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Abstract

Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular 

interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-

dimensional structure from high-dimensional data that reflect these interactions. These techniques 
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can uncover new biological knowledge from diverse high-throughput omics data in applications 

ranging from pathway discovery to timecourse analysis. We review exemplary applications of MF 

for systems-level analyses. We discuss appropriate applications of these methods, their limitations, 

and focus on the analysis of results to facilitate optimal biological interpretation. The inference of 

biologically relevant features with MF enables discovery from high-throughput data beyond the 

limits of current biological knowledge - answering questions from high-dimensional data that we 

have not yet thought to ask.

Determining the Dimensions of Biology from Omics Data

High-throughput technologies have ushered in an era of big data in biology [1,2] and 

empowered in silico experimentation which is poised to characterize complex biological 
processes (CBPs; see Glossary) [3]. The natural representation of high-dimensional 

biological data is a matrix of the measured values (expression counts, methylation levels, 

protein concentrations, etc.) in rows and individual samples in columns (Figure 1). Columns 

corresponding to experimental replicates, or samples with similar phenotypes, will have 

values from the same distribution of biological variation. Related structures in the data are 

observed because they share one or more CBP. The activity of CBPs need not be identical in 

each sample. In these cases, the values of all molecular components that are associated with 

a CBP will change proportionally to the relative activity of that CBP. These phenotypes and 

CBP activities are often unknown a priori, requiring computational techniques for 

unsupervised learning to discover CBPs directly from the biological data.

The relationships between CBPs and similarities between samples constrain high-

dimensional datasets to have low-dimensional structure. The number of genes, proteins, and 

pathways that are concurrently active within any cell is constrained by its energy and free-

molecule limitations [4]. Only a characteristic subset of CBPs will be active in any cell at a 

given time. Thus, for a dataset where columns share CBP, a low-dimensional structure can 

be extracted which is smaller than either the number of rows or the number of columns.

Matrix factorization (MF) is a class of unsupervised techniques that provide a set of 

principled approaches to parsimoniously reveal the low-dimensional structure while 

preserving as much information as possible from the original data. MF is also referred to as 

matrix decomposition,and the corresponding inference problem as deconvolution. Other 

reviews discuss the mathematical and technical details of MF techniques [5–8] and their 

applications to microarray data [9]. We focus here on the biological applications of MF 

techniques and the interpretation of their results since the advent of sequencing technologies. 

We describe a variety of MF techniques applied to high-throughput data analysis, and 

compare and contrast their use for biological inference from bulk and single-cell data.

Workflow for MF Analysis

After data preprocessing, most high-throughput molecular datasets can be represented as a 

matrix in which each element contains the measurement of a single molecule in a single 

experimental condition. In the example of RNA sequencing (RNA-seq), the number of short 

reads from each gene are summarized into gene level counts. The resulting high-dimensional 
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dataset is formulated by representing these gene level counts for each sample as a column in 

the data matrix (Figure 1). MF methods can then be applied to these count matrices to learn 

CBPs from the data. Many MF techniques described are for RNA-seq data that are 

preprocessed using log transformation [10] or models of sequencing depth [11], while others 

directly model read counts [12].

Most examples featured in this review are based on such preprocessed RNA-seq analysis of 

gene counts or log-transformed gene counts. We note that applications of MF are not limited 

to this data modality or this preprocessing pipeline. For example, MF has also been applied 

to define mutational signatures in cancer [13,14], allele combinations in phenotypes [15], 

transcript regulation of genes [16], and distributions of transcript lengths [17], as well as to 

discriminate peptides in mass spectrometry proteomics [18]. To apply MF to other data 

modalities, they must also be properly preprocessed into a data matrix with a distribution 

appropriate to the MF analysis method.

When applied to high-throughput omics data, MF techniques learn two matrices: one 

describes the structure between features (e.g., genes) and another describes the structure 

between samples (Figure 2, Key Figure). We call the former feature-level matrix the 

amplitude matrix and the latter sample-level matrix the pattern matrix. Additional terms 

have been coined for the amplitude and pattern matrices based upon the MF problem applied 

and on the specific application to high-throughput biological data (Box 1). The values in 

each column of the amplitude matrix are continuous weights describing the relative 

contribution of a molecule in each inferred factor. In cases where factors distinguish between 

CBPs, the relative weights of these molecules can be associated with functional pathways. 

The same molecule may have high values in multiple columns of the amplitude matrix. 

Thus, MF techniques are able to account for the cumulative effect of genes that participate in 

multiple pathways.

