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Antitumor therapy using a combination of drugs has shown increased clinical efficacy. Active constituents derived from plants
can offer several advantages, such as high efficiacy, low toxicity, extensive effects, and multiple targets. At present, the
combination of plants’ active constituents and chemotherapeutic drugs has attracted increased attention. Nanodrug delivery
systems (NDDSs) have been widely used in tumor-targeted therapy because of their efficacy of delivering antitumor drugs. ,e
in vivo process of tumor-targeted NDDSs has several steps. ,ey include blood circulation, tumor accumulation and pen-
etration, target cell internalization and uptake, and drug release and drug response. In each step, NDDSs encounter multiple
barriers that prevent their effective delivery to target sites. Studies have been performed to find alternative strategies to
overcome these barriers. We reviewed the recent progress of codelivery of active constituents of plants and chemotherapeutics
using NDDSs. Progress into transversing the physiological barriers for more effective in vivo antitumor delivery will be
discussed in this review.

1. Introduction

Cancer is one of the most deadly diseases that endangers
human health. Chemotherapy is currently the major
treatment strategy for treating cancers and preventing
postsurgical recurrence. However, multidrug resistance
(MDR) in tumor cells and serious adverse effects have
hindered chemotherapy [1]. To address these issues, studies
have been performed to investigate the effects of drug
combinations for cancer treatment. ,e combination of
active constituents of plants with first-line chemotherapy
drugs has shown good efficacy in reversing tumor chemo-
resistance, enhancing curative effects, and reducing adverse
reactions. Combination treatment of active constituents of
plants with chemotherapy drugs for tumor therapy has

recently become very popular [2–4]. However, direct ad-
ministration of free drugs has several disadvantages, such as
short duration in blood circulation and nonselectivity for
tumor tissue and tumor cells. ,is reduces efficacy while
increasing adverse reactions due to nonspecific targeting of
healthy tissue. To solve this problem, several strategies have
been developed. Nanodrug delivery systems (NDDSs) have
demonstrated potential advantages for cancer therapy. ,e
most common carriers of NDDSs include liposomes,
nanoparticles, micelles, and polymers. ,ey can effectively
increase the duration of drugs in systemic circulation, im-
prove pharmacokinetics, and promote drug tumor targeting
and tumor accumulation. All these substantially increase the
curative effects while reducing toxicity [5, 6]. Intravenous
administration of NDDSs results in a series of complex in
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vivo delivery processes, which includes blood circulation,
tumor targeting, tumor accumulation, tumor tissue pene-
tration, tumor cell internalization, and intracellular trans-
port. Several specific drug delivery barriers exist, with each
directly affecting efficacy. In order to improve drug efficacy
and reduce adverse reactions of NDDSs, researchers have
developed several exceptional delivery strategies to over-
come these barriers. In this review, the physiological basis of
designing tumor-targeted drug delivery systems to over-
come these physiological barriers will be discussed.

2. Tumor Pathophysiology

,e pathophysiological features of the tumor are the basis
for designing tumor-targeting drug delivery systems [7].
One of the important physiological features of tumor tissues
is their enhanced permeability and retention effect (EPR
effect) to nanoparticles. Tumors that reach greater than
2mm3 are highly dependent on nutrients and oxygen that
are supplied by tumor blood vessels. Tumor and lymph
angiogenesis start to develop when tumor blood vessels are
unable to meet the requirements of the rapidly growing
tumor [8]. Blood vessels that have recently formed through
neovascularization have enhanced permeability, lack a
smooth muscle layer, and has dysfunctional angiotensin
receptors. In addition, lymph vessels in the center of tumor
tissues are usually dysfunctional, which results in lymphatic
obstruction and retention of macromolecular substances like
lipid particles. ,e high selective permeability and retention
in tumor tissues are termed the EPR effect [9].,e EPR effect
is the basis for designing passive tumor targeting NDDSs
[10].

Additionally, unlike normal cells, tumor cells grow in an
uncontrolled and invasive manner. In order to infinitely
proliferate, tumor cells have increased expression of certain
receptors. ,ese include the folate receptor (FR) [11],
integrin receptor, transferrin receptor (TfR), somatostatin
receptor, vasoactive intestinal peptide receptor, and chole-
cystokinin receptor. In addition, several specific receptors
are expressed on the surface of tumor blood vessels, such as
vascular endothelial growth factor (VEGF) receptor [12],
integrin αvβ3 [13], and E-Selectin [14]. Many of these re-
ceptors that are overexpressed are common in tumor tissue
and tumor blood vessels. ,e active targeting mechanism of
NDDS relies on these specific receptors to bind specifically to
tumors. However, long-term administration of antitumor
drugs induces P-glycoprotein (P-gp) overexpression in tu-
mor cells. P-gp functions to expel antitumor drugs from
tumor cells, thus reducing the intracellular drug concen-
tration, which in-turn reduces antitumor efficacy and makes
tumor cells resistant to chemotherapy. ,is process is
termed MDR [15]. MDR has been identified in almost all
human tumor cells.

