contains accessions from
Israel, we specified the source between IPK and B1K+ accessions to avoid
confusion. Identification of single-nucleotide polymorphism (SNP) was
performed as Milner et al. (2019). The detailed workflow of genotypic data
filtration is described in Supplementary Text and summarized in Fig. S2.

Environmental data

To investigate the relationship between genetic variation and environ-
mental gradients, we used environmental data including (1) climate data
from the WorldClim2 database (Fick and Hijmans 2017) with a resolution of
30arcseconds [~1 km], (2) soil data from the SoilGrids database (Hengl
et al. 2017) with a resolution of 250m, (3) topographic variables based on
elevation data from the SRTM database (https://srtm.csi.cgiar.org/) with a
resolution of 90m, and (4) geographical coordinates of collection points
(Supplementary Text; File S1). To mitigate the problem of collinearity for
redundancy analysis (RDA; Legendre and Legendre 2012), highly correlated
environmental variables were grouped by hierarchical clustering using a
customized clustering index (Supplementary Text; Fig. S3). We then
selected the eigenvector of the first principal axis for each collinear group
as a synthetic variable to represent highly correlated environmental
variables. Next, all environmental variables, including the synthetic
variables, were selected based on variance inflation factors (VIFs) until all
VIFs were less than 5. Details of this procedure are given in Supplementary
Text. Finally, 12 environmental variables, including 7 synthetic and 5
nonsynthetic variables (Tables S1 and S2), were selected for environmental
association analyses.

Inference of population structure

The number of ancestors and ancestry coefficients were estimated using
the model-based method ALStructure (Cabreros and Storey 2019).
AlLStructure uses a likelihood-free algorithm to derive estimates from
minimal model assumptions. It is generally superior to existing likelihood-
based methods in terms of accuracy and computational speed. The
method does not assume Hardy-Weinberg equilibrium within populations,
but defines the number of ancestral populations (K) as the rank of a matrix
consisting of individual-specific allele frequencies (Leek 2011). Optimal K
was calculated using the estimate_d function of the R package alstructure
(Cabreros and Storey 2019), and ancestry coefficients were estimated using
the alstructure function. A range of K values, from 2 to 8, was also used to
examine the stratification of population structure. In addition to
AlLStructure, principal component analysis (PCA) and neighbor-joining
(NJ) were also performed. Missing genotypic values (~3% of the dataset)
were replaced by the average number of alternative alleles at each SNP
locus before performing PCA.

To analyze genetic differentiation, we calculated Fsr and Nei genetic
distance between genetic clusters defined by ALStructure. Accessions were
assigned to genetic clusters according to the highest ancestry coefficient
calculated by ALStructure with the optimal K value. Fs; values were
calculated as ratio of average values (Bhatia et al. 2013) and Nei’s genetic
distances were calculated using the function stamppNeisD of the R
package StAMPP (Pembleton et al. 2013).

Analysis of gene flow

To identify gene flow barriers that may explain observed population
structure, an analysis of estimated effective migration surfaces (EEMS;
Petkova et al. 2016) was done. First, B1K+ accessions were clustered into
58 demes that correspond to the location of collection sites. EEMS was
then conducted in three independent runs of Markov chain Monte Carlo
(MCMCQ), and the results of the three runs were averaged. Each MCMC
chain encompassed 10 million burn-in iterations and 10 million post-burn-
in iterations thinned by an interval of 5000 iterations. Outputs of EEMS
were processed using the R package rEEMSplots. To examine whether
geographical barriers contribute to genetic isolation, we separated map
pixels into barrier and non-barrier pixels according to geographical
elevation (details in Supplementary Text; Fig. S4). We then conducted a
Wilcoxon test to examine the hypothesis that geographical barriers are
significantly associated with lower gene flow rates.
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Spatial genetic structure of 244 B1K+ accessions and results of gene flow analysis. A A geographical map of accession origins.

Countries of origin of IPK accessions are colored in light red. The green close circle represents the Levant region. The blue open circle indicates
the origin of B1K+ collection. B PCA plot of the first and second PC axes. C PCA plot of the first and third PC axes. Pie charts in PCA plots
represent ancestry coefficients of individuals estimated by ALStructure with K= 4. D Distribution of genetic clusters and effective migration
surface. Pie charts give the average ancestry coefficients of individuals in collection sites. Color gradient represents gene flow rates estimated
by EEMS. E Population pairs with unPC scores higher than the top 2.5% threshold which indicate a significantly low genetic similarity over a
short geographical distance. F Population pairs with unPC scores lower than the bottom 2.5% threshold which indicate significantly high
genetic similarity over a large geographical distance. G Gene flow rates inferred by the coalescent-based inference method, representing the
probabilities per unit of time that individuals in a region i are descended from a region j (Lundgren and Ralph 2019). The thickness of arrows

and the depth of red color is proportional to gene flow rates. The full results are given in Table S4.

To account for non-independence between observations, we used
ResistanceGA (Peterman 2018) to assess the support for isolation by
geographical barriers. In short, ResistanceGA optimizes resistance surfaces
based on genetic distances and transformed landscape features with a
genetic algorithm. Pairwise genetic distances between 58 demes were
calculated as Dps = 1 — p, where p is the proportion of shared alleles. In the
analysis of ResistanceGA, we converted elevation and slope to continuous
resistance surfaces, respectively, with inverse ricker and inverse-reverse
monomolecular transformation. In addition, surface water data obtained
from Global-Surface Water (https://global-surface-water.appspot.com/
download; Pekel et al. 2016) were used as the categorical resistance
surface for ResistanceGA. To assess the model fit of different landscape
feature combinations, we carried out two bootstrap analyses that
separately used R? and Akaike information criterion (AIC) as the model
ranking standard with 1,000 iterations. Default parameters were used for
the ResistanceGA framework.