Whereas each column of the amplitude matrix describes the relative contributions of 

molecules to a factor, each row of the pattern matrix describes the relative contributions of 

samples to a factor (Figure 2). Sample groups can be learned by comparing the relative 

weights in each row of the pattern matrix. The pattern matrix from MF can also be binarized 

to perform clustering [19,20] or kept as continuous values to define relationships between 

samples [21–23]. In the same way as molecules with high weights within a column of the 

amplitude matrix are associated with a common pathway, samples with high weights within 

a row of the pattern matrix can be assumed to share a common phenotype or CBP.

The optimal number of columns of the amplitude matrix and rows of the pattern matrix is 

often referred to as the dimensionality of the MF problem, and learning this value remains 

an open problem for the MF research community [24,25]. We also note that MF is not a 

single computational method. Instead, there is a wide body of literature on numerous MF 

techniques that have been applied throughout computational biology. The properties of both 

the amplitude and pattern matrices, and subsequently the interpretation of their values, 

depend crucially on the specific MF problem and the algorithm selected for analysis.
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MF Techniques: PCA, ICA, and NMF

There are numerous approaches to MF. The three most prominent MF approaches are 

principal component analysis (PCA), independent component analysis (ICA), and non-
negative matrix factorization (NMF). Each of these techniques has a distinct mathematical 

formulation of a distinct MF problem (as described in the supplemental information online 

and in other reviews [5,8,26–29]).

Briefly, PCA finds dominant sources of variation in high-dimensional datasets, inferring 

genes that distinguish between samples. Maximizing the variability captured in specific 

factors, as opposed to spreading relatively evenly among factors, may mix the signal from 

multiple CBPs in a single component. Therefore, PCA may conflate processes that 

sometimes occur and complicate interpretation of the amplitude matrix for defining data-

driven gene sets or the inference of specific CBPs.

ICA and NMF learn distinct processes from an input data matrix using different techniques. 

ICA learns factors that are statistically independent, resulting in more accurate association 

with literature-derived gene sets [30–32]. NMF methods constrain all elements of the 

amplitude and pattern matrices to be greater than or equal to zero [33,34]. Whereas the 

features in PCA can be ranked by the extent to which they explain the variation in the data, 

the features in both ICA and NMF are assumed to have equal weight. NMF is well suited to 

transcriptional data, which is typically non-negative itself, and semi-NMF is also applicable 

to data that can have negative values. The assumptions of NMF model both the additive 

nature of CBPs and parsimony, generating solutions that are biologically intuitive to 

interpret [35].

The solutions from both ICA and NMF may vary depending upon the initialization of the 

algorithm, leading to disparate amplitude and pattern matrices. Therefore, it is crucial to 

ensure that particular solution used for analysis provides an optimal and robust solution 

before using the results of the factorization to interpret CBPs. We previously found that 

Bayesian techniques to solve NMF have more robust amplitude matrices than gradient-based 

techniques, and thus generate more accurate associations between the values in the 

amplitude matrix and functional pathways [5,36]. Other studies have found that gradient-

based approaches have similar computational performance to their Bayesian counterparts 

[37], and new techniques are being developed to enhance the stability of the factorization 

[38]. Further integrated computational/ experimental investigation is necessary to assess the 

biological relevance of solutions from both classes of techniques and their robustness. These 

associations also depend crucially on the input data. Therefore, to learn CBPs from data, MF 

must be applied to datasets with sufficient measurements of the experimental perturbations 

or conditions relevant to the specific biological problem being addressed.

Sample Application to Genotype-Tissue Expression (GTEx) Project Gene 

Expression Data of Postmortem Tissues

Applying multiple types of MF techniques to the same dataset or a single MF to distinct 

subsets of a dataset can also find distinct sources of variability. Selecting which MF method 
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to use to learn relevant CBPs from a dataset is then crucial, and developing standardized 

metrics to choose between them is an active area of research in computational biology. To 

illustrate the differences between MF methods, we apply PCA, ICA (CRAN package 

fastICA [39]), and NMF (R/Bioconductor package CoGAPS [40,41]) to a single dataset 

from postmortem samples in the GTEx project [42] (Figure 3). Specifically, we select a 

subset of GTEx data containing 12 brain tissues in the GTEx data for seven individuals for 

which we had previously performed only NMF analysis [41] (codes are provided in the 

supplemental information online). We select this problem because the CBPs (tissue and 

individual) are readily separated and are known a priori, providing a known ground truth to 

facilitate comparison of methods.