Cancer stem cells (CSCs) in tumor tissues [16] have the
ability to self-renew, multiply, and differentiate. ,ey can
also stimulate the growth of new tumors [17]. Even though
they exist in limited numbers, CSCs play a significant role in
the development, progression, metastasis, and recurrence of
tumors. Conventional chemotherapy or radiotherapy

induces tumor cell death to reduce tumor cell numbers and
prevent the rapid growth of tumors [18]. However, CSCs are
not sensitive to conventional chemotherapy or radiotherapy
and are not completely eliminated [19, 20]. CSCs are one of
the main reasons for tumor recurrence.

Tumor cells have a very high metabolic rate and produce
high levels of acid leading to an acidic environment in tumor
tissues. ,e extracellular pH in tumor tissues is approxi-
mately 6.0–6.5. In addition, the reduced blood supply to the
central area of the tumor leads to local hypoxia to increase
the acidic environment [21]. Tumor tissues also have several
physiological features that include high interstitial fluid
pressure, specific enzymes, and oxidative stress [22].

3. Types of Tumor-Targeted NDDSs for Plant
Chemotherapeutic Drugs

Currently, the most commonly used NDDSs include lipo-
somes, nanoparticles, polymeric micelle, and products of
polymer-drug conjugates. ,e major structural features and
drug-carrying mechanisms of these NDDSs are listed in
Table 1.

3.1. Liposome. Liposomes are lipid nanovesicles formed by
lipid bilayers [23–25]. ,e diameter of a liposome is ap-
proximately 90–200 nm. ,e center of the liposome consists
of a hydrophilic internal aqueous phase. ,e internal
aqueous phase and lipid bilayer of the liposome could be
used to carry a variety of cargos. For instance, hydrophilic
drugs could be packed into the internal aqueous phase, while
hydrophobic drugs could be packed into the lipid mem-
brane. Additionally, amphiprotic drugs could be packed in
the aqueous phase and phospholipid membrane. Further-
more, antibodies and polypeptides could be used to modify
the surface of liposomes to make them to target various
organs or tumors [23]. Liposomes continuously release their
loaded drugs slowly and hence have the ability to change the
distribution and pharmacokinetic properties of the drugs,
thereby reducing their toxic effects [24]. Long circulating
liposomes will add significant benefit for long-term drug
delivery but needs to be further optimized.

In general, the surface of liposomes is modified by hy-
drophilic macromolecules, such as polyethylene glycol
(PEG), to reduce their recognition by opsonin in the blood
and to reduce phagocytosis by the reticuloendothelial system
(RES) which then increases the drug duration in blood
circulation [25, 26]. ,ere is a difference in water solubility
between antitumor active constituents of plants and che-
motherapeutic agents. ,is makes liposomes the preferred
carrier for in vivo delivery of such drugs. To date, numerous
studies have used liposomes as nanocarriers for combined
antitumor drug therapy using active constituents of plants
and chemotherapeutic agents. Hu et al. [27] developed a
liposome using distearoylsn-glycero-3-phosphoethanol-
amine-N-(methoxy(polyethylene glycol)-2000) (DSPE-PEG
2000), which cocarried temozolomide (TMZ) and quercetin
(QUE) for the treatment of drug-resistant U87 glioma cells.
Transmission electron microscopy demonstrated that
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nanoliposomes loaded with TMZ and QUE had reduced
diameters. In vitro studies demonstrated that this liposome
could favor cellular uptake of drugs and thus effectively
reduce the drug dose without reducing efficacy.