As a complementary method to EEMS, unbundled principal components
(unPC; House and Hahn 2018) were employed to reveal potential long-
distance migration. unPC scores, a ratio of PCA-based genetic distance on
population level to geographical distance between demes, were computed
with the R package unPC. Original unPC scores were transformed by
Box-Cox transformation into an approximate Gaussian distribution.

Heredity (2022) 128:107-119

Subsequently, an outlier test based on Student’s t-distribution with a
two-tailed significance level of 0.05 was performed to identify extreme
population pairs. In this test, we assumed dependence between genetic
and geographical distances. A null hypothesis is that samples from a pair of
collection sites display an isolation-by-distance pattern. In other words,
outliers identified with this test are considered to result from the violation
of isolation-by-distance, which could constitute either long-distance
migration or isolation due to unknown factors.

To infer asymmetric gene flows, we utilized the coalescent-based
inference (CBI; Lundgren and Ralph 2019). We manually grouped
accessions into ten geographical regions (Fig. S5) such that each region
covered roughly equal geographical areas as suggested by Lundgren and
Ralph (2019). We likewise considered the gene flow pattern inferred by
EEMS. The sample sizes in each region ranged from 10 to 41 with an
average of 24.4. Next, we created an adjacency matrix to allow gene flow
between adjacent regions (Fig. S5). For CBI input, pairwise genetic
distances were computed as the average number of different alleles across
SNPs. CBI was performed using the R package gene.flow.inference
(Lundgren and Ralph 2019) with 2 million pre-burn-in iterations, 60 million
burn-in iterations, and 100 million post-burn-in iterations followed by a
thinning process for every 5000 iterations to rule out serial correlations.
Medians of gene flow rates and coalescence rates were computed from
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posterior distributions and 95% credible intervals were calculated with the
highest density interval method by using the R package bayestestR
(Makowski et al. 2019).

Partitioning genomic variation

To partition genomic variation into components explained by different
factors, we conducted RDA, a multivariate method for studying a linear
relationship between two or more matrices (Legendre and Legendre 2012).
Specifically, we used simple RDA and RDA conditioned on covariates, i.e.,
partial RDA, to estimate the proportion of SNP variation explained by
environmental variables, spatial autocorrelation, and population structure.
RDA was performed with the rda function of the R package vegan(Oksanen
et al. 2019). For all RDA models in this study, we carried out 5000
permutations to test the significance of explanatory variables with the R
function anova.cca.

To model the effect of spatial autocorrelation on SNP variation, distance-
based Moran’s eigenvector maps (dbMEMs) were used in RDA (Legendre
and Legendre 2012; Dray et al. 2006). First, a network of 58 collection sites
was built with the Gabriel graph, and a spatial weighting matrix of inverse
geographical distances (km~') was constructed in line with the method of
Forester et al. (2018). Next, the spatial weighting matrix was decomposed
to generate dbMEMs. Subsequently, forward selection was performed to
identify doMEMs that associate significantly with spatial genetic structure
by using forward.sel function (Dray et al. 2019). The selected dbMEMs with
positive and negative eigenvalues, corresponding to broad-scale and fine-
scale spatial structures, were both used in RDA to capture comprehensive
spatial autocorrelation. In addition, to partition observed population
structure, ancestry coefficients estimated by ALStructure with the optimal K
values were used in the RDA on SNPs as covariates.

Since genetic clusters were largely congruent with eco-geographical
habitats, we were interested in the degree of population structure that
could be attributed to environmental and spatial factors. By fitting RDA
models on ancestry coefficients instead of SNPs, we excluded recent
genetic variation within populations to better quantify the relative
contributions of environments and spatial autocorrelation to population
structure. To carry out this analysis, SNPs were replaced by ancestry
coefficients inferred by ALStructure with the optimal K as the new response
variables in RDA models.

To evaluate the effects of individual environmental variables on SNP
variation, we sequentially fitted one environmental variable at a time as
the explanatory variable and treated ancestry coefficients as covariates in
RDA models. Considering the correlation between environmental variables
(Fig. S3C and D), we conducted additional permutation tests for marginal
effects of environmental variables in a model including all environmental
variables by setting the parameter by = ‘margin’ for anova.cca. This
method tested the significance of each environmental variable while
removing the confounding effect with the other environmental variables.

Linkage disequilibrium

Linkage disequilibrium (LD) was evaluated as the pairwise r* of SNPs by
using the snpgdsLDMat of the R package SNPRelate (Zheng et al. 2012) with
a window size of 250 markers. To evaluate the genome coverage of
markers, genome-wide LD decline against physical distance was fitted by
using local polynomial regression and the formula of Hill and Weir (1988).
Local polynomial regression was carried out by using the R function loess
with a smoothing parameter of 0.005.

