
ORIGINAL RESEARCH ARTICLE
published: 21 February 2014

doi: 10.3389/fphys.2014.00069

Muscle hypertrophy is associated with increases in
proteasome activity that is independent of MuRF1 and
MAFbx expression
Leslie M. Baehr1, Matthew Tunzi2 and Sue C. Bodine1,2*

1 Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
2 Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, USA

Edited by:

Carlos Hermano J. Pinheiro,
University of São Paulo, Brazil

Reviewed by:

John J. McCarthy, University of
Kentucky, USA
Athanassia Sotiropoulos, Institute
Cochin INSERM1016, France
Pier L. Puri, Sanford-Burnham
Medical Research Intitute, USA

*Correspondence:

Sue C. Bodine, Department of
Neurobiology, Physiology, and
Behavior, University of California,
Davis, One Shields Ave., Davis, CA
95616, USA
e-mail: scbodine@ucdavis.edu

The regulation of skeletal muscle mass depends on the balance between protein
synthesis and degradation. The role of protein degradation and in particular, the ubiquitin
proteasome system, and increased expression of the E3 ubiquitin ligases, MuRF1 and
MAFbx/atrogin-1, in the regulation of muscle size in response to growth stimuli is unclear.
Thus, the aim of this study was to measure both proteasome activity and protein
synthesis in mice over a 14-day period of chronic loading using the functional overload
(FO) model. Further, the importance of MuRF1 and MAFbx expression in regulating muscle
hypertrophy was examined by measuring muscle growth in response to FO in mice with
a null deletion (KO) of either MuRF1 or MAFbx. In wild type (WT) mice, the increase in
muscle mass correlated with significant increases (2-fold) in protein synthesis at 7 and 14
days. Interestingly, proteasome activity significantly increased in WT mice after one day,
and continued to increase, peaking at 7 days following FO. The increase in proteasome
activity was correlated with increases in the expression of the Forkhead transcription
factors, FOXO1 and FOXO3a, which increased after both MuRF1 and MAFbx increased
and returned to baseline. As in WT mice, hypertrophy in the MuRF1 and MAFbx KO mice
was associated with significant increases in proteasome activity after 14 days of FO. The
increase in plantaris mass was similar between the WT and MuRF1 KO mice following FO,
however, muscle growth was significantly reduced in female MAFbx KO mice. Collectively,
these results indicate that muscle hypertrophy is associated with increases in both protein
synthesis and degradation. Further, MuRF1 or MAFbx expression is not required to
increase proteasome activity following increased loading, however, MAFbx expression
may be required for proper growth/remodeling of muscle in response to increase loading.
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INTRODUCTION
Skeletal muscle is a highly plastic tissue that modifies its size
through the regulation of signaling pathways that control pro-
tein synthesis and protein degradation. In response to increases
in mechanical loading, muscle hypertrophy, or an increase in
muscle size, occurs as the result of a net increase in protein syn-
thesis relative to degradation. It has been well demonstrated that
the Akt/mTOR signaling pathway is a major regulator of muscle
growth, as activation of S6K1, eIF4E, and eIF2B stimulate mRNA
translation and ultimately lead to increases in protein synthesis
(Bodine et al., 2001b; Rommel et al., 2001; Kubica et al., 2008).
In addition, recent work has revealed that both beta adrenergic
signaling (Minetti et al., 2011) and bone morphogenetic protein
(BMP) signaling (Sartori et al., 2013) can regulate muscle mass
and promote skeletal muscle hypertrophy. What is less under-
stood is the role of protein degradation in the remodeling process
that occurs in response to loading and leads to an increase in fiber
cross-sectional area.