3.2. Nanoparticles. Nanoparticles are colloidal particles
made from natural or synthetic high molecular polymers
as carriers. ,e drugs are attached to the carrier material
by physical entrapment, absorption, or chemical covalent
binding. ,e natural high molecular polymers mainly
include heparin [28], chitosan [29], gelatin [30], and al-
bumin [31], while synthetic high molecular polymers are
mainly polylactic acid (PLA), poly(lactic-co-glycolic acid)
(PLGA), and polycaprolactone (PCL). Nanoparticles can
be easily modified to increase their targeting capability.
Compared with liposomes, nanoparticles have several
advantages, such as better physical stability and higher
drug-loading capability. In addition, they are easy to
prepare, have certain degrees of sustained release func-
tion, and are suitable for packing insoluble drugs. Cur-
rently, nanoparticles have been used as carriers for
targeting and controlled drug release and are adminis-
tered by intravenous injection or topical administration.
Xu et al. [32] developed a PLGA nanoparticle for the
codelivery of docetaxel and gambogic acid. ,ey identified
the best ratio of docetaxel with gambogic acid, which was
then packed into PLGA nanoparticles. Cell apoptosis and
immunoblotting demonstrated that this codelivery
nanoparticle could downregulate the expression of P-gp
to increase cell apoptosis and thus effectively inhibit MDR
of tumor cells.

3.3. Polymeric Micelles. Polymeric micelles are flexible
spherical particles that are synthesized from the self-
assembly of two amphiphilic block copolymers at the
appropriate temperature and concentration. Polymers
could be AB-type diblock copolymers or ABA-type tri-
block copolymers. Micelles formed using the triblock
copolymer are more stable. Polymeric micelles have a
hydrophobic core that is used to pack drugs that have
poor water solubility or hydrophobic drugs. ,is in-
creases the stability of the packed drugs and prevents
their rapid degradation [33]. ,e hydrophilic outer shell
forms a protective barrier to prevent the binding of

micelles with plasma proteins. ,is prevents phagocytosis
of the micelle by RES and thereby increases the half-life of
the drug [34].

Yao et al. [35] designed a micelle that could codeliver
paclitaxel (PTX) and curcumin (CUR) and demonstrated
that it had a superior drug-loading capacity of up to 35% (w/
w) and was able to synergistically induce anticancer effects.
Sarisozen et al. [36] developed a mixed micelle using TF-
polyethylene glycol polyethylene (TF-PEG-PE) that actively
targeted TF to improve tumor targeting. Fang et al. [37]
developed a magnetic micelle for the codelivery of doxo-
rubicin and CUR.,is codelivery system targeted lactoferrin
and prolonged retention of the drugs at the tumor sites to
efficiently suppress cancer growth compared with delivery of
either drug alone.

3.4. Polymer-Drug Conjugates. In contrast to other drug-
delivery systems, polymer-drug conjugates are drugs con-
jugated to a polymer via covalent bonding. ,is drug-de-
livery system has several advantages: (1) it increases the
water solubility of hydrophobic drugs; (2) the covalent
bonds could be modified (such as having a pH-sensitive
linker, enzyme sensitive linker, or light sensitive linker).,is
enables the release of drugs to different sites [38]; (3)
conjugation of drugs with polymers could increase their
half-life; and (4) the increase in molecular weight could
prevent EPR effect, thus favoring drug accumulation in solid
tumors. Hence, these conjugates could overcome the dif-
ferences in water solubility, selectivity, and stability between
the antitumor active constituents of plants and chemo-
therapeutic drugs. ,e most commonly used polymers in-
clude polysaccharides, PEG, poly amino acids (PAA), and
polypeptides [39].

Xue et al. [40] constructed a self-assembled prodrug
nanoparticle that was conjugated to cabazitaxel and citro-
nellol via a disulfide bond. ,is nanoparticle was redox-
sensitive to high concentrations of glutathione (GSH) within
tumor cells. Zhang et al. [41] designed a PEG-doxorubicin
(DOX)-CUR prodrug nanoparticle for codelivery of DOX
and CUR. Schiff-base reaction was used to conjugate DOX to
PEG and then was conjugated to CUR in the nanoparticle to
obtain PEG-DOX-CUR nanoparticles (NPs). ,e nano-
particle was acid-sensitive and hence could release DOX and
CUR when it reached the tumor.

Table 1: Types and characteristics of nanodrug delivery systems.

Type Structure Drug loading Advantages Limitations

Liposomes Lipid bilayer Physical entrapment Great biocompatibility, no
immunogenicity

Low stability, hydrophilic
drug easily leaks out

Nanoparticles
Nanosphere-/nanocapsule-/
polymer-based nanoparticles

with a lipophilic core

Physical encapsulation/
chemical bonds High drug-loading capability —

Polymeric
micelles

Core-shell structure formed by
self-assembly

Physical packing/
chemical bonding

Easy to prepare, increased
stability of hydrophobic drugs

Low stability,
depolymerizes after

dilution
Polymer-drug
conjugates

Conjugation of drugs with
biodegradable polymers Chemical bond Increased drug solubility, high

drug-loading capability Hydrolyzed easily
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4. Strategies to Overcome the Physiological
Barriers of NDDSs

To effectively deliver drugs to target tissues and sites, NDDSs
need to overcome a number of physiological and physical
barriers. ,ese include the blood, tissue, and cellular and
intracellular transportation barriers. Each barrier could
directly affect the final efficacy of the antitumor drugs. In
order to overcome these barriers, researchers have de-
veloped a series of strategies and methods (see Figure 1 and
Table 2).