First we apply PCA to this sample GTEx dataset (Figure 3A). The components learned from 

PCA can be ranked by the amount of variation that they explain in the data, with the first 

two components explaining 89.6% of the variation in this dataset. The amount of variation 

explained by these components can be used to determine the optimal dimensionality for 

PCA [24]. A typical PCA analysis explores the association between these components and 

biological covariates in low-dimensional plots in which each axis is defined by the weights 

in one row of the pattern matrix (Figure 3A). Similarly to clustering analyses, these plots can 

be used to determine which biological features can be separated from the data. In this 

application, we observe that the cerebellum (light blue) and first cervical spinal cord 

(yellow) cluster separately from all other brain tissues (PC1 and PC2, or rows 1 and 2 of the 

pattern matrix, respectively). No separation between individuals is observed in this PCA 

analysis.

In contrast to PCA, the components of ICA and NMF cannot be ranked by percent variation 

explained. Instead, each row of the pattern matrix is an equally important CBP in the data. 

Therefore, these patterns are plotted independently relative to biological covariates, and not 

relative to one another as in PCA analyses. When applied to the sample GTEx dataset, rows 

of the pattern matrix from both ICA (Figure 3B) and NMF (Figure 3C) also distinguish the 

cerebellum, similarly to PCA. Whereas PC1 has large positive values for the cerebellum and 

large negative values for the other brain tissues, both NMF and ICA have large absolute 

value only for the tissue of interest and are near zero for other tissues. As a result, both ICA 

and NMF provide tissue-specific patterns and PCA provides tissue-segregating patterns. We 

note that the magnitude of all these patterns is unit-less, reflecting the relative weights of 

each sample in the pattern and not a measurable quantity. Because gene weights can be 

either positive or negative in ICA, the patterns weights can also. By contrast, by construction 

the NMF values are all non-negative. As a result, the pattern corresponding to the 

cerebellum samples from ICA is still specific to that tissue, with genes overexpressed in this 

tissue having negative weights in the corresponding column of the amplitude matrix, and 

genes underexpressed in that tissue having positive weights. Indeed, the gene weights in the 

column of the amplitude matrix corresponding to the NMF cerebellum pattern are 

significantly anti-correlated with the gene weights in the column of the amplitude matrix 

corresponding to the ICA cerebellum pattern (R = –0.72, P <2 × 10−16).

In contrast to PCA, both ICA and NMF also infer patterns that distinguish individuals with 

common weights across all tissues. In the NMF analysis, each individual has a separate 
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pattern. The ICA analysis has a single pattern that has large positive values for one of the 

individuals distinguished in one NMF pattern, and large negative values for another 

individual distinguished in different NMF pattern. This discrepancy highlights the difference 

between inferring independent sources of variation with ICA and NMF. Specifically, ICA 

may combine multiple CBPs using common genes whose sign changes by experimental 

condition, whereas NMF will find CBPs that are additive, corresponding only to 

overexpression of genes in that condition.

PCA, ICA, and NMF are equally valid, and their distinct formulation gives rise to the 

distinct features observed in the data. Applications of multiple types of MF techniques, or 

even the same MF algorithm with different parameters, may infer several CBPs or 

phenotypes within a single dataset, in essence providing answers to different questions. We 

further note that the specific techniques for PCA, ICA, and NMF selected for analysis in this 

example are only one of a multitude of variants of techniques which have been developed for 

computational biology. Applying multiple types of MF techniques to the same dataset, or a 

single MF to distinct subsets of a dataset, can also find distinct sources of variability. 

However, the general properties of these methods will remain and be consistent with our 

example. Briefly, we observe in this example that PCA finds sources of separation in the 

data, whereas both ICA and NMF find independent sources of variation. ICA can find both 

over- and underexpression of genes in a single CBP, whereas NMF can find only 

overexpressed genes in a single CBP. As a result, ICA may better model both repression and 

activation than NMF, but as a side effect may have greater mixture of CBPs than NMF.

Regardless of the technique selected, the results will also be sensitive to the input data. For 

example, a different NMF-class algorithm called ‘grade of membership’ (GOM) was also 

applied to a larger set of postmortem samples in GTEx. This algorithm found a pattern that 

combined all samples from brain regions when applied to all tissue samples in GTEx, but 

separated the distinct brain regions when applied only to tissue samples from the brain. 

Thus, applying multiple types of MF techniques to the same dataset, or a single MF to 

distinct subsets of a dataset, can also find distinct sources of variability that are essential for 

exploratory data analysis.

