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Abstract.	 [Purpose] This study aimed to investigate the difference in intrapleural pressure between the supine 
and lateral decubitus positions during manual chest wall compression. [Participants and Methods] Eight healthy 
males participated in this study. The same physiotherapist performed chest wall compression on participants lying 
supine, and on their right and left sides. We noted changes in intrapleural pressure and lung volume in each par-
ticipant during quiet breathing and chest wall compression. [Results] During chest wall compression, intrapleural 
pressure at the end-expiratory lung volume and the end-inspiratory lung volume were lower in the right and left 
decubitus positions than in the supine position. We observed the following low inflection points in the pressure-
volume loops during chest wall compression: all participants in the supine position, no participants in the right 
decubitus position, and two participants in the left decubitus position. [Conclusion] Chest wall compression in the 
bilateral decubitus positions may not cause excessive intrapleural pressure on the airway and alveoli as compared 
to chest wall compression in the supine position.
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INTRODUCTION

Manual chest wall compression (CWC) is a form of pulmonary rehabilitation that promotes deep expiration by compress-
ing the chest wall manually, and it can increase the inspiratory volume. Several studies have shown that CWC increased 
expiratory flow rates, improved removal of airway secretions, and improved gas exchange and pulmonary mechanics1–5). 
However, there is a remarkable increase in the intrapleural pressure during CWC6), as a result, this may increase the risk of 
airway and alveolar collapse3). Furthermore, CWC could threaten the protective strategy of the lung for acute respiratory 
distress (ARDS)/acute lung injury (ALI). It would be desirable to have possibilities to repeat the airway and alveolar collapse 
during expiration, and airway opening during inspiration, because CWC decreases end-expiratory lung volume to approxi-
mately residual volume; this induces atelectrauma, and this may have adverse effects on pulmonary protection of ARDS/ALI.

Furthermore, the increase in sudden inspiratory flow rate by CWC may result in barotrauma of the lung due to the exces-
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sive increase in transpulmonary pressure (Ptp). Several studies have reported that Ptp, indicating the stress caused to the lung 
and the change of the lung shape caused by the strain are important5, 7). Therefore, it is necessary to confirm the character of 
ventilator mechanics by the CWC to verify adaptation and important aspects of CWC. Also, CWC is carried out with various 
postures in response to a site of ventilator impairment of the lung. There have been no reports on the effects of differences in 
posture during CWC on intrapleural pressure (Ppl).

This study aimed to investigate the difference in intrapleural pressure between the supine and bilateral decubitus positions 
during CWC. We hypothesized that Ppl at the end expiration during CWC in the supine position is higher than Ppl in the 
decubitus positions.

PARTICIPANTS AND METHODS

The study population comprised 7 healthy males (mean age, 27.3 ± 2.0 years; height, 176.6 ± 6.5 cm; and body weight, 
62.7 ± 6.4 kg) without any history of pulmonary or cardiovascular disease. To minimize inter-therapist variability, CWC was 
performed by the same physiotherapist with 8 years of experience in chest physical therapy. Prior to participating in the study, 
all participants submitted written informed consents. The study was approved by the ethics committee of Konan Women’s 
University (approval number: 2011210). CWC was performed on participants lying in in supine position and in the right and 
left decubitus positions. After quiet breathing (QB) for 1 minute, CWC was performed randomly on participants in the supine 
position, on their right decubitus position, and their left decubitus position for 2 minutes each. During CWC, the physical 
therapist placed both hands on the upper rib cage of the patient when they were in the supine position and on the lower rib 
cage of the patients when they were in the right and left decubitus positions (Fig. 1). CWC was started from the initiation 
to the end of expiration. The highest tolerable level of force was applied to the participants’ chest wall and then released as 
soon as the participants began inspiration. The maneuver rate was synchronized with the respiratory rate of the participants.

Inspiratory capacity maneuver was performed on all participants at the beginning and end during QB and CWC to correct 
the volume measuring errors (“drift”)8).

Airflow rates and lung volume changes during QB and CWC were measured using hot wire spirometer attached to a 
face mask (AE300-s, Minato Medical Science, Tokyo, Japan); flow signal was integrated to determine volume. Esophageal 
pressure was measured as a representative of intrapleural pressure using an esophageal balloon catheter (latex balloon; 
12 cm-long, polypropylene tube; 1.5 mm-internal diameter, 100 cm-long) and differential pressure transducer (Chest Inc., 
Tokyo, Japan). Esophageal balloon catheters were passed through the nose till the depth of balloons reached the esophagus. 
All air was removed from the balloon by having participants perform a Valsalva maneuver. The balloon was then inflated 
with approximately 0.2–0.5 mL of air such that the intrapleural pressure was approximately −5cmH2O at the end of tidal 
expiration. Slight adjustments were made to the position of the catheter to minimize artifacts due to cardiac oscillations.

The lung volume and intrapleural pressure were examined using an analyzing system (PowerLab, ADInstruments, Dune-
din, New Zealand). All data were sampled at 100 Hz. The last three breaths during QB and CWC were analyzed, and the 
mean values for tidal volume (TV), end-inspiratory lung volume (EILV), and end-expiratory lung volume (EELV) from the 
lung volume change were obtained for each participant. EILV and EELV were normalized according to the vital capacity of 
each participant. From intrapleural pressure change, the mean value for intrapleural pressure at EILV (EIPpl) and that for 
intrapleural pressure at EELV (EEPpl) were obtained for each participant.