4.1. Blood Circulation. After intravenous injection, NDDSs
enter the blood circulation and encounter a number of
obstacles: (1) degradation of the nanoparticles or drugs by
the various enzymes in the plasma [95]; (2) opsonization of
the nanoparticles and subsequent phagocytosis and clearing
by RES [96, 97]; and (3) absorption of the nanoparticles by
plasma proteins leading to the aggregation and subsequent
hematotoxicity, retention in the pulmonary capillaries, or
phagocytosis by RES [98]. To overcome these barriers,
NDDS needs to avoid interactions with charged proteins in
the blood or avoid phagocytosis. To overcome the limita-
tions of NDDS in blood circulation, numerous studies have
focused on modifying the surface of these nanoparticles.
PEG coated to the surface of nanoparticles increases the half-
life of nanoparticles [99]. It works by inhibiting the for-
mation of the hydrophilic shells around NDDSs [100], which
prevents plasma proteins from interacting with the nano-
particle and hence prevents RES. Yu et al. [42] developed a
PEG-modified long-circulating liposome that concurrently
packed QUE (p-gp inhibitor) and Adriamycin (AMD/
DOX). ,is increased the blood concentration of AMD and
half-life of AMD in the plasma. PEG-modified nano-
particles, PEG-modified grafted polymers, PEG-modified
polymeric micelles, and PEG-modified dendrimers all have
been shown to increase the half-life of drugs in blood cir-
culation [43–47, 101].

However, several studies also observed that continuous
injection of PEG-modified nanoparticles could induce im-
mune responses and thus lead to accelerated blood clearance
(ABC) [102, 103]. Hence, the design of drug-delivery sys-
tems with biological characteristics to evade the immune
system has garnered increased attention [104]. Several
studies have demonstrated that nanoparticles coated with
endogenous substances like red blood cell membranes
(RBC-NP) could avoid phagocytosis by macrophages via
immunomodulatory proteins (such as CD47) on their
surface and hence extend their half-lives [105].

4.2. Tumor Accumulation and Penetration. ,e low effi-
ciency of drug accumulation in tumor tissues is one of the
hurdles in antitumor NDDS therapy. NDDS accumulation
in tumors is mainly via EPR. However, the dense extra-
cellular matrix and the extremely high interstitial fluid
pressure in tumors significantly prevent drugs from entering
the deep tissues of the tumor. Because of this, the majority of
the NDDS are distributed in blood vessels around the

tumors. ,is results in lower drug distribution into the
actual tumor, reduced efficacy, and hence an incomplete
elimination and subsequent recurrence [27, 106]. Several
studies have demonstrated that nanodrugs with smaller
diameters have increased efficacy because they can penetrate
easier and deeper into tumor tissues [33, 51].

Numerous studies have demonstrated that several spe-
cific receptors are expressed on the surface of tumor blood
vessels compared with normal blood vessels. ,ese include
endothelial cell surface-specific receptors integrinαv β3
[107] and nucleolin [108]. NDDSs that are modified on the
surface to express ligands to these receptors could target
both tumor blood vessels and tumor cells. Targeting of
tumor blood vessels could increase the retention of the
NDDSs near the tumor, which eventually increases the
distribution in tumor tissues [93]. For example, RGD
peptide is a short peptide containing arginine, glycine, and
aspartic acid (Arg-Gly-Asp) and is the ligand for integrin
αvβ3. Jiang et al. [48] developed an RGD-modified PTX and
CUR coloaded liposomes and demonstrated better antitu-
mor efficacy compared with unmodified liposomes. As a
P-gp inhibitor, CUR could inhibit multidrug resistance,
while the combined application of CUR and PTX had a
synergistic effect. ,ese RGD-modified nanoparticles have
shown high aggregation and deep permeability at tumor
sites [48–50]. Hence, targeting common receptors on tumor
blood vessels and tumor cells is an effective strategy to
improve the accumulation and penetration of nanoparticles
into tumor tissues [52, 62, 109].