Further Example Applications To Represent Cell Types, Disease Subtypes, 

Population Stratification, Tissue Composition, and Tumor Clonality with the 

Pattern Matrix

Exactly as we observed in the GTEx example, a single factorization of complex datasets can 

find multiple distinct sources of variation. For example, the power of MF to identify multiple 

sources of variation was seen when multiple technical factors from sample processing and 

biological factors were discovered in an ICA of gene expression profiles of 198 bladder 

cancer samples [43]. One factor in the pattern matrix of this analysis defined a CBP 

associated with gender. Because ICA simultaneously accounts for multiple factors in the 

data as separate rows in the same matrix, each row can fully distinguish a single biological 

grouping from the data.
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Analysis of a single dataset with one MF algorithm using different numbers of factors can 

reflect a hierarchy of biological processes. For example, applying CoGAPS to data from a 

set of head and neck tumors and normal controls for a range of dimensionalities was able to 

separate tumor and normal samples when limited to two patterns, but further decomposed 

the tumor samples into the two dominant clinical subtypes of head and neck cancer when 

identifying five patterns for the same data [44]. The hierarchical relationship between 

patterns has been used to assess the robustness of patterns to quantify the optimality of the 

factorization [45] and learn the optimal dimensionality of the factorization [46]. Other 

algorithms use statistical metrics to estimate the number of factors [12,47]. While these 

algorithms quantify fit to the data, they may disregard the hierarchical nature of distinct 

CBPs learned by factoring biological data into multiple dimensions. This observation 

highlights the complexity of estimating the number of factors for optimal MF analysis of 

biological data (see Outstanding Questions).

Moreover, application of different MF algorithms to the same dataset can give different 

sample groupings that reflect biology. For example, in population genetics a grouping 

inferred from GWAS which distinguishes ancestry is equally valid to a grouping inferred 

from the same GWAS data which distinguishes disease risk. The application of PCA to SNP 

data from 3000 European individuals [48] demonstrates inference of sample corelationships 

using the pattern matrix, and found that much of the variation in DNA sequence is explained 

by the longitude and latitude of the country of origin of an individual. In addition, statistical 

models can be formulated assuming that the inheritance of an individual arises from 

proportions of ancestry in distinct populations through genetic admixture [48]. An MF-based 

technique called sparse factor analysis also distinguishes between these populations using 

GWAS data [49]. These analyses demonstrate that the ancestry of each individual is a 

dominant source of variation in DNA sequence. At the same time, sources of variation in 

GWAS data arise from variants that give rise to disease risk, which can be shared among 

individuals with diverse genetic backgrounds [50]. In the same way as we observed in our 

GTEx example, the application of multiple MF techniques is essential to determine each 

source of variation in GWAS studies.

Mixtures of cell types in biological samples introduce a further degree of complexity to MF 

analysis of biological variation in their molecular data. Computational microdissection 
algorithms estimate the proportion of distinct cell types within a bulk sample by applying 

MF to genes whose expression is uniquely associated with each cell type [51]. Subsetting 

the data to different genes may give rise to different factors that represent different CBPs. 

Nonetheless, CoGAPS NMF analysis of data subsets that were obtained by selecting equally 

sized sets of random genes found that the pattern matrices were consistent for each random 

geneset in the expression data [41,52]. These results suggest that the dependency of an MF 

on the specific genes used for analysis may depend on the heterogeneity of the signal in the 

data matrix.

Cellular and molecular heterogeneity poses a particular challenge to MF analysis in cancer 

genomics. Even a pure tumor tissue can contain numerous subclones owing to the 

accumulation of different driver events during tumor evolution. New MF techniques have 

been developed to estimate the proportion of the tumor that arises from each subclone 
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[47,53–56]. Assumptions about the evolutionary mechanisms of the accumulation of 

molecular alterations can also be encoded in the factorization to model the resulting 

heterogeneity of these clones [12,47]. These studies demonstrate that encoding prior 

knowledge into MF can focus the resulting factors to reflect one of the equally valid 

biological groupings within the data.

From Snapshots to Moving Pictures: Simplifying Timecourse Analysis

Entwined in the challenge of decomposing cell types and subpopulations is the fact that 

CBPs change over time. High-throughput timecourse datasets are emerging in the literature 

to account for the dynamics of biological systems. The central goal of timecourse analysis is 

to determine the extent to which molecules change over time in response to perturbations 

(e.g., developmental time, environmental factors, disease processes, or therapeutic 

treatments). Associating molecular alterations often relies on specialized bioinformatics 

techniques for timecourse analysis [57,58]. MF analyses can naturally infer changes in CBPs 

over time when applied to timecourse data because the continuous weights for each sample 

in the pattern matrix can vary among samples collected across distinct timepoints. The 

relative weights of rows of the pattern matrix can encode the timing of regulatory dynamics 

directly from the data (Figure 4). Nonetheless, most MF algorithms for timecourse analysis 

do not encode the known timepoints or retain their relative ordering. Methods that 

specifically use these temporal data are currently an active area of research.