Increases in protein degradation are generally associated with
the loss of muscle mass, i.e., atrophy, and occur in response to

decreased loading, inactivity, and a variety of pathological condi-
tions. In skeletal muscle, the ubiquitin proteasome system (UPS)
is responsible for the majority of protein degradation (Rock et al.,
1994), although cathepsins, calpains, caspase-3, and autophagy
are also involved in the breakdown of muscle proteins (Du et al.,
2004; Tisdale, 2005). Associated with muscle atrophy and the
increase in protein degradation is the rapid and sustained increase
in MuRF1 and MAFbx/atrogin-1 expression, two muscle-specific
E3 ubiquitin ligases thought to target specific proteins for degra-
dation by the 26S proteasome (Bodine et al., 2001a). Deletion of
MuRF1 or MAFbx has been shown to spare muscle mass in a vari-
ety of atrophy-inducing conditions (Bodine et al., 2001a; Labeit
et al., 2010; Baehr et al., 2011), however, the role of MuRF1 and
MAFbx, as well as the UPS, in regulating increases in muscle fiber
size is less clear.

A few studies have reported increases in MuRF1 and MAFbx
expression following an acute bout of resistance exercise in
humans, however, no studies have made concurrent measure-
ments of protein synthesis and UPS activity following chronic
mechanical loading (Yang et al., 2006; Louis et al., 2007;
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Marino et al., 2008). Thus, the aim of this study was to exam-
ine both protein synthesis and proteasome activity, along with
MuRF1 and MAFbx expression in mice over 14 days of chronic
loading using the functional overload (FO) model. Furthermore,
although we have recently shown that muscle growth is not
impaired in young or old MuRF1 KO mice (Hwee et al., 2013),
it remains to be seen whether growth is affected by the loss of
MAFbx, and whether the loss of MuRF1 or MAFbx depresses
proteasome activity under anabolic conditions.

MATERIALS AND METHODS
ANIMALS
Forty three month old male C57BL/6 wild type (WT) mice and
110 9 month old male and female MuRF1 and MAFbx null (KO)
mice were used for this study. The WT mice were purchased from
Jackson Laboratories and the MuRF1 (n = 60) and MAFbx (n =
50) null mice were generated from a breeding colony maintained
by the UCD Mouse Biology Program in a mouse barrier facility.
To induce hypertrophy of the plantaris muscle, mice were sub-
jected to bilateral functional overload. Mice were anaesthetized
with 2–3% inhaled isoflurane and using aseptic technique, the
ankle extensor muscles and Achilles tendon were exposed by mak-
ing a small incision to the posterior lower limb. The entire soleus
and over half of the medial and lateral gastrocnemius muscles
were removed from each hindlimb without damaging the plan-
taris neural-vascular supply. The wound was irrigated with sterile
saline and the incision was closed with subcuticular sutures. Mice
were given an analgesic (buprenorphine, 0.1 mg/kg) immedi-
ately following the surgery and returned to their cage once they
recovered.

At 1, 3, 7, and 14 days post-surgery, the WT animals were
anesthetized with 2–3% inhaled isoflurane and the plantaris mus-
cles were removed, weighed, frozen in liquid nitrogen, and stored
at −80◦C for future analysis. For the MuRF1 and MAFbx KO
mice, the plantaris muscles were removed and weighed following
14 days of FO. The right plantaris muscle was pinned on cork at a
length approximating Lo and frozen in isopentane cooled in liq-
uid nitrogen for histological analysis while the left plantaris mus-
cle was frozen in liquid nitrogen and stored at—80◦C. Following
tissues collection, the mice were euthanized by exsanguination.
All animal procedures were approved by the Institutional Animal
Care and Use Committee at the University of California, Davis.

PROTEIN SYNTHESIS MEASUREMENTS
Protein synthesis was measured in vivo in the WT mice using
the SUnSET method as previously described (Goodman et al.,
2011b). Exactly 30 min before the plantaris muscles were excised,
mice were given an intraperitoneal injection of 0.04 μmol/g
puromycin dissolved in 100 μl of phosphate buffered saline (PBS)
(n = 5/group). Puromycin expression was analyzed by Western
Blot as described below.

mRNA EXPRESSION ANALYSIS
Total RNA was extracted from powdered plantaris muscle using
TRIzol reagent according to the manufacturer’s instructions
(Invitrogen). cDNA was then synthesized using a QuantiTech
Reverse Transcription Kit (Qiagen) from one μg of total RNA.