4.3.TargetCell InternalizationandUptake. After penetrating
deep into tumor tissue, NDDS must be internalized by the
tumor cells to exert into antitumor effects. Codelivery of
active constituents of plants and chemotherapy drugs could
promote NDDSs internalization by receptor-mediated en-
docytosis. In addition, P-gp inhibitors could be used to
overcome the drug resistance in tumor cells [110–113].
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Figure 1: Development of new strategies based on NPs technology
for drug delivery to overcome the transport barriers.
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Specific receptors that are highly expressed in tumors
and on the surface of tumor endothelial cells include
transferrin receptor, folate (FA) receptor, integrin re-
ceptor, somatostatin receptor, lectin receptor, and epi-
dermal growth factor receptor (EGFR). NDDSs modified
with different ligands or antibodies which is so-called
active targeting NDDSs have shown better tumor-tar-
geting and drug-delivery capability both in vivo and in
vitro. TF and FA are very commonly used malignant
tumor-targeting ligands, as most tumor cells express high
levels of TfR or FR on their surface, while the expression of
TfR and FR in normal tissues are much lower [114–116].
Cui et al. [55] used transferrin-modified nanoparticles for
the codelivery of DOX and CUR. ,ey first synthesized a
pH-sensitive Tf-PEG-CUR prodrug and then packed DOX
into the Tf-PEG-CUR NPs to obtain the Tf-PEG-CUR/
DOX nanoparticle. ,is nanoparticle had active tumor-
targeting features and could release their payload into
tumor sites specifically because of its pH sensitivity in
tumor tissue. Singh et al. [56] conjugated planetary ball-
milled (PBM) nanoparticles and loaded it with resveratrol
and DTXto FA for the treatment of prostate cancer. ,ey
found that Fa-modified DTX nanoparticles had increased
cytotoxicity and hence could reduce the concentration of
free drug by 28 folds. In addition, when DTX-resistant
prostate cancer (PCa) cells were treated using this
nanoparticle, there was a reversal of multidrug resistance
in these cancer cells [57]. In addition, anti-GLUT1 anti-
body (GLUT1) has been used to modify polymeric mi-
celles coloaded with CUR and doxorubicin and have
shown increased efficacy in human colorectal cancer cell
HCT-166 both in vitro and in vivo [58].

P-gp is a highly expressed multidrug transporter that
could lead toMDR and chemotherapy failure in a number of
cancers [15]. Numerous studies have demonstrated that the
active constituents of plants, such as CUR, QUE, and
triptolide, could inhibit the expression of P-gp gene and
protein [117–121]. ,us, codelivery of such drugs with
chemotherapeutic drugs could reverse MDR, increase che-
motherapy sensitivity, and decrease adverse effects [53, 54].
Compared with chitosan-conjugated PLGA nanoparticles
[122, 123], chitosan and anti-P-gp antibody-conjugated
PLGA nanoparticles have demonstrated enhanced cell in-
ternalization. Hence, NDDS-targeting P-gp has provided an
effective method to overcome drug resistance and increase
drug internalization.

4.4. Drug Release. Drug release is the last step in drug de-
livery. Only released drugs from these nanoparticles can
exert antitumor effects. Studies have taken advantage of the
differences between the tumor microenvironment and the
normal environment to figure out ways to release drugs from
these nanoparticles. ,is has mainly been via dissociation of
chemical bonds or structures that are sensitive to the tumor
microenvironment [124, 125]. ,ere are three common
strategies for designing NDDS to promote drug release, i.e.,
pH-sensitive NDDSs, enzyme-sensitive NDDSs, and tem-
perature-sensitive NDDSs.