Identification of selection signatures

As a genome-environment association (GEA) method, RDA has high
detection power and a low false-positive rate in identifying adaptation
signatures (Forester et al. 2018, 2016; Capblancq et al. 2018). We therefore
performed genome scans with simple and partial RDA. Simple RDA was
done by treating 27,147 SNPs as response variables and twelve
environmental variables as explanatory variables. To control for false
positives due to population structure, partial RDA was performed by using
ancestry coefficients estimated with the optimal K as covariates. A
statistical framework proposed by Capblancq et al. (2018) was used for
statistical tests and controlling for false discovery rates (FDR). Briefly, the
loadings of SNPs in the first four RDA axes, selected according to the
proportion of explained variation (Fig. S6), were converted into Mahala-
nobis distances that approximated to a chi-squared distribution with four
degrees of freedom. Next, p-values and g-values were computed
accordingly, and SNPs with FDR<0.05 were considered as candidate
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adaptive SNPs. The statistical test was conducted using the R function
rdadapt (Capblancq et al. 2018).

Besides RDA, the latent factor mixed model (LFMM; Caye et al. 2019),
which is an univariate GEA method, was performed by using the R package
Ifmm (Caye et al. 2019) with parameter K=4 to correct population
structure and g-values were subsequently computed. SNPs with FDR < 0.05
were considered to be candidate adaptive SNPs.

As a complement to GEA methods, outlier SNPs with an extreme
divergence between genetic clusters were detected by the X'X statistics
(Gunther and Coop 2013). We assigned accessions to genetic clusters
according to the highest ancestry coefficient estimated by ALStructure with
the optimal K and calculated X"X by using BAYPASS ver2.1 (Gautier 2015).
BAYPASS was run by setting 25 short pilot runs, 100,000 burn-in iterations
and 100,000 post-burn-in iterations with a thinning interval of 40 iterations.
A significance threshold of X'X was determined by the 99.5% quantile of
pseudo-observed X'X (Gautier 2015) calculated from neutral markers
simulated by simulate.baypass (Gautier 2015).

Gene ontology enrichment

To investigate biological functions related to putatively adaptive loci, we
conducted gene ontology (GO) enrichment analysis with gene annotations
of the barley ‘Morex v2' genome (Mascher 2019). Over-representation of
GO terms for genes within 500 bp adjacent intervals of candidate SNPs was
tested by Fisher's exact test with 10,000 runs using SNP2GO (Szkiba et al.
2014). GO terms with an FDR<0.05 were regarded as significantly
enriched. Annotations of genes within 500 bp upstream and downstream
of the candidate SNPs were also reported.

RESULTS

Summary of genotyping data

SNP calling and preliminary filtration resulted in 101,711 SNPs for
1365 accessions, including 1121 IPK accessions and 244 B1K-+
accessions. Depending on the analytical requirements, we
selected different subsets from 101,711 SNPs as follows. For the
joint population structure analysis of IPK and B1K+ accessions, we
selected 4,793 SNPs with minor allele frequency (MAF) > 0.05
among 72 IPK accessions originating from 13 countries (Russell
et al. 2016). This joint dataset had a missing proportion of 0.043
and was LD-pruned with PLINK using a r* threshold of 0.1. For
analyses of B1K+ accessions, we selected 58,616 SNPs with an
overall missing proportion of 0.029 and maximal individual
missing proportion of 0.059. Further filtration resulted in 19,601
SNPs (LD-pruned; MAF = 0.01) and 27,147 SNPs (unpruned; MAF >
0.05; Details in Supplementary Text; Fig. S2)

Population structure and spatial genetic pattern

The inference of population structure among B1K+ accessions
with ALStructure (Cabreros and Storey 2019) identified four
clusters (Fig. 1B, C) corresponding to the Mediterranean northern
region, semi-arid coastal region, Judaean Desert, and Negev
Desert (Fig. 1D). Hereafter, we named the four B1K+ clusters as
North, Coast, Eastern Desert, and Southern Desert. With K= 4, 174
of 244 (71.3%) accessions had a highest ancestry coefficient of less
than 0.9. The first three principal components (PCs) represented
the clusters corresponding to the ALStructure results (Fig. 1B, Q).
On the first PC axis, the northern cluster was separated from two
desert clusters, and on the second PC axis, the coastal cluster was
separated from the others. On the third PC axis, the southern
desert cluster was separated from the eastern desert cluster. The
three PC axes explained 4.73%, 3%, and 2.83% of the variation,
respectively. A hierarchical population structure was evident in the
NJ tree (Fig. 2A) and in the ALStructure analysis with K = 2-8
(Fig. 2B). To evaluate the importance of marker density and
additional samples for population structure analysis, we per-
formed PCA and ALStructure by either including or removing the
HOH accessions with random selection of 100 and 5000 SNPs, in
addition to the original dataset. The dataset with 100 SNPs did not
allow to identify genetic clusters while datasets with 5,000 SNPs
separated into four genetic clusters by using the first four PCs

Heredity (2022) 128:107-119
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Table 1. Fsr and Nei's genetic distances between four genetic clusters.
FST
North
North -
Nei’s distance Coast 0.0209
Eastern Desert 0.0216
Southern Desert 0.0508

even without the HOH accessions. However, ALStructure could
only identify three ancestral populations (K=3) if the HOH
accessions were excluded (File S2).