MuRF1 and MAFbx gene expression was measured by quan-
titative PCR (qPCR) in WT mice following 1, 3, 7, and 14
days of FO (n = 7/group). qPCR was performed using Power
SYBR® Green PCR Master Mix (Life Technologies) on an ABI
7900HT thermocycler. Cycling conditions were one cycle at
94◦C for 10 min followed by forty cycles at 94◦C for 30 s,
59◦C for 30 s, and 72◦C for 30 s. Each sample was run
in triplicate. Sequences of the mouse forward and reverse
primers are as follows: MuRF1 forward: 5′-GCTGGTGGAAAA
CATCATTGACAT-3′; reverse: 5′-CATCGGGTGGCTGCCTTT-
3′; MAFbx forward: 5′-CTTTCAACAGACTGGACTTCTCGA-
3′; reverse: 5′-CAGCTCCAACAGCCTTACTACGT-3′; FOXO1
forward: 5′-TTCCTTCATTCTGCACACGA-3′; reverse: 5′-GTC
CTACGCCGACCTCATC-3′; FOXO3a forward: 5′-CAGGCTCCT
CACTGTATTCAGCTA-3′; reverse: 5′-CATTGAACATGTCCAG
GTCCAA-3′; GAPDH forward: 5′- CCAGCCTCGTCCCGTAG
AC-3′; reverse: 5′- ATGGCAACAATCTCCACTTTGC-3′. All data
was normalized to GAPDH expression.

PROTEASOME ACTIVITY
20S and 26S β5 proteasome activity was measured as previously
described (Gomes et al., 2012). Briefly, proteasomes were col-
lected in the supernatant after 30 min centrifugation at 12,000 g
following homogenization in 300 μl of buffer containing 50 mM
Tris, 150 mM NaCl, 5 mM MgCl2, 1 mM EDTA, and 0.5 mM DTT
at pH 7.5. The chymotrypsin (β5)-like activities were assayed
using 10 μg of protein and the fluorescently tagged substrate
SUC-LLVY-AMC (Bachem). Both assays were carried out in a
total volume of 100 μl. The 26S ATP-dependent assay was per-
formed in homogenization buffer with the addition of 100 μM
ATP. The 20S ATP-independent assay was carried out in assay
buffer containing 25 mM HEPES, 0.5 mM EDTA, and 0.001%
SDS (pH 7.5). Each assay was conducted in the absence and
presence of the proteasome inhibitor Bortezomib at a final con-
centration of 2 mM. The activity of the 20S and 26S proteasome
was measured by calculating the difference between fluorescence
units recorded with or without the inhibitor in the reaction
medium. Released AMC was measured using a Fluoroskan Ascent
fluorometer (Thermo Electron) at an excitation wavelength of
390 nm and an emission wavelength of 460 nm. Fluorescence was
measured at 15-min intervals for 2 h. All assays were linear in this
range and each sample was assayed in triplicate.

WESTERN BLOTTING
Frozen plantaris muscles from control and FO mice were homog-
enized in proteasome assay lysis buffer (50 mM Tris, 150 mM
NaCl, 5 mM MgCl2, 1 mM EDTA, and 0.5 mM DTT at pH 7.5).
The supernatant was collected following centrifugation at 12,000
g for 30 min and protein concentrations were determined in
triplicate using the Bradford method (Bio-Rad). Ten to twenty
micrograms of protein was subjected to SDS-PAGE on 10% acry-
lamide gels and transferred to polyvinylidene diflouride (PVDF)
membrane. Membranes were blocked in 3% nonfat dairy milk in
Tris-buffered saline with 0.1% Tween-20 added (TBST) or 1%
pigskin gelatin for 1 h and then probed with primary antibody
overnight at 4◦C. Puromycin (Millipore), BiP (BD Biosciences),
PDI (Cell Signaling), and CHOP (Cell Signaling) were used
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at a concentration of 1:1000. The next day, membranes were
washed and incubated with HRP conjugated secondary antibod-
ies at 1:10,000 for 1 h at room temperature. Immobilon Western
Chemiluminescent HRP substrate (Millipore) was then added to
the membranes. Image acquisition and band quantification was
performed using the ChemiDoc™ MP System and Image Lab 5.0
software (Biorad).