Both ICA and NMF were found to have signatures characterizing the yeast cell cycle and 

metabolism in early timecourse microarray experiments [59,60]. The sparse NMF 

techniques using Bayesian methods had patterns that reflected the smooth dynamics of these 

phases [36,59]. This approach has been shown to simultaneously learn pathway inhibition 

and transitory responses to chemical perturbation of cancer cells [61] and relate the changes 

in phospho-proteomic trajectories between multiple therapies [62]. Similar analysis of 

healthy brain tissues learned the dynamics of transcriptional alterations that are common to 

the aging process in multiple individuals [52]. MF techniques designed for cancer subclones 

described in the previous section have also been applied to repeat samples to learn the 

dynamics of cancer development, thereby elucidating the molecular mechanisms that give 

rise to therapeutic resistance and metastasis. Even if there are the same number of biological 

features, the rate or timing of related features in different molecular modalities may be offset 

[63]. These discrepancies by data modality suggest that different regulatory mechanisms 

may be responsible for initiating and stabilizing the malignant phenotype [63].

Data-Driven Gene Sets from MF Provide Context-Dependent Coregulated 

Gene Modules and Pathway Annotations

Genomic data are often interpreted by identifying molecular changes in sets of genes 

annotated to functionally related modules or pathways, called gene sets [64,65]. Often the 

associations between gene sets and functions are based upon manual curation of the 

literature [66,67]. Such set-level interpretations often lack important contextual information 

[64,68,69], and cannot describe genes of unknown function or genes associated with new 

functional mechanisms.
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The amplitude matrix from MF analysis can be used both for literature-based gene-set 

analysis and to define new data-driven gene signatures (Figure 5). Standard gene-set analysis 

can be applied directly to the values in each column of the amplitude matrix to associate the 

inferred factors with literature-curated sets. New, context-dependent gene sets can also be 

learned from the values in the amplitude matrix. Gene-set annotations are often binary. 

Thresholding techniques to select which genes belong to a pathway from the amplitude 

matrix for binary membership provide an output similar to gene sets in databases [70,71]. 

Other studies also integrate the literature-derived gene signatures in these thresholds to 

refine the context of pathway databases [36,72]. The genes derived from these binarizations 

can be used as inputs to pathway analyses from differential expression statistics in 

independent datasets (Figure 5, right), and are analogous to the hierarchical clustering-based 

gene modules [73] and gene expression signatures from public domain studies in the 

MSigDB gene-set database [74]. Another means of binarizing the data is to find genes that 

are most uniquely associated with a specific pattern to use as biomarkers of the cell type or 

process associated with that pattern [41,75]. Selecting genes based upon these statistics can 

facilitate visualization of the CBPs in high-dimensional data [41]. Whereas binarization of 

genes with high weights can associate a single gene with multiple CBPs, the statistics for 

unique associations link a gene with only one CBP. Therefore, these statistics also define 

specific genes that may be biomarkers of the cell type/state or a process [41] (Figure 5, 

right).

Although binary pathway models are substantially easier to interpret, continuous values 

from the original factorization provide a better model of the input data. Weighted gene 

signatures have been shown to be more robust to noise and missing values in the data [76]. If 

the expression level of a gene is poorly measured in a sample, other genes in the same factor 

can imply the actual expression level of the gene in question. By considering each gene in 

the context of all other genes, factorization improves the robustness of the findings. Further, 

continuous signatures can be associated directly with other samples using projection 

methods [76,77] or profile correspondence methods [78].

MF Enables Unbiased Exploration of Single-Cell Data for Phenotypes and 

Molecular Processes

MFapproaches are a natural choice in single-cell RNA-seq (scRNA-seq) data analysis owing 

to the high dimensionality of the data, and are used to identify and remove batch effects, 

summarize CBPs, and annotate cell types in the data [79–82]. Whereas MF analysis of bulk 

data dissects groups from a small subset of samples, the analysis in scRNA-seq data 

aggregates cells into groups of common cell types or CBPs [75,83]. Often these analyses are 

performed on a subset of the data containing the most variable genes. Newer 

computationally efficient methods are being developed to enable factorization of large omics 

datasets for genome-wide analysis [84]. Biological knowledge can be encoded with a class 

of MF algorithms that summarize factors using gene sets [79,85,86].