To quantify the extent of genetic differentiation among the four
clusters, we computed pairwise Fsr and Nei's genetic distances.
The Southern Desert cluster was most strongly isolated from the
other three clusters (Table 1). With respect to the genomic pattern
of differentiation, Fst values were highest in the pericentromeric
regions of the chromosomes 2H, 3H, 4H, 5H, and 6H. The Southern
Desert cluster differentiated from the other three clusters in most
of the genome except the pericentromeric regions of the
chromosomes 3H and 4H (Fig. S7).

A joint PCA of B1K+ and IPK accessions was consistent with
major clusters identified in B1K+ and showed that B1K+
accessions overlapped with a large proportion of the IPK
collection (Fig. 3A). To visualize the genetic relationship between
B1K+ accessions and IPK accessions of different origins, we
selected 72 geographically distinct accessions used in a previous
study (Russell et al. 2016). On the first PC axis, most of the 72
geographically diverse accessions collected from western and
central Asian countries were separated from B1K+ accessions but
clustered more closely to the two desert clusters than to the
northern and coastal clusters (Fig. 3A). Because an unbalanced
sample size of accessions from Israel (616 out of 1365 accessions)
might bias the PC axes, we performed another joint PCA by
projecting 1293 accessions onto PC spaces of 72 geographically
distinct accessions. The PC projection was done by calculating
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Coast Eastern desert Southern desert
0.1124 0.1149 0.2593

- 0.1321 0.2533

0.0248 - 0.2125

0.0482 0.0389 -

inner products between genotypic values of 1293 accessions and
eigenvectors obtained from the PCA of 72 geographically distinct
accessions. This approach could avoid the misinterpretation of
sample origin and migration based on PC (McVean 2009). The PC
projection showed that accessions typically clustered by geogra-
phical origin, as reported in previous studies (Russell et al. 2016;
Milner et al. 2019), and B1K4- accessions were concentrated in a
small area of PC space (Fig. 3B).

Geographical pattern of gene flow

To identify barriers limiting gene flow within the Levant region, we
performed an EEMS (Petkova et al. 2016) analysis that revealed
uneven gene flow across the landscape. The area of low gene flow
rates corresponded closely to geographical barriers, including the
Sea of Galilee, the Jordan Valley, and the Judea and Samaria
mountain ridges (Fig. 1D). A Wilcoxon test supported the
association between geographical barriers and lower gene flow
rates (p < 2.2 x 10722 Fig. S8A). In addition, EEMS analysis showed
that genetic dissimilarity between demes did not have a simple
linear relationship with geographical distances (Fig. S8B), indicat-
ing that isolation-by-distance was not sufficient to explain genetic
differentiation. This result was supported by a ResistanceGA
analysis indicating that landscape features explained genetic
distances better than geographical distances. A composite
resistance surface consisting of elevation and slope was suggested
as the best predictor according to R® in all bootstrap iterations
(R* = 0.51; Table $3.1), whereas the model of geographical
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distances had R? = 0.21. Model selection with AIC suggested a
model with surface water_as resistance surface as best model in
96.8% of bootstraps with R? = 0.31 (Table S3.2).

The EEMS analysis also showed that effective genetic diversity,
which is the expected genetic dissimilarity of two individuals
sampled from a site (Petkova et al. 2016), decreased from north to
south (Fig. S8C), suggesting higher genetic diversity in the north
than the south. Furthermore, we performed unPC (House and
Hahn 2018), the ratio of PC-based genetic distances to geogra-
phical distances, which is more sensitive to long-distance
migration than EEMS. The population pairs with high unPC score
supported regions of low gene flow identified by EEMS (Fig. 1E).
This was particularly true for the majority of significant population
pairs with located in the region around the Sea of Galilee in
northern Israel (Fig. 1E). In addition, the population pairs with low
unPC scores suggested potentially long-distance migration events
in the north-south direction (Fig. 1F).

To evaluate asymmetric gene flows, we used CBI (Lundgren and
Ralph 2019), which suggested unequal gene flows in a North-
South direction (Fig. 1G; Table S4). There was a trend for gene flow
from South (region H) to North (region B) in the western region
(region H— E— B; Fig. 1G) and an opposite trend from North
(region A) to South (region /) in the eastern region (region A —
D — F— [; Fig. 1G). The strongest gene flow (3.24 with the 95%
credible interval of 0.51-6.32; Table S4) was observed from
populations close to Jerusalem (region H) to the surrounding areas
of Mount Carmel (region E). However, the gene flow in the
opposite direction (region E — H) was much weaker (0.77 with the
95% credible interval of 0-2.32; Table S4). Low gene flow rates of
connections across geographical barriers, suchas C=Dand H=1,
correlated with the results of EEMS (Fig. 1D) and unPC (Fig. 1E
and F). Furthermore, low gene flow rates between the Negev
desert (region J) and its adjacent regions indicated the isolation of
Southern Desert accessions, consistent with the high genetic
differentiation suggested by the Fs; values (Table 1).

Genetic variation explained by environment and space

SNP variation partitioning with redundancy analysis (RDA). To
quantify the relative contributions of the environment and space
to genomic variation, we performed RDA on SNPs by taking all
environmental variables as a whole and incorporating spatial
autocorrelation. RDA showed that environmental variables
explained 15.12% (R, = 0.107; p = 0.0002) of SNP variation while
spatial autocorrelation captured by dbMEMs, which are eigenfunc-
tions of a spatial network (Legendre and Legendre 2012, Dray
et al. 2006), explained 44.95% (R§dj = 0.285; p=0.0002; Fig. 4A).
We found 10.63% of SNP variation is jointly explained by
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environmental variables and spatial autocorrelation, and 4.49%
(R§dj = 0.013; p=0.0002) was solely explained by environmental
variables (Fig. 4A). Considering the confounding effect between
environment and population structure, we treated ancestry
coefficients (K = 4) as covariates in partial RDA when examining
the effect of environmental variables on SNP variation. The partial
RDA indicated that population structure explained 15.43%
(R§dj = 0.148; p=0.0002) of SNP variation, and environmental
variables solely explained 8.71% (R§dj = 0.048; p = 0.0002) of SNP
variation when conditioned on population structure (Fig. 4A).