STATISTICS
Results are presented as mean ± standard deviation (SD) unless
otherwise indicated. The data was analyzed by One-Way ANOVA

FIGURE 1 | Time course of load-induced growth in wild type (WT) mice

following functional overload (FO). Growth of the plantaris muscle was
calculated after 1, 3, 7, and 14 days of FO and expressed as a change in
mass relative to the control group. Data are expressed as mean ± SD
(n = 8/group). ∗P < 0.05 vs. control.

or by Student’s t-test (Sigma Stat). Tukey’s post-hoc analysis
was used to determine differences when interactions existed.
Statistical significance was set at p < 0.05.

RESULTS
To determine the extent to which the ubiquitin proteasome sys-
tem (UPS) is activated during a model of load-induced muscle
growth, male C57BL/6 mice were subjected to bilateral functional
overload for 1, 3, 7, or 14 days. As shown in Figure 1, the response
of the plantaris to an increase in load was a swift and steady
increase in size over 14 days. Significant increases in mass of 43
and 65% were observed after 7 and 14 days, respectively.

Given the significant hypertrophy of the plantaris muscle,
we next looked at changes in protein synthesis in the plantaris
muscle over a 14-day period of FO. Protein synthesis was mea-
sured in vivo using the SUrface SEnsing of Translation (SUnSET)
method, a nonradioactive technique in which changes in the rate
of protein synthesis are reflected by the amount of puromycin that
is incorporated into newly synthesized proteins (Schmidt et al.,
2009; Goodman et al., 2011b). Using this method, we found that
protein synthesis increased by 58% at 3 days and was significantly
elevated from 7 to 14 days of FO, reaching a level that was 100%
above control within the first 14 days of FO (Figure 2).

Increases in ER stress can occur during high rates of protein
synthesis (Rayavarapu et al., 2012). Considering that FO produces
significant muscle hypertrophy, we investigated the expression of
various ER stress markers in the plantaris muscle following FO. As
shown in Figure 3, we found significant increases in BiP and PDI
expression beginning at 3 days post FO, with the largest increase
seen after 7 days of FO. The maladaptive ER stress marker CHOP
was also found to increase over the 14 days following FO, however,
the relative increase was significantly lower than that observed for
BiP and PDI (Figure 3B).

FIGURE 2 | Measurement of protein synthesis using the SUnSET

method following functional overload (FO). (A) Representative image of
western blot analysis for puromycin following no treatment (Con) and FO for
1, 3, 7, or 14 days in WT mice. The corresponding ponceau stain was used to

verify equal loading of proteins. (B) Quantification of the puromycin western
blots. Puromycin values are expressed as a percentage of the control
muscles value (mean ± SD, n = 5/group). ∗P < 0.05 vs. control puromycin
expression.
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FIGURE 3 | Markers of endoplasmic reticulum (ER) stress are higher in

the plantaris muscle following functional overload (FO). (A)

Representative western blot of ER stress markers BiP, PDI, and CHOP in
WT mice after no treatment (Con) and 1, 3, 7, and 14 days of FO. (B)

Quantification of the western blots for BiP (open bars), PDI (gray bars), and
CHOP (black bars). A ponceau stain of the membrane was used to
normalize protein expression. Data are expressed as a percentage of the
respective control value for each protein (mean ± SD, n = 4–6/group).
∗P < 0.05 vs. control expression for each protein, #P < 0.05 CHOP vs. BiP,
or PDI at given time point.