Most MF techniques developed for bulk omics data assume that the gene expression changes 

from CBPs are additive. This assumption is violated in scRNA-seq data. One reason for the 
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violation of the additive assumption in MF is the inability to distinguish true zeros from 

missing values. Imputation methods for preprocessing [81,87] or newer MF algorithms that 

model missing data are essential for scRNA-seq data. Branching of trajectories of cellular 

states and lack of cell-cycle synchronization in scRNA-seq data further violate the additive 

assumption in MF. New nonlinear factorization techniques are being developed to enhance 

visualization of trajectory structures in single-cell data [80,88–90] in these cases. However, 

the results from these methods cannot be interpreted in the same way as those from MF 

algorithms. In particular, the low-dimensional solutions from these methods are not 

necessarily useable to reconstruct the original high-dimensional data.

Concluding Remarks

MF encompasses a versatile class of techniques with broad applications to unsupervised 

clustering, biological pattern discovery, component identification, and prediction. Since MF 

was first applied to microarray data analysis in the early 2000s [59,91–93], the breadth of 

MF problems and algorithms for high-throughput biology has grown with their broad 

applications. MF problems are ubiquitous in the computational sciences, with examples 

including unsupervised feature learning [94–99], clustering and metric learning [100–102], 

latent Dirichlet allocation [103], subspace learning [104–109], multiview learning [110], 

matrix completion [111], multitask learning [112], semi-supervised learning [113], 

compressed sensing [114], and similarity-based learning [115,116]. Dimension reduction of 

biological data with MF highlights perspectives and questions that investigators have not yet 

considered, and also enables tractable exploration of otherwise massive datasets. As the size 

of these datasets grow, it is crucial to develop new algorithms to solve MF problems that 

scale with the ever-increasing size of omics data [37,41,117,118]. MF algorithms can also be 

extended for simultaneous analysis of data from multiple data modalities, enabling genomic 

data integration [7,8,119]. Techniques that extend this integrated MF frame-work, including 

Bayesian group factor analysis [8] and tensor decomposition [120–123], can also analyze 

datasets across different molecular levels [124]. Developing such data-integration techniques 

is an active area of research in both genomics and computational sciences.

Different classes of techniques solve MF, including gradient-based and probabilistic 

methods (supplemental information online). Distinct MF problems each aim to identify 

specific types of features. In some cases different algorithms will learn distinct features from 

the same dataset. Therefore, investigators may benefit from applying multiple techniques 

with different properties, or by carefully considering both the dataset and the question in 

selecting exactly the right technique for that question. Most such comparisons in the 

literature have been made by investigators who are developing MF methods. Unbiased 

assessments of the relative performance of different MF algorithms for different exploratory 

data analysis problems are essential to determine the relative strengths and weaknesses of 

each method for distinct biological problems. MF algorithms can be further tailored to the 

biological problem of interest using methods that also encode prior biological knowledge of 

the system underlying the measured dataset [125–127].

The features MF techniques extract are constrained by the dataset used to train them. These 

algorithms cannot learn unmeasured features, nor can they correct for complete overlap 
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between technical artifacts and biological conditions. Thus, being mindful of experimental 

design when selecting datasets and choosing those that are broad enough to cover the 

relevant sources of variability is essential. Advances in MF and related techniques will be 

essential for powering systems-level analyses from big data (see Outstanding Questions).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Amplitude matrix
the matrix learned from MF that contains molecules in rows and factors in columns. Each 

column represents the relative contributions of the genes to a factor, and these can be used to 

define a molecular signature for a CBP.

Complex biological process (CBP)
the coregulation or coordinated effect of multiple molecular species resulting in one or more 

phenotypes. Examples can range from activation of multiple proteins in a single cellular 

signaling pathway to epistatic regulation of development.

Computational microdissection
a computational method to learn the composition of a heterogeneous sample, for example 

the cell types in a tissue sample.

Independent component analysis (ICA)
an MF technique that learns statistically independent factors.

Matrix factorization (MF)
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a technique to approximate a data matrix by the product of two matrices (Box 1), one of 

which we call the amplitude matrix and the other the pattern matrix.

Non-negative matrix factorization (NMF)
an MF technique for which all elements of the amplitude and pattern matrices are greater 

than or equal to zero.

Pattern matrix
the matrix learned from MF that contains factors in rows and samples in columns. Each row 

represents the relative contributions of the samples to a factor, and these can be used to 

define the relative activity of CBPs in each sample.

Principal component analysis (PCA)
an MF technique that learns orthogonal factors ordered by the relative amount of variation of 

the data that they explain.