Relative importance of individual environmental variables for SNP
variation. After confirming an association between genomic
variation and the environment, we further investigated the effects
of individual environmental variables. In simple RDA models with
separate fitting of each environmental variable, permutation tests
showed that all of the 12 environmental variables were
significantly associated with SNP variation (p < 0.005; Table S5.1).
Without constraining on population structure, the synthetic
variable ‘Latitude+Rain—+Solar_rad' (Tables S1 and S2) explained
the highest proportion of SNP variation (3.89%; Fig. 4B; Table S5.1).
In contrast, in partial RDA models conditioned on population
structure, 'Soil_water_capacity’ explained the highest proportion of
SNP variation (1.18%; Fig. 4B; Table S5.2) whereas the proportion
of SNP variation explained by 'Latitude+Rain+Solar_rad' reduced
to 0.86%. The variable ‘Aspect’ presented the lowest but significant
association with SNP variation in both simple and partial RDA
conditioned on population structure (Table S5.1 and S5.2). The
explained variation of 'Soil_water_capacity’, 'CoefVar_Rain’, which
refers to coefficients of variation of precipitation in the growing
season, and 'Aspect’ decreased less than other environmental
variables after conditioned on population structure. This indicates
that they correlated less with population structure. We also
investigated marginal effects in models that incorporated all
environmental variables by considering correlations between
environmental variables. The variables 'Latitude+Rain+Solar_rad’
and 'Soil_water_capacity’ once again showed the highest marginal
effect in the simple RDA and partial RDA conditioned on
population structure, respectively (Fig. 4B; Table S5.3 and S5.4).
RDA biplots provided further information on the relative
importance of environmental gradients. The biplot of the simple
RDA (Fig. 4C) showed a population structure consistent with the
four genetic clusters identified by ALStructure. The first and second
RDA axes corresponded to genetic differentiation in the north-
south and west-east directions, respectively (Fig. 4C). The first RDA
axis was strongly (r = 0.911; Table S6) correlated with the variable
“Latitude+Solar_rad” (Fig. 4C). When conditioned on population
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Inference of selection. A Genome scans for adaptation signatures. Three Manhattan plots correspond to the BAYPASS, simple RDA, and

partial RDA conditioned on population structure. Significant SNPs are highlighted as red dots. The positions of centromeres are indicated with
vertical gray dash lines. B Numbers of significant SNPs detected by four different methods for genome scans.

structure, two water-related variables, “Soil_water_capacity” (SWC;
r = 0.697) and “CoefVar_Rain" (CVR; r = —0.662), were the most
influential predictors on the first RDA axis (Fig. 4D and Table S6).
However, if conditioned on spatial autocorrelation rather than on
population structure, the effects of all environmental variables
decreased significantly (Fig. S9 and Table S6). This indicated a
strong correlation of environmental gradients with spatial
autocorrelation.

Association of population structure with environment and space.
With reference to our hypothesis that the diverse environments in
the Southern Levant were an important factor in shaping
populations, we quantified the relative contributions of environ-
ment and space to population structure (K=4) with RDA on
ancestry coefficients. As expected, a high proportion of population
structure that was explained by environmental variables (42.91 of
46.59%; the right column of Fig. 4A) could not be separated from
the component explained by spatial autocorrelation. Only 3.68%
(Rgd- = 0.0358; p = 0.0002) of population structure could be solely
explained by environments whereas spatial autocorrelation
accounted solely for 39.87% (R§dj = 0.374; p =0.0002) of popula-
tion structure (Fig. 4A). This result suggested that spatial
autocorrelation had a larger effect on population differentiation
of wild barley in the Southern Levant than environmental
diversity.

Adaptive candidates and GO enrichment

The association between genomic variation and environment
prompted us to perform genome scans to identify putative
adaptive loci. Given the large genome size (~5.3 Gb), we first
estimated LD decay to assess whether the marker density of the
reduced-representation data was sufficient to accurately identify
adaptive genes in these scans. We fitted the loess model and Hill-
Weir formula with 27,147 genome-wide SNPs. We then observed a
rapid decay in LD because r* values dropped to half of the highest
values of 0.377 and 0.454 after pairwise SNP distances of 213 bp
and 125 bp, respectively (Fig. S10). Given the large size of the
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barley genome, this result indicates a possible difficulty in
detecting the precise locations of adaptive loci, except for closely
linked loci with the current marker density.