In humans, resistance exercise has been shown to increase
protein degradation (Phillips et al., 1997), but it is unclear
whether this breakdown is related to upregulation of MuRF1
and MAFbx expression or alterations in proteasome activity.
Thus, we measured the time course of MuRF1 and MAFbx
expression and the chymotrypsin-like (β5) proteasome activi-
ties in WT mice following FO. In addition, the time course of
FOXO1 and FOXO3a expression was measured since they are
known transcriptional regulators of MuRF1 and MAFbx under
atrophy conditions (Sandri et al., 2004; Waddell et al., 2008).
Expression of both MuRF1 and MAFbx was found to increase
significantly after one day of FO, but then return to control lev-
els by 3 days post FO (Figures 4A,B). After 3 days of FO, gene
expression was suppressed below control levels, with significant
reductions in MAFbx expression occurring after 7 and 14 days
of FO (Figure 4B). The rapid increase in MuRF1 and MAFbx
expression was mirrored by significant increases in 20S and 26S
β5 proteasome activity after 1 day of FO, but unlike MuRF1 and
MAFbx, proteasome activity remained elevated throughout the
14 days of chronic loading (Figures 4D,E). Peak activity for the
20S proteasome was found to occur at 3 days post FO, while
peak activity for the 26S proteasome was found at 7 days post
FO. Surprisingly, the pattern of FOXO1 and FOXO3a expression
was more similar to that of the 26S β5 proteasome rather than
MuRF1 and MAFbx expression. Significant increases in FOXO1
and FOXO3a expression did not occur until 3 days post FO, after

which expression of both genes continued to increase through 7
days of FO before returning to baseline levels at 14 days post FO
(Figure 4C).

Given the changes in MuRF1 and MAFbx expression and pro-
teasome activity following functional overload, we then asked
if deletion of MuRF1 or MAFbx compromised muscle growth.
Fourteen days of overload produced significant growth of the
plantaris in both female and male MuRF1 KO mice, which was
similar to that observed in WT mice of both genders (Figure 5).
This result is comparable to what has been previously reported
for male MuRF1 KO mice (Hwee et al., 2013). In contrast, the
deletion of MAFbx appeared to have a significant effect on load-
induced growth, especially in female mice (Figure 5). In response
to overload, a significant increase in plantaris mass was measured
in male MAFbx KO mice, with the mean increase in mass being
slightly less and more variable in the MAFbx KO (range of mass:
20–34 mg) compared to the WT (range of mass: 29–37 mg) mice.
In female mice, however, MAFbx KO mice showed no significant
growth in response to FO, which differed significantly from what
was observed in the WT mice (Figure 5).

The decrease in muscle growth did not appear to be due to an
inability to activate the proteasome, as both MuRF1 and MAFbx
KO mice had similar increases in 26S β5 proteasome activity fol-
lowing 14 days of FO (Figure 6). Since we did not have sufficient
numbers of KO mice to collect FO data at 3 and 7 days, we do
not know whether proteasome activity in the KO mice increased
to the same extent as the WT mice.

DISCUSSION
Proteolysis is essential for normal muscle function and routine
protein turnover. Most cellular proteins are degraded by the UPS
(Rock et al., 1994; Mitch and Goldberg, 1996), a highly selective
system that targets proteins for breakdown via the addition of a
polyubiquitin chain. The coordinated effort of three groups of
enzymes, termed E1, E2, and E3s, results in the attachment of
ubiquitin to a substrate protein, with multiple lysine 48-linked
ubiquitin molecules serving as a signal for that protein to be
degraded by the 26S proteasome (Chau et al., 1989). Both MuRF1
and MAFbx have been identified as muscle-specific E3 ubiqui-
tin ligases, making them responsible for catalyzing the transfer of
ubiquitin from the E2 enzyme to the substrate protein. In skeletal
muscle, increases in proteasome activity are generally associated
with muscle atrophy, a process that is characterized by the induc-
tion of MuRF1 and MAFbx (Auclair et al., 1997; Hobler et al.,
1999; Bodine et al., 2001a; Gomes et al., 2001). However, little
is known about the role of the UPS during muscle growth and
whether MuRF1 and/or MAFbx are required for muscle hyper-
trophy. Thus, the purpose of this study was to examine the time
course of MuRF1 and MAFbx expression along with proteasome
activity in a model of load-induced muscle growth, and to deter-
mine if MuRF1 and MAFbx KO mice show an attenuated growth
response following 14 days of functional overload (FO).