,e pH in the extracellular tumor tissues (∼pH 6.5) and
endosomes/lysosomes (pH 4.5–6.0) are lower compared
with normal tissues and blood (pH 7.4). ,is difference in
pH could be used to design pH-responsive nanocarriers
[126]. Acetal, hydrazine, imine, and esters are unstable at low
pH and could be used to construct pH-responsive NDDSs.
Xie et al. [59] utilized Schiff-base reaction to link metho-
trexate(MTX) with (DSPE-PEG2000) using a pH-sensitive
imine linkage to obtain a pH-sensitive prodrug, i.e., DSPE-
PEG-Imine-MTX. ,is prodrug could self-assemble to
micellar nanoparticles (MTX-Imine-M) in aqueous solu-
tions and could pack CUR into its core via hydrophobic
interaction to form MTX-Imine-M-CUR nanoparticles. ,e
active form of MTX is released more efficiently when the pH
is 5.0 compared with 7.4. ,ese nanoparticles are more
efficacious and have lower toxicity profiles. In addition, pH-
sensitive inorganic substances and polymers have been used
to create nanoparticles to release drugs into tumor cells. pH-
responsive nanocarriers, such as liposomes, nanoparticles,
nanogels, polymer-drug conjugates, and micelle, have been
designed and reported to have good efficacy and function
[127]. Inorganic substances like calcium phosphate, chito-
san, closed mesoporous silica nanoparticle pores (MSNPs),
and poly(styrene-co-N,N′-dimethylaminoethyl methacry-
late nanoparticles (P(St-co-DMAEMA))complexes and
mPEG-b-PMaIPG (methoxy-polyethylene glycols (PEG)-b-
poly (d-galactopyranose)) nanoparticles have been dem-
onstrated to be sensitive to relatively small pH changes and
have good drug release and relatively high antitumor activity
[44, 49, 60, 62, 63]. Yang et al. [61] synthesized the pH-
sensitive polymer (poly(ethylene glycol)-benzoic imine-
poly(gamma-benzyl-l-aspartate)-b-poly(1-vinylimidazole)
block copolymer (PPBV) and developed a multistage pH-
responsive micelle system for the codelivery of PTX and
CUR for the treatment of breast cancer CSCs. ,is multi-
stage pH-responsive micelle system could intelligently
convert the charges on the surface from neutralities to
cations, reduce its diameter size to favor long-term blood
circulation into tumor blood vessels, and promote tumor cell
uptake and tumor permeability. All this enhanced the
treatment efficacy of the nanoparticle for combination
therapy using PTX and CUR.

Enzyme-responsive NDDS utilizes the overexpression of
various enzymes in tumors to develop NDDS that contain
substrates that could be specifically degraded by such en-
zymes [128]. Various proteases, such as matrix metallo-
proteases (MMPs) [129, 130] in tumor tissues and cathepsin
in lysosomes of tumor cells [131, 132], are overexpressed in
tumors. Li et al. [64] developed a protein NDDS that could
intelligently respond in the tumor microenvironment. Based
on the microenvironment, i.e., enzymes on the tumor
surface (MMPs), pH, and high tumor GSH concentrations,
the nanoparticle can respond and efficiently target tumors
and also reduce metastatic rates.

Temperature-sensitive NDDS regulates drug release
based on changes in temperature. Due to severe in-
flammatory reactions, the internal temperature of most solid
tumors is generally higher compared with surrounding
normal tissues. Temperature-sensitive drug-delivery systems
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could enhance the release of drugs in tumors, i.e., after adding
the active tumor targeting feature, the temperature-sensitive
targeting NDDS could be constructed [133]. Nguyen et al.
[65] synthesized a heat-responsive Hep-F127 polymer for the
codelivery of cisplatin (CDDP) and nano curcumin complex/
pack to form a dual drug-delivery system. ,is nanoparticle
had antiproliferative effects and tumor inhibition on MCF-7
cells and xenograft transplantation models. Zhang et al. [66]
developed a near-infrared-responsive gold nanocagesusing
biotin PEG thiol (biotin-PEG-SH) to codeliver doxorubicin
and QUE for the treatment of breast cancer. ,is system had
the feature of rapid drug release upon radiation of near-in-
frared rays and high cytotoxicity for MCF-7/ADR cells.

4.5. Drug Response

4.5.1. Synergistic Antitumor Effects. Using a single chemo-
therapeutic drug for antitumor treatment has several limi-
tations, such as inducing drug resistance, high toxicity, and
low therapeutic index [75, 134]. Drug combinations for the
treatment of cancers have become more favorable. Active
constituents of plants have multiantitumor effects. ,ey can
synergistically inhibit tumor-cell proliferation by enhancing
tumor-cell apoptosis, induce cell autophagy, enhance oxi-
dative stress, improve the sensitivity, and increase cell cycle
arrest when used in conjunction with chemotherapy drugs
[69, 134–138]. Investigators have developed novel combi-
natory approaches using cationic PEGylatedniosome-en-
capsulated nanoparticles. ,ese have demonstrated
synergistic effects in gastric, prostate, and breast cancer cells
[81]. Delivering nanoparticles (functional polymeric mi-
celles, polyamidoamine dendritic polymers, and co-
polymers) that carry active constituents of plants and
chemotherapeutic drugs is more efficacious compared with
monotherapy [33, 35, 69–80, 82, 106].