Three GEA methods, simple RDA, partial RDA, and LFMM,
identified 352, 364, and 307 candidate SNPs (FDR < 0.05),
respectively, and the outlier method, BAYPASS, identified 279
candidate SNPs (X"X > 11.05). However, candidate SNPs detected
by the four methods hardly overlapped, except simple RDA and
BAYPASS with 125 common SNPs, 91 of which were located in
pericentromeric regions of chromosomes 3H, 4H, and 5H (Fig. 5;
File S3). By searching 500 bp adjacent intervals of candidate SNPs,
the four methods jointly identified two genes on the chromosome
4H. The first gene HORVU.MOREX.r2.4HG0308420 locates closely to
SNPs associated with the variable ‘Latitude+Rain+Solar_rad' in the
LFMM analysis (File S4) which encodes an ATP-dependent RNA
helicase. The second gene HORVU.MOREX.r2.4HG0314300 is linked
to SNPs associated with 'Elevation+Temperature'. It encodes a
nucleolar GTP-binding protein (Fig. S11; Table S7; File S4). GO term
enrichment analysis identified 2 and 10 enriched GO terms based
on candidate SNPs detected by simple RDA and BAYPASS,
respectively (Table S8). No GO term was enriched based on the
results of partial RDA and LFMM.

DISCUSSION

Our study indicated that geography and spatial autocorrelation
were better predictors of genomic variation than environmental
gradients even though the diverse environments of the Southern
Levant are expected to impose strong natural selection (Hiibner
et al. 2009; Nevo et al. 1979). These findings imply that genomic
variation of wild barley in the Southern Levant was mainly driven
by neutral processes consistent with a neutralist perspective (e.g.,
Volis et al. 2001, 2003, 2005). However, environmental variables
were still associated with a relatively small but considerable
proportion of genomic variation (15.12%; Fig. 4A), suggesting that
natural selection and hitch-hiking may have a detectable effect on
the structure of genetic diversity.
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Strong population structure of B1K+ and IPK genebank
collections

Three clusters of wild barley from the Levant region that
correspond to eco-geographical habitats were previously
characterized using SSR markers and an SNP array developed
for cultivated barley (Hibner et al. 2012) and morphological
traits (Hubner et al. 2013). Our results are consistent with
previous findings, except that the previously reported desert
cluster (Hlbner et al. 2012) was split into two clusters
(Fig. 1B-D), which was evident in the ALStructure analysis with
K = 3 and K = 4 (Fig. 2). Difference to previous study resulted
from an increased marker number but also to the inclusion of
additional accessions collected in the Negev Desert in 2011
(File S2). Although genetic clusters were consistent with eco-
geographical habitats, caution should be exercised when
interpreting the results of model-based methods. First, the
number of ancestral populations might be overestimated due
to isolation by distance (Bradburd et al. 2018). Second, the high
proportion of admixed accessions (174 of 244 B1K+ accessions;
71.3%) might not result from admixture. Both spatial auto-
correlation (Bradburd et al. 2018) and demographic history
(Lawson et al. 2018) such as bottlenecks that likely occur in self-
pollinating species (Hartfield et al. 2017), may lead to high
admixture proportions in model-based methods.

The joint PCA incorporating the IPK wild barley collection
indicated a strong effect of an unbalanced sample size of
accessions from Israel (616 of 1365 accessions) on a PCA
(Fig. 3A, B). This comparison highlighted the importance of
balanced sampling when analyzing population structure because
unequal sample sizes among groups could lead to the distortion
of PCs (McVean 2009). The PCA, based on all accessions,
compressed the accessions with a broad geographical origin
across the whole distribution range of wild barley into a cluster
(Fig. 3A) that did not appropriately reflect their wide geographical
origin. In contrast, a PCA with a more balanced sample of
accessions from the whole species range revealed that the wild
barley from the Southern Levant regions contained only a small
proportion of the total diversity of wild barley (Fig. 3B). However,
the PCA of the complete sample revealed that accessions from
Greece and Cyprus clustered with accessions from the Southern
Levant (Figs. 3A and S12A). This suggested they originated from
the Southern Levant or adjacent areas without a sufficiently long
history of differentiation from the ancestral populations. Likewise,
579 IPK accessions of unknown origins might be closely related to
the Levant region as they strongly overlapped with our B1K+
population (Fig. S12).

Evidence for geographical pattern of gene flow

We expected that gene flow among wild barley populations was
limited because of a low rate of outcrossing (<2%; Abdel-Ghani
et al. 2004), and seed dispersal occurred mainly within 1.2 m (Volis
et al. 2010). However, self-fertilizing plants can establish a
population with a single seed after long-distance dispersal (Baker,
1967), and the long spiky awns attached to seeds of wild barley
facilitates dispersal by zoochory. Over a sufficiently long period,
gene flow across landscapes might accumulate via occasional
dispersal and outcrossing. EEMS (Petkova et al. 2016) was
previously used to identify gene flow barriers in plant populations
across large geographical ranges, e.g., rice (Gutaker et al. 2020)
and spruce (Tsuda et al. 2016). In our data, EEMS revealed fine-
scale patterns of gene flow attributable to geography, particularly
of the Sea of Galilee and the Jordan Valley, which had not been
previously identified by inferring gene flow between genetic
clusters (Hlbner et al. 2012). These geographical separations
appear to promote genetic differentiation within a short
geographical distance that interfered with isolation-by-distance
patterns (Fig. S8B). The analysis of ResistanceGA, which accounted
for the non-independence of samples, also suggested a stronger
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effect on genetic differentiation by geographical barriers than by
isolation-by-distance (Table S3).