Functional overload is a commonly used model for studying
muscle growth in rodents and results in rapid and robust increases
in muscle mass as a result of chronic overload. Hypertrophy in
this model is marked by significant increases in protein synthesis,
which we confirmed in this study using the puromycin technique
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FIGURE 4 | Functional overload (FO) induces a proteolytic response in

the plantaris muscle. mRNA expression of (A) MuRF1, (B) MAFbx, and (C)

FOXO1, and FOXO3a was measured in WT mice following no treatment
(Con) and FO for 1, 3, 7, or 14 days. Expression values were normalized to
GAPDH and are expressed as a fold change (mean ± SD) relative to control

(n = 7/group) ∗P < 0.05 vs. control mRNA expression. Activity of the β5
subunit of the 20S (D) and 26S (E) proteasome was assessed by fluorometric
assay in WT mice following no treatment (Con) and FO for 1, 3, 7, or 14 days.
Data is expressed as a percentage of the control value (mean ± SD,
n = 5–8/group). ∗P < 0.05 vs. control proteolytic activity.

FIGURE 5 | Response of MuRF1 and MAFbx KO mice to functional

overload (FO). Growth of the plantaris muscle was calculated after 14
days of FO in male and female WT, MuRF1 KO, and MAFbx KO mice
and expressed as absolute wet weight (mg). Measurements were made

in untreated control [white (WT) or blue hatched (KO) bars] and
overloaded [black (WT) and blue (KO) bars] muscles. Data are expressed
as mean ± s.e.m and group size is indicated in each bar. ∗P < 0.05 vs.
control; #P < 0.05 vs. WT FO.

(Schmidt et al., 2009; Goodman et al., 2011b). Moreover, the
increase in protein synthesis was closely matched to the increase
in plantaris mass in the WT mice. During this period of ele-
vated protein synthesis, significant increases in the expression
of the ER chaperone proteins BiP and PDI were also observed.

An increase in BiP and PDI expression might be predicted, as
an elevated rate of protein synthesis would increase the protein
handling responsibilities of the endoplasmic reticulum (ER). An
increase in BiP and PDI enhances the protein folding capabili-
ties of the ER (Rayavarapu et al., 2012) and would help reduce
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FIGURE 6 | Proteasome activity increases in MuRF1 and MAFbx null

(KO) mice after 14 days of functional overload (FO). Proteolytic
activity of the β5 subunit of the 20S (A) and 26S (B) proteasome
was assessed by fluorometric assay in MuRF1 and MAFbx KO mice

after no treatment (Con, open bars) or 14 days of functional overload
(14d FO, black bars). Data are expressed as a percentage of each
respective control value (mean ± SD, n = 4–6/group). ∗P < 0.05 vs.
control.

the number of misfolded proteins and keep ER stress at a mini-
mum. An accumulation of misfolded proteins can cause the ER
to activate apoptosis signaling through an increase in the expres-
sion of CHOP (Fu et al., 2008). Although FO did result in an
increase in CHOP expression, the relative increase in expression
was significantly lower than the increase in BiP and PDI expres-
sion, suggesting that the ER was able to implement an adaptive
response to the influx of newly synthesized proteins, which ulti-
mately get incorporated into the myofibers resulting in increases
in myofiber cross-sectional area and force capacity.

A novel finding in this study was that both 20S and 26S β5 pro-
teasome activity was increased throughout the 14 day overload
period, indicating that increased loading can result in the activa-
tion of machinery involved in protein breakdown. The increase in
proteasome activity occurred within the first 24 h of overload and
increased to a level (4–6-fold) that was much greater than what
we have observed during denervation-induced atrophy (<2-fold)
(Gomes et al., 2012). Interestingly, the peak in 26S β5 activity
occurred at 7 days, a time when protein synthesis was found to
be significantly elevated. This finding is similar to a study by
Miyazaki et al. in which protein synthesis and protein degrada-
tion rates were both found to peak at 7 days after FO (Miyazaki
et al., 2011). However, it is important to note that the largest gains
in muscle mass occurred between 7 and 14 days post FO, which
was the time period in which protein synthesis rates were rising
and proteasome activity was beginning to decrease.