Unsupervised learning
computational techniques to discover features from high-dimensional data, without reliance 

on prior knowledge of low-dimensional covariates.
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Box 1. Common Terminology in the Literature

Historically, the independent discovery of MF in multiple fields including mathematics, 

computer science, and statistics created distinct terminologies that are often used 

interchangeably as analytical orthologs in genomics. For example, the term 

‘factorization’ is often used interchangeablywith ‘decomposition’. Other terms, such as 

‘features’, ‘components’, ‘latent variable’, or ‘latent factors’ are used to refer to 

relationships between either molecular measurements or samples, depending on the 

context.

The specific terminology for the amplitude and pattern matrices also varies according to 

the method, and are preferably labeled with different variable names. In PCA, the 

amplitude matrix is often called the score or rotation matrix, and pattern matrix called the 

loadings. In ICA, the amplitude matrix is called the unmixing matrix and the pattern 

matrix is called the source matrix. In NMF, the amplitude matrix is commonly called the 

weights matrix and the pattern matrix is called the features matrix.

Throughout this paper we use ‘amplitude matrix’ to refer to the matrix that contains 

vectors which represent relationships between molecular measurements. Other terms 

used in the literature for these molecular relationships include modules, meta-pathways, 

and signatures. Similarly, we use ‘pattern matrix’ to refer to the matrix that contains 

vectors which represent relationships between samples. Other literature terms for these 

sample-level relationships include patterns, metagenes, eigengenes, sources, and 

controlling factors.
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Outstanding Questions

How can the optimal number of factors be quantified? Increasing the number of factors in 

MF improves its approximation, but may cause overfitting. Computational metrics that 

balance these properties can be used to estimate the number of factors. Biologically 

driven metrics are also essential to assess whether this number represents the number of 

CBPs.

How can different factorizations be compared? Different MF algorithms identify different 

properties and CBPs from a single dataset. New techniques will be necessary to compare 

and merge the disparate but equally valid factorizations.

What techniques are best for efficient and optimal factorization? Large omics data-sets 

are common, particularly with single-cell technologies. Fast computational approaches to 

MF are required for the analysis of these data. These algorithms also require 

computational criteria to ensure that the solutions are robust.

How can fully nonlinear factorizations be performed on omics-scale data? Nonlinear 

extensions to MF have notable applications to single-cell data. Researchers often use low-

dimensional representations of omics data learned from linear MF as inputs to nonlinear 

MF to account for both computational efficiency and the underlying mathematical 

assumptions of these nonlinear methods. Breakthroughs in theories for techniques such as 

kernel MF, deep MF, and manifold learning will enable fully nonlinear factorizations for 

large-scale single-cell data.

How can both gene regulatory relationships and distinct sources of technical variation be 

encoded in integrative analysis of data from different measurement technologies? 

Different measurement technologies yield data that follow unique distributions. CBPs 

and their timing also vary between types of measures. Integrative techniques must 

account for both the technical and biological sources of variation between disparate data 

modalities, including sparse or missing data. Such techniques are crucial to learning the 

regulatory relationships that drive CBPs and to modeling the multiscale nature of 

biological systems from omics data.
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Highlights

MFs techniques infer low-dimensional structure from high-dimensional omics data to 

enable visualization and inference of complex biological processes (CBPs).

Different MFs applied to the same data will learn different factors. Exploratory data 

analysis should employ multiple MFs, whereas a specific biological question should 

employ a specific MF tailored to that problem.

MFs learn two sets of low-dimensional representations (in each matrix factor) from high-

dimensional data: one defining molecular relationships (amplitude) and another defining 

sample-level relationships (pattern).

Data-driven functional pathways, biomarkers, and epistatic interactions can be learned 

from the amplitude matrix.

Clustering, subtype discovery, in silico microdissection, and timecourse analysis are all 

enabled by analysis of the pattern matrix.

MF enables both multi-omics analyses and analyses of single-cell data.
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Figure 1. Omics Technologies Yield a Data Matrix That Can Be Interpreted through MF.
The data matrixfrom omics has each sample as a column and each observed molecular value 

(expression counts, methylation Levels, protein concentrations, etc.) as a row. This data 

matrix is preprocessed with techniques specific to each measurement technology, and is then 

input to a matrix factorization (MF) technique for analysis. MF decomposes the 

preprocessed data matrix into two related matrices that represent its sources of variation: an 

amplitude matrix and a pattern matrix. The rows of the amplitude matrix quantify the 

sources of variation among the molecular observations, and the columns of the pattern 

matrix quantify the sources of variation among the samples. Abbreviations: ICA, 

independent component analysis; NMF, non-negative matrix factorization; PCA, principal 

component analysis.
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Figure 2. 
The number of columns of the amplitude matrix equals the number of rows in the pattern 

matrix, and represents the number of dimensions in the low-dimensional representation of 

the data. Ideally, a pair of one column in the amplitude matrix and the corresponding row of 

the pattern matrix represents a distinct source of biological, experimental, and technical 

variation in each sample (called complex biological processes, CBPs). (B) The values in the 

column of the amplitude matrix then represent the relative weights of each molecule in the 