CBI (Lundgren and Ralph 2019) detected trends of gene flow in
opposite directions in eastern and western regions (Fig. 1G). This
contradicted the net gene flow from north to south identified by
Hilbner et al. (2012). The different conclusions regarding gene
flow directions in western Israel were likely due to the manner in
which geographical information was incorporated into the
analyses. While Hiibner et al. (2012) assigned accessions according
to genetic clustering, our assignment emphasized geographical
origin. CBI gene flow rates expressed the probability that a
population descended from another population per unit time
(Lundgren and Ralph 2019). Consequently, a history of recent
colonization might explain gene flow trends in our data.
Incorporating historical genome recombination to infer gene flow
at different time periods might provide a clearer picture (Al-Asadi
et al. 2019). Errors in gene flow inference could result from
sampling biases, missing and erroneous genotypic values caused
by low sequencing depth, and also from uneven distributions of
markers due to the nature of GBS (Elshire et al. 2011, Poland et al.
2012). However, imbalanced sampling should not bias our results
because EEMS and CBI are insensitive to unequal sample numbers
(Petkova et al. 2016, Lundgren and Ralph 2019).

Effects of environment and geographical distance on SNP
variation

RDA analysis indicated that environmental gradients explained a
substantial portion of SNP variation and population structure (Fig.
4A). This analysis did not include all possible environmental effects
because comprehensive environmental data were not available.
For example, the adaptive trait drought stress recovery is associated
with the rainfall predictability in wild barley (Galkin et al. 2018),
but such data were only available for some collection sites. In
addition, the control for collinearity and nonlinear environmental
effects that RDA did not account for, might lead to unexplained
genetic variation in our analysis.

Phenotypic studies suggested the importance of rainfall in the
evolution of wild barley in the Southern Levant (Hiibner et al.
2013, Galkin et al. 2018; Volis et al. 2002a, b; Volis 2011). Our RDA
analysis indicated that variables related to water availability
(Latitude+Rain+Solar_rad’ and 'Soil_water_capacity’) were the
most important drivers of genomic variation (Fig. 4B-D;
Table S5). It was not possible to specify the effects of individual
environmental gradients because they were highly correlated. For
example, we could not separate the effect of precipitation from
latitude, which is highly relevant for the timing of flowering in
barley (Russell et al. 2016). Unlike other environmental variables,
'"Aspect’ had few confounding effects with other gradients and
population structure (Fig. 4B). 'Aspect’ was the strongest predictor
when conditioned on spatial autocorrelation (Fig. S9; Table S5). In
the Southern Levant, south-facing slopes might be more exposed
to drought and heat than north-facing slopes due to higher solar
radiation, resulting in significantly stronger selection within only a
few hundred meters, referred to as the Evolution Canyon model
(Nevo et al. 2005, Bedada et al. 2014). Our results suggest that
'Aspect’ might reflect a minor but pervasive effect of microclimate
in the Southern Levant that could not be represented by climate
data at the current resolution. In Mimulus guttatus, an important
locus of microgeographical adaptation was successfully identified
by integrating quantitative trait loci mapping and population
genomic analyses (Hendrick et al. 2016). A similar approach might
be used to investigate the genetic architecture of adaptation to
microclimatic conditions in wild barley.

By using dbMEMs, which model the effects of spatial
autocorrelation on SNP variation, our RDA revealed that high
proportions of SNP variation (45%) and population structure (83%)
were explained by spatial autocorrelation (Fig. 4A). The lower
proportion of SNP variation attributed to environments (Fig. 4A)
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indicated that environmental selection might be an influential but
not a dominant driver of genetic differentiation. In contrast to our
findings, environment had a significantly stronger effect than
geographical distance on diversity in Boechera stricta (Lee and
Mitchell-Olds 2011). However, in Arabidopsis thaliana (Lasky et al.
2012), sorghum (Lasky et al. 2015), rice (Gutaker et al. 2020) and
wild tomato (Gibson and Moyle 2020), the contribution of the
environment was comparable and highly overlapped with
geographical distance. This suggested that isolation-by-distance
was a robust and widespread pattern in a small geographical
range like in our case and over a large geographical scale (Gutaker
et al. 2020; Lasky et al. 2012, 2015; Gibson and Moyle 2020).
Complex spatial structures confounding with environmental
gradients are a pervasive challenge in the study of local
adaptation (Excoffier et al. 2009, de Villemereuil et al. 2014). In
particular, population genetic analyses tend to be biased by
spatial structure (Battey et al. 2020). For this reason, phenotypic
studies using crosses between accessions and common garden
experiments are also required to distinguish between genetic
variation attributed to local adaptation and spatial autocorrelation.
Additionally, we noted that a high percentage of SNP variation
(51%; Fig. 4A) remained unexplained even after incorporating
dbMEM:s. This could be due to either unknown evolutionary forces
that are independent of spatial autocorrelation or to the
limitations of our current dataset and methodologies.

Lack of strong evidence to pinpoint adaptive loci

The rapid decay of LD within a few hundred base pairs (Fig. S10)
was consistent with similar studies of wild barley populations from
the Middle East and Central Asia (Morrell et al. 2005). Reduced-
representation sequencing approaches tend to have limited
power in identifying adaptive loci, especially for genomes with
high levels of recombination (Tiffin and Ross-Ibarra 2014). Rapid
LD decay and a large genome size of ~5.3 Gb indicate that the
marker density of this study might not allow precise genome
scans. To account for this caveat and to control for false-positive
rates, we combined the results from multiple methods of genome
scans (Forester et al. 2018; Lotterhos and Whitlock 2015; Rellstab
et al. 2015). Although different methods detected different signals,
we considered only overlapping signals between scans to be
promising adaptive signatures because our goal was to identify
stress-tolerance loci that could be useful in barley breeding. In
particular, the correlation between populations raised a concern of
false positives in genome scans (de Villemereuil et al. 2014) as we
studied populations from a small geographical range.