An increase in MuRF1 and MAFbx expression is generally
assumed to lead to an increase in proteasome activity, as a greater
quantity of ubiquitin ligases should increase the number of polyu-
biquitinated proteins inside the cell. However, we show here that
under growth conditions, proteasome activity remained elevated
for a much longer time period than did the induction of MuRF1
and MAFbx. In fact, significant increases in MuRF1 and MAFbx
expression were measured only at day one of FO, and by day 3 of
FO, their expression had returned to baseline levels and then were
suppressed below baseline levels. Our finding that MuRF1 expres-
sion is only increased at 1 day post FO differs slightly from a study
by Marino et al., in which MuRF1 was found to be increased after
3 days of FO (Marino et al., 2008). However, similar results were
found when comparing MAFbx expression, as we also found no
induction of MAFbx at 3 days after FO followed by a significant
decrease in MAFbx expression at 7 and 14 days (Marino et al.,

2008). In the majority of human studies that examined prote-
olytic activity after an acute bout of resistance exercise, MuRF1,
but not MAFbx expression has been shown to increase transiently
after the exercise bout (Yang et al., 2006; Louis et al., 2007; Murton
et al., 2008). However, chronic resistance training in rats resulted
in decreased MuRF1 and MAFbx expression, which may be in line
with this decreased expression we saw at 7 and 14 days following
FO (Zanchi et al., 2009).

Our data show that MuRF1 and MAFbx are not always good
markers of proteasome activity. The apparent disconnect between
MuRF1 and MAFbx expression and proteasome activity has been
previously observed. In a study by Vary et al., acute alcohol intox-
ication increased MuRF1 and MAFbx expression, but did not
increase skeletal muscle proteolysis (Vary et al., 2008). Similarly,
we have shown that 14 days of glucocorticoid treatment did not
result in an increase in activity for any of the three catalytic
subunits of the proteasome despite significant upregulation of
MuRF1 and MAFbx expression (Baehr et al., 2011). Conversely,
when mice were allowed to recover following 7 days of hindlimb
unloading, MuRF1 and MAFbx expression was not increased at
any of the time points analyzed, but 20S β5 proteasome activity
was significantly increased on the first day of recovery (Lang et al.,
2012). Lastly, under denervation conditions, the lack of MuRF1
resulted in greater activation of the proteasome, not less (Gomes
et al., 2012).

Under atrophy conditions, the FOXOs are often implicated in
the induction of MuRF1 and MAFbx, but our results clearly indi-
cate that this is not the case in the functional overload model, as
FOXO expression did not increase until after MuRF1 and MAFbx
expression had returned to baseline levels. The largest increase
in FOXO1 and FOXO3a expression was found to occur after 7
days of functional overload, which is consistent with the findings
of Goodman et al. (2011a) who showed that both total protein
and phosphorylation levels of FOXO1 and FOXO3a were signifi-
cantly elevated at 7 days of FO. Our results suggest that the FOXOs
may be mediating protein degradation independently of MuRF1
and MAFbx, and may be at least partially responsible for the
observed increase in proteasome activity. More work is needed
to determine the role of the FOXOs in regulating the ubiquitin
proteasome system during skeletal muscle growth.