4.5.2. CSC-Targeting System. Although CSCs account for
only a small portion of tumor cells, they have the capacity to
self-renew, differentiate, and maintain tumor growth
[139, 140]. CSCs can induce recurrence, metastasis, and
resistance to antitumor drugs [141], which subsequently
leads to chemotherapy failure. As the “drug pumps,” ABCG2
is highly expressed in CSCs. ,ey pump drugs out of cells to
prevent tumor killing. CSCs are considered the key to
eradicating tumors. Signaling pathways and specific markers
in CSCs could be the ideal targets for CSC-targeting NDDSs
[142]. ,e active constituents of plants, such as CUR, can
inhibit several signaling pathways, such as the Wnt/β-cat-
enin, Notch, and Hedgehog pathways [143] and thus ef-
fectively inhibit the self-renewal of CSCs. Combining CSC-
targeting therapy with conventional chemotherapy drugs
could result in synergistic antitumor activity [61, 68]. For
instance, pH-sensitive nanoparticles coloaded with CUR and
DOX (CURDOX-NPs) prepared using monomethoxy
(polyethylene glycol)-b-P (D, L-lactic-co-glycolic acid)-b-P
(L-glutamic acid) polymer (mPEG-PLGA-PGlu) have
shown better breast cancer-inhibitory effects compared with
monotherapy [67].

4.5.3. Multifunctional Targeting Drug Delivery Systems.
To further increase the targeting of NDDS to tumor tissues,
several multifunctional targeting drug delivery systems us-
ing different modifications to overcome multiple barriers
simultaneously have been developed [86, 87]. Nanoplatform
for combinational therapy using PEG, PCEC (poly(“-cap-
rolactone)-b-poly(ethylene glycol)-b-poly(”-caprolactone))
and CRGDK (cell-penetrating peptide (Cys-Arg-Gly-Asp-
Lys, CRGDK)) has been developed. ,ese can coload DOX/
CUR, target the tumor, and respond to intracellular acidic
environments. ,e synergistic antitumor effects of these
nanoparticles have the following four aspects: (1) increased
stability in blood circulation; (2) passive targeting due to
EPR; (3) active targeting by recognition of CRGDK to
neuropilin-1 receptor; and (4) high stability and low drug
leakage under physiological pH, while the acidic environ-
ment dissociates the prodrugs to release DOX and CUR into
the cells [83]. Based on the expression of Rf in the blood-
brain barrier and glioma cells, human TfR ligand T7 (se-
quence: HAIYPRH)-modified magnetic PLGA nanoparticle
(MNP/T7PLGA NPs) target tumors and release PTX and
CUR. ,is system provides a dual-targeting strategy, i.e.,
ligand-mediated targeting and magnetic-guided targeting
[37, 84]. Saha et al. [85] used the high-temperature sol-
vothermal technique to manufacture Eu : Gd2O3 triangular
nanoplates. Using this method, nanoparticles are conjugated
on its surface to FA, which is the targeting ligand and is then
loaded with daunorubicin and CUR via ester bonds. ,e
acidity in tumor tissues induces esterolysis to release the
chemotherapeutic drugs into the tumor.

To enhance the antitumor effects of NDDSs, combina-
tion drug administration, CSCs-targeting drug delivery
system, and multifunctional targeting drug delivery systems
have been widely used to achieve additive or synergistic
antitumor effects. ,is approach is a new promising method
for efficient tumor targeting.

4.6.MultidrugResistance. MDR occurs when tumor cells are
resistant to one or a series of chemotherapeutic drugs with
different structures and mechanisms. MDR is an important
reason for chemotherapy failure in clinical practice
[144, 145]. ,e mechanisms of MDR are very complex and
include inherent cellular or changes in tumor microenvi-
ronments. ,e complexity of the mechanisms involving
MDR brings about challenges to overcome tumor drug
resistance [146, 147]. One of the advantages of using
nanocarriers to codeliver chemotherapy drugs and active
constituents of plants is their capability to reverse MDR
[32, 91, 148](seen Figure 2). Rejinold et al. [88] investigated
using CUR as the nanocarrier to load PEG-doxorubicin
hydrochloride for HCT-8/DOX-resistant cells to increase
the in vivo and in vitro antitumor efficacy. In vitro anti-MDR
experiments have shown that PEG CRC/DOX NPs had a
higher antimetastatic and antiproliferative effect on MDR
cancer cells while normal fibroblasts were unaffected. In
addition, PEG CRC/DOXNPs have longer blood circulation
times compared with CRC NPs. Previous studies have used
NDDS coloaded with PTX and active constituents of plants

BioMed Research International 9



(such as baicalin and borneol) for anti-MDR. ,ese in vitro
experiments have shown that such combinations enhanced
the concentration of PTX in MCF-7/Tax and A2780/PTX
cells, as well as increased cellular drug and cytotoxic effects
[89, 90].