Significant polymorphisms hardly overlapped between methods
(Fig. 5B). This observation might be explained by (1) lack of adaptive
loci with large effects, (2) strong confounding effect of population
structure, and (3) limitations of the dataset. Although there was no
robust evidence of the identification of adaptation genes, the
genome scans based on X'X and simple RDA identified significant
correlations with environmental variables and strong genetic
differentiation in the pericentromeric regions of the chromosome
3H, 4H, and 5H (Fig. 5A). However, these associations were not
observed in the partial RDA and LFMM analyses. Although the X"X
statistics accounted for the covariance of allele frequencies (i.e,
population structure) among populations (Giinther and Coop 2013),
spurious signals of selection might arise if self-fertilization inflated
false-positive values via strong genetic drift (Hodgins and Yeaman
2019). For this reason and because of a strong association between
population structure and environments (Fig. 4A), false positives were
expected for the outlier and GEA methods even with a correction for
population structure. In spite of the concern about false positives,
the high degree of putative selection-driven differentiation was still
remarkable. Similar patterns of genetic differentiation in pericen-
tromeric regions were reported in previous studies of barley (Wang
et al. 2018, Fang et al. 2014, Contreras-Moreira et al. 2019), teosinte
(Pyhdjarvi et al. 2013) and maize (Navarro et al. 2017). Theoretical
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studies suggested that adaptation with gene flow could result in
divergent linkage groups of locally beneficial alleles in low-
recombination regions (Yeaman and Whitlock 2011, Biirger and
Akerman 2011, Akerman and Burger 2014). These conclusions were
supported by simulation and empirical studies, e.g., in stickleback,
sunflower, and Arabidopsis lyrata (Berner and Roesti 2017, Hamala
and Savolainen 2019, Renaut et al. 2013, Samuk et al. 2017). Low-
recombination pericentromeric regions of wild barley were reported
to have significantly higher ratios of non-synonymous to synon-
ymous substitution (/1) than other genomic regions (Baker et al.
2014). This suggested a tendency to accumulate genetic load in
pericentromeric regions. Moreover, in terms of conditional neutrality,
the accumulation of conditionally deleterious mutations in habitats
where they are neutral could lead to genotype-environment
interactions of fitness if migration is weak relative to genetic drift
(Mee and Yeaman 2019). Taken together, given weak gene flow,
high rates of self-fertilization, and variable recombination rates over
the genome, a long-term accumulation of conditionally deleterious
mutations might result in locally neutral linkage of alleles in low-
recombination genomic regions. This could create a pattern of
polymorphism that might resemble local adaptation and explain our
observations in the pericentromeric regions.

Conclusion and outlook

We observed a stronger effect of nonselective factors such as
geography and isolation-by-distance on total genetic diversity in
the wild barley populations of the diverse and stressful environ-
ments of the Southern Levant. Nevertheless, natural selection has
a small but significant influence on genomic variation. This might
be potentially valuable for barley breeding because water
availability, i.e, precipitation and soil water capacity, was the
most strongly correlated environmental variable. Outlier test and
simple RDA identified genomic regions that might contribute to
local adaptation, but these regions were not robustly identified by
the different tests applied. One limitation of our study was
therefore that only a small proportion of the wild barley genome
was sequenced by the GBS approach. This was suitable for
analyzing genome-wide patterns of variation and mapping of
causal genes (Milner et al. 2019), but was not powerful enough for
pinpointing genomic targets of local adaptation. In the near
future, whole genome sequencing of wild barley accessions (Sato
et al. 2021) and the development of a barley pangenome
(Jayakodi et al. 2020) will greatly increase the ability of population
genomic approaches to understand wild barley adaptation and
facilitate the mining of useful alleles for plant breeding. Such
approaches can be combined with common garden and
transplantation experiments of wild barley genotypes to measure
fitness effects in different environments (Hibner et al. 2013, Volis
2011), gene expression studies of differentially adapted genotypes
(Hubner et al. 2015) and mapping populations. Given the major
impact of isolation-by-distance on genomic variation, adaptive
genetic variation was likely confounded with population structure.
Mapping populations with sufficient genome recombination
evaluated in different environments permitted the disentangling
of adaptive and neutral variation, as shown in such populations
developed from wild and cultivated barley (Herzig et al. 2018;
Wiegmann et al. 2019). Whole-genome resequencing followed by
computational analysis can be rationalized to analyze a large
number of genotypes such as the complete B1K population.
Consequently, we believe that population genomic analysis of
differentially adapted crop-wild relatives will complement other
approaches to understanding plant adaptation and enable the use
of this information for breeding (Bohra et al. 2021).

DATA AVAILABILITY

The GBS data of B1K+ accessions collected in this study have been archived at the
European Nucleotide Archive (ENA) with project ID PRJEB47405. The ENA sample IDs
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are available in Supplementary File S5. The geographical coordinates and
environmental data are available in Supplementary File S1. The R code used for
analysis is archived at https://kjschmidlab.gitlab.io/b1k-gbs/.
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