Mechanical loading has been shown to initiate an inflamma-
tory response and a number of cytokines have been reported

Frontiers in Physiology | Striated Muscle Physiology February 2014 | Volume 5 | Article 69 | 6

http://www.frontiersin.org/Striated_Muscle_Physiology
http://www.frontiersin.org/Striated_Muscle_Physiology
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Baehr et al. Proteasome activity and muscle hypertrophy

to increase during muscle hypertrophy (Huey et al., 2007). One
cytokine in particular that was reported to be elevated early after
FO was TNFα (Huey et al., 2007). Circulating levels of TNFα can
lead to increases in both MuRF1 and MAFbx expression (Li et al.,
2005; Adams et al., 2008), so it is possible that the short-lived
increase in expression seen in this study was directly related to
muscle inflammation. While an inflammatory response appears
to be required for normal growth following FO (Marino et al.,
2008), it is unclear whether induction of MuRF1 and MAFbx is
critical in this response. Our results indicate that MAFbx, but not
MuRF1, may be necessary for normal remodeling and growth, as
the MAFbx KO mice had an attenuated growth response (espe-
cially among the female animals), whereas the MuRF1 KO mice
showed no deficiencies in their ability to hypertrophy.

In skeletal muscle, a few targets of MAFbx have been identi-
fied, including eIF3f (Lagirand-Cantaloube et al., 2008), MyoD
(Tintignac et al., 2005), and myogenin (Jogo et al., 2009). These
targets are generally associated with protein synthesis (eIF3f),
satellite cell proliferation (MyoD), and muscle-specific gene tran-
scription (MyoD, myogenin), all of which are important for
muscle hypertrophy (Ishido et al., 2004; Baar et al., 2006). In addi-
tion, recent in vitro work by Lokireddy et al. revealed that MAFbx
preferentially degrades sarcomeric proteins following myostatin
treatment, with myosin heavy chain, myosin light chain, desmin,
and vimentin identified as targets of MAFbx ubiquitination
(Lokireddy et al., 2011a,b). Thus, even though it appears that the
lack of MAFbx should promote muscle growth, the inability to
turnover key sarcomeric proteins, such as myosin heavy chain,
during the remodeling process could explain why the growth
response was impaired in the MAFbx KO mice. Furthermore,
while MAFbx KO mice have been shown to spare muscle mass
following denervation (Bodine et al., 2001a), histological anal-
ysis of denervated MAFbx muscles has revealed dystrophic and
necrotic fibers. Consequently, it appears that MAFbx may be
required for the proper remodeling of muscle fibers under growth
and atrophy conditions. The explanation for the finding that the
loss of MAFbx had a greater effect on load-induced growth in
female vs. male mice is not clearly evident. In previous experi-
ments that have examined the response of MAFbx KO mice to
triggers of muscle atrophy, we have observed no gender-based
differences.

Similar to MAFbx, MuRF1 has been reported to interact and
ubiquitinate myofibrillar proteins (Cohen et al., 2009), suggest-
ing that MuRF1 also plays a role in regulating protein turnover.
However, given the normal hypertrophic response to FO in the
MuRF1 KO mice, it seems that MuRF1 is not essential for muscle
growth. Considering that protein synthesis is higher in MuRF1
KO mice under atrophy conditions (Koyama et al., 2008; Baehr
et al., 2011), it may be that the major role of MuRF1 in skeletal
muscle is to suppress protein synthesis. Thus, deletion of MuRF1
is advantageous to muscle growth and consequently, the MuRF1
KO mice maintain an ability to hypertrophy throughout their
lifetime. The different phenotypes in the MuRF1 and MAFbx
KO mice suggest that the two E3 ligases have different physio-
logical substrates. Clearly more research is needed to determine
the physiological targets of both MuRF1 and MAFbx in skeletal
muscle.

In summary, our results indicate that muscle hypertrophy is
associated with increases in both protein synthesis and degra-
dation. The increase in degradation is the result of activation
of the UPS, and proteasome activity remains elevated even after
MuRF1 and MAFbx expression has returned to baseline levels.
Interestingly, MuRF1 and MAFbx expression become suppressed
below baseline even though FOXO1 and FOXO3a expression are
elevated. The loss of MuRF1 or MAFbx does not appear to sup-
press the increase in proteasome activity in response to chronic
increases in load; however, the loss of MAFbx does appear to neg-
atively impact the remodeling process that occurs during growth.
These findings highlight the need for a better understanding of
the roles of MuRF1 and MAFbx in the function of skeletal muscle,
which will require identification of their in vivo substrates.
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