4.7. Immunomodulation. ,e body’s immune system has a
significant influence on tumor development and progres-
sion. ,e tumor can modulate the immunocompetence of
the body to recognize and kill tumor cells [149]. Qua-
gliariello et al. [92] demonstrated that coadministration of
rapamycin and QUE could reduce the levels of IL-8, IL-6,
and IL-19, suggesting that such combinations could mod-
ulate the body’s immune system and thus enhance the tu-
mor-killing capability. In addition, such combinations could
downregulate VEGF, MMP2, and MMP9 levels, suggesting
they could inhibit tumor metastasis. Sesarman et al. [93]
developed a long term circulating liposome that could pack
CUR and PTX (LCL-CURC-DOX). ,is liposome could
significantly increase the cytokine rations of IL-12/IL-4,
IL12/IL-1α, IL-12/IL-1β, IFN-c/IL-6, IFN-c/IL-1α, and IFN-
c/IL-1β by 1.18–3.14-fold, (P< 0.05), thus favoring the
balance of,1 and,2 cells to stimulate antitumor effects in
the tumor microenvironment.

4.8. Antagonizing/Supressing Toxic Side Effects.
Chemotherapy drugs damage normal tissues and cells in the
body. Using plants (crude drugs) in combination with
chemotherapy drugs could affect tumor tissues via multiple
targets and pathways thereby reducing the dose of che-
motherapy drugs and hence decrease drug toxicity. In ad-
dition, some plants (crude drugs) could also suppress the
toxic side effects of chemotherapy. Hence, the combined
application of such plants could increase the safety of
chemotherapy. Guo et al. [150] combined andrographolide,
the active constituent of the plant Andrographis panicula,
with bleomycin and found that it not only enhanced the
antitumor effects but also reduced the toxic effects of

bleomycin on the body. In addition, the combined ap-
plication of andrographolide and bleomycin effectively
reduced pulmonary fibrosis induced by bleomycin, which
was manifested by the activation of superoxide dismutase,
and inhibition of malondialdehyde and hydroxyproline.
Such combinations also suppressed cytokine expression.
Zhang et al. [94] developed a complex polymeric micelle
system that copacked Adriamycin and CUR (CPMDC)
and investigated their protective effects on Adriamycin-
induced cardiac toxicity. Pharmacokinetics and tissue
distribution showed that CPMDC increased DOX accu-
mulation in tumors but decreased the levels of the toxic
metabolite doxorubicin in heart tissue compared with
DOX alone.

5. Future Prospects

With the continuous advancements in the understanding of
the mechanisms of tumor development and progression,
strategies using combination drug therapy have demon-
strated significant advantages for cancer treatment. ,e
development of nanotechnology further provides broad
application prospects. In this review, we summarized novel
strategies and methods in developing NDDSs for codelivery
of active constituents of plants and chemotherapy drugs to
overcome barriers to drug delivery. NDDSs must circum-
vent all these barriers before successful and effective anti-
tumor activity is observed. Any problems in these delivery
systems could lead to tumor treatment failure. Hence,
NDDSs should be appropriately designed based on the
physiological process in the body to overcome these barriers.
However, the preparation of multifunctional and intelligent
tumor-targeted NDDSs is very complex, and hence reduces
the drugability of NDDSs. Currently, NDDSs for codelivery
still faces a lot of challenges regarding its formulation, de-
sign, synthesis, and assessment. More studies are needed to
further investigate the pathological features of tumors. ,is
could help in developing multifunctional NDDSs that re-
sponse to the pathological features of the body. ,e

P-gp
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triptolide, et al. and so on

Antitumor drugs

P-gp inhibition

Nanoparticles

P-gp
inhibition

Drug efflux

Codelivery of active
constituents of plants increases

the intracellular drug conc.

P-gp antibody-conjugated 
nanoparticles increase the 

intracellular drug conc.

Drug efflux by p-pg decreases 
the intracellular drug conc.

P-gp antibody

Figure 2: NDDS-mediated P-gp inhibition is an effective method to reverse MDR and increase drug internalization.
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combination of pharmaceuticals, medicine, chemistry, and
materials science will help in the development of NDDSs.
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