We studied the pressure-volume loops (P-V loop) from the last three breaths during CWC (Fig. 2). P-V loops were 

Fig. 1.	  Application of chest wall compressions by a physiotherapist.
a: supine position, b: right decubitus position, c: left decubitus position



J. Phys. Ther. Sci. Vol. 33, No. 2, 2021 134

represented with intrapleural pressure on the X-axis and lung volume on the Y-axis. As to P-V loop analysis during CWC, we 
judged the presence or absence of low inflection points (LIP) visually. LIP was the point to corresponding to an upward shift 
in the slope of the inspiratory curve, which indicates an increase in lung compliance.

For statistical analysis, the differences in each value between the three positions were using repeated-measures analysis of 
variance. The statistical analysis was carried out using SPSS 15.0 for Windows using that 5% level of significance.

RESULTS

Table 1 shows lung volume and Ppl during QB and CWC. QB in the bilateral decubitus position had significantly higher 
EILV and EELV and lower EIPpl and EEPpl, as compared with QB in the supine position (p<0.05). CWC in the bilateral 
decubitus position had significantly higher EELV and lower EEPpl, as compared with that in the supine position (p<0.05).

Figure 3 shows P-V loops during CWC of each participant. All participants had LIP in the supine position, whereas no 
subject had LIP on the right decubitus position; however, two participants had LIP in the left decubitus position.

DISCUSSION

Different postures did not have a significant effect on the TV, but EILV and EELV in the bilateral decubitus position were 
lesser than that in the supine position. Behrakis et al.9) proposed that expiratory reserve decreases in the supine position as 
compared with the decubitus position. In the supine position, the airway is easily obstructed because of a decrease in the lung 
compliance during the compression of the lung through the diaphragm, and FRC and closing capacity approach the same 
value9, 10). On the contrary, the lung volume during the decubitus position increases because of the decrease in the FRC of 
the lower lung similar to that during the supine position. However, there is an increase in the FRC of the upper lung is as 
compared with that in the supine position11). Therefore, this study suggested that the lung volume of QB in the decubitus 
position was higher than that in the supine position. Also, this study suggested that the intrapleural pressure at both EELV and 

Fig. 2.	  Analysis methods of Pressure-volume loop (P-V loop) during CWC.
Left: P-V loop had LIP during inspiratory curve, Right: P-V loop had no LIP.
Ppl: intrapleural pressure; LIP: low inflection point.

Table 1.	 Lung volume, Ppl during QB and CWC (N=7)

Supine position Right decubitus position Left decubitus position
QB CWC QB CWC QB CWC

TV (L) 0.56 ± 0.18 1.58 ± 0.62 0.51 ± 0.12 1.24 ± 0.31 0.53 ± 0.16 1.17 ± 0.36
EILV (%) 40.1 ± 8.4 44.1 ± 12.1 50.3 ± 8.5* 51.4 ± 9.2 52.3 ± 8.0* 48.7 ± 6.5
EELV (%) 30.1 ± 8.1 14.2 ± 7.4 40.1 ± 9.4* 27.4 ± 9.6† 42.6 ± 7.7* 26.6 ± 5.1†

EIPpl (cmH2O) 0.06 ± 2.83 −0.22 ± 1.93 −5.53 ± 1.96* −6.35 ± 2.26† −6.75 ± 1.98* −8.01 ± 3.14†

EEPpl (cmH2O) 2.10 ± 2.14 8.96 ± 4.38 −3.37 ± 2.56* −0.58 ± 3.16† −5.04 ± 2.19* −2.76 ± 2.61†

Value are presented as mean ± SD. *p<0.05 vs. QB in the supine position, †p<0.05 vs. CWC in the supine positon. 
Ppl: intrapleural pressure; TV: tidal volume; EILV: end inpiratory lung volume; EELV: end expiratory lung volume; EIPpl: intrapleural 
pressure at end inpiratory lung volume; EEPpl: intrapleural pressure at end expiratory lung volume.
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EILV during CWC was lower at the decubitus position than at the supine position. Therefore, CWC in the decubitus position 
keeps the intrapleural pressure at EELV negative and does not cause airway and alveolar collapse.

LIP is created at the beginning of the inspiration of P-V loops of ARDS with an increasing point of sudden compliance by 
collapsed alveolar expansion12). Also, because LIP suggests collapsed alveolar presence13), it is recommended that the level 
of positive end-expiratory pressure is set just above the LIP in ARDS/ALI. This study showed that all participants had LIP 
during CWC in the supine position, but only two participants had LIP during CWC in the decubitus position. The intrapleural 
pressure may become the positive pressure in the end-tidal position during QB in the supine position, as mentioned above. 
The abdominal organs pressed the thoracic cavity through the diaphragm in the supine position, and this was thought to 
become the positive pressure; therefore, it was suggested that air vesicle collapse might occur due to pressing of the chest 
during CWC and adding more positive pressure to the situation in thoracic cavity. LIP was difficult to produce during CWC 
in decubitus position, keeping negative pressure of the intrapleural pressure at EELV and making it difficult for airway and 
alveolar collapse to occur.

The limitations of this study are that healthy males were used. In patients with ARDS/ALI, there is a decrease in the lung 
compliance as compared with a healthy individual. Therefore, it is necessary to examine the effect of CWC in these patients 
in the future.

In conclusion, this study clarified the effects of postural differences on intrapleural pressure during CWC in healthy males. 
Because LIP during CWC in the bilateral position was less than CWC in supine position, the decubitus positions may not 
cause excessive Ppl on the airway and alveolus compared with the supine position.
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