CBP, and the values in the row of the pattern matrix represent its relative role in each 

sample. Plotting of the values of each pattern for a pre-determined sample grouping (here 

indicated by yellow, grey, and blue) in a boxplot as an example of a visualization technique 

for the pattern matrix. Abbreviation: Max(P), maximum value of each row of the pattern 

matrix.
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Figure 3. Comparison of Pattern Matrix From Matrix Factorization (MF) in Postmortem Tissue 
Samples from GTEx.
(A) PCA finds factors in rows of the pattern matrix that can be ranked by the amount of 

variation that they explain in the data, as illustrated in a scree plot. PCA analyses typically 

plot the first two principal components (PCs; rows of the pattern matrix) to assess sample 

clustering. Points are colored by tissue type annotations from GTEx (left), where Ammon’s 

horn refers to the hippocampus, and donor (right). In GTEx data, the cerebellum (light blue) 

and first cervical spinal cord (yellow) cluster separately from all other brain tissues, but no 

separation between individuals is observed. (B) ICA finds factors associated with 

independent sources of variation, and therefore cannot be ranked in a scree plot. The relative 

absolute value of the magnitude of each element in the pattern matrix indicates the extent to 

which that sample contributes to the corresponding source of variation. The sign of the 

values indicate over- or underexpression in that factor depending on the sign of the 

corresponding gene weights in the amplitude matrix. As a result, the values can be plotted 

on the y axis against known covariates on the x axis to directly interpret the relationship 

between samples. When applied to GTEx, we observe one pattern associated with 

cerebellum, another pattern that has large positive values for one donor and large negative 

values for another donor, and eight other patterns associated with other sources ofvariation 

(supplemental information online). (C) NMF findsfactors that are both non-negative and not 

ranked by relative importance, similarly to ICA. The value of the pattern matrix indicates the 

extent to which each sample contributes to an inferred source of variation and is associated 

with overexpression of corresponding gene weights in the amplitude matrix. Values of the 

pattern matrix can be plotted similarly to ICA. When applied to GTEx, we observe one 

pattern associated with cerebellum, two more patterns associated with the two donors that 

were assigned to a single pattern in ICA, and seven other patterns associated with other 

Stein-O’Brien et al. Page 23

Trends Genet. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sources of variation (supplemental information online). Abbreviations: GTEx, Genotype-

Tissue Expression (GTEx) project; ICA, independent component analysis; NMF, non-

negative matrix factorization; PCA, principal component analysis.
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Figure 4. Samples Correspond to Timepoints; the Rows of the Pattern Matrix Can Be Plotted as 
a Function of Time and Sample Condition To Infer the Dynamics of Complex Biological 
Processes (CBPs).
Abbreviations: d1-d6, days 1–6; max(P), maximum value of each row of the pattern matrix; 

NMF, non-negative matrix factorization; P1–3, patterns 1–3.
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Figure 5. The Amplitude Matrix from Matrix Factorization (MF) Can Be Used to Derive Data-
Driven Molecular Signatures Associated with a Complex Biological Process (CBP).
The columns of the amplitude matrix contain continuous weights describing the relative 

contribution of a molecule to a CBP (center panel; indicated by the orange, purple, and 

green boxes). The resulting molecular signature can be analyzed in a new dataset to 

determine the samples in which each previously detected CBP occurs, and thereby assess 

function in a new experiment. This comparison may be done by comparing the continuous 

weights in each column of the amplitude matrix directly to the new dataset (left). The 

amplitude matrix may also be used in traditional gene-set analysis (right). Traditional gene-

set analysis using literature curated gene sets can be performed on the values in each column 

of the amplitude matrix to identify whether a CBP is occurring in the input data. Data-driven 

gene sets can also be defined from this matrix directly using binarization, and used in place 

of literature-curated gene sets to query CBPs in a new dataset. Sets defined from molecules 

with high weights in the amplitude matrix comprise signatures akin to many curated gene-

set resources, whereas molecules that are most uniquely associated with a specific factor 

(purple box) may be biomarkers. Abbreviations, KO, knockout; WT, wild